metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­­{2-[4-(4-pyrid­yl)pyrimidin-2-ylsulfan­yl]acetato}­zinc

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhuhaibin@seu.edu.cn

(Received 13 July 2011; accepted 25 July 2011; online 30 July 2011)

In the title compound, [Zn(C11H8N3O2S)2(H2O)4], the ZnII ion lies on an inversion centre and is coordinated by four water mol­ecules and two N atoms from two 2-[4-(4-pyrid­yl)pyrimidin-2-ylsulfan­yl]acetate (L) ligands in a distorted octa­hedral geometry. In L, the pyridine and pyrimidine rings are twisted at an angle of 11.2 (1)°. The coordinated water mol­ecules and the acetate groups are involved in the formation of a three-dimensional hydrogen-bonded network, which consolidates the crystal packing.

Related literature

For a related structure, see: Zhu et al. (2009[Zhu, H.-B., Xu, G. & Sun, Y.-Y. (2009). Acta Cryst. E65, m1126.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C11H8N3O2S)2(H2O)4]

  • Mr = 630.00

  • Orthorhombic, P b c a

  • a = 7.199 (7) Å

  • b = 11.792 (11) Å

  • c = 28.77 (3) Å

  • V = 2442 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.24 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.780, Tmax = 0.830

  • 16776 measured reflections

  • 2465 independent reflections

  • 1836 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.086

  • S = 1.02

  • 2465 reflections

  • 190 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4WB⋯O2i 0.81 (2) 1.96 (2) 2.759 (3) 170 (3)
O4—H4WA⋯O1ii 0.82 (2) 1.82 (2) 2.632 (3) 172 (2)
O3—H3WB⋯O2iii 0.84 (2) 1.89 (2) 2.728 (3) 176 (3)
O3—H3WA⋯O2iv 0.82 (2) 2.24 (2) 3.060 (3) 172 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x-{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In our previous work, we have reported the crystal structure of mononuclear Mn(II) complex with the ligand of 2-(4-(pyridine-3-yl)pyrimidin-2-ylthio)acetic acid (Zhu et al., 2009). Herein, we present a Zn(II) complex with the ligand of 2-(4-(pyridine-4-yl)pyrimidin-2-ylthio)acetic acid.

Similar to the reported Mn(II) coordination compound (Zhu et al., 2009), the Zn(II) center in the title compound also adopts an octahedral coordination geometry defined by four water O atoms in equatorial positions and two N atoms in apical positions (Fig. 1). The Zn—O bond lengths vary from 2.070 (2) to 2.137 (2)Å, and the Zn—N bond length is 2.176 (2) Å. Intermolecular O—H···O hydrogen bonds (Table 1) consolidate the crystal packing.

Related literature top

For a related structure, see: Zhu et al. (2009).

Experimental top

The mixture of Zn(NO3)2 (0.1 mmol), L (0.2 mmol) and NaOH (0.2 mmol) in 10 ml of H2O was stirred for 30 min at room temperature. After filtration, the mother liquid was stood for three weeks to give yellow crystals suitable for X-ray diffraction analysis.

Refinement top

C-bound H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C). The positions of the water H atoms were found from a difference Fourier map and refined with restraint O—H = 0.82 (2) Å using a riding model, with Uiso(H) = 1.2 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment around Zn(II) in the title complex with the atom-labeling scheme [symmetry code: (A) -x, -y + 1, -z + 1]. Displacement ellipsoids for non-hydrogen atoms are drawn at the 50% probability level.
Tetraaquabis{2-[4-(4-pyridyl)pyrimidin-2-ylsulfanyl]acetato}zinc top
Crystal data top
[Zn(C11H8N3O2S)2(H2O)4]F(000) = 1296
Mr = 630.00Dx = 1.714 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2465 reflections
a = 7.199 (7) Åθ = 2.3–25.5°
b = 11.792 (11) ŵ = 1.24 mm1
c = 28.77 (3) ÅT = 298 K
V = 2442 (4) Å3Block, yellow
Z = 40.20 × 0.20 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2465 independent reflections
Radiation source: fine-focus sealed tube1836 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 27.1°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 89
Tmin = 0.780, Tmax = 0.830k = 1414
16776 measured reflectionsl = 3432
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.3573P]
where P = (Fo2 + 2Fc2)/3
2465 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.23 e Å3
4 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Zn(C11H8N3O2S)2(H2O)4]V = 2442 (4) Å3
Mr = 630.00Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 7.199 (7) ŵ = 1.24 mm1
b = 11.792 (11) ÅT = 298 K
c = 28.77 (3) Å0.20 × 0.20 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2465 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1836 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.830Rint = 0.051
16776 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0334 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.23 e Å3
2465 reflectionsΔρmin = 0.45 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.50000.50000.02474 (14)
S10.01224 (8)0.60147 (5)0.17445 (2)0.02955 (17)
N20.1353 (3)0.80094 (16)0.20795 (6)0.0297 (5)
N10.0402 (3)0.65524 (16)0.26077 (6)0.0264 (5)
O40.2360 (2)0.41441 (14)0.47861 (5)0.0314 (4)
H4WB0.307 (3)0.396 (2)0.4993 (7)0.038*
H4WA0.302 (3)0.450 (2)0.4603 (7)0.038*
C10.0700 (3)0.6981 (2)0.21845 (8)0.0256 (5)
C100.0382 (3)0.6859 (2)0.12255 (8)0.0283 (5)
H10A0.04120.75220.12440.034*
H10B0.16580.71140.11980.034*
O10.0740 (3)0.51902 (14)0.08678 (6)0.0396 (5)
C50.0435 (3)0.67551 (18)0.34366 (8)0.0236 (5)
C40.0801 (3)0.72292 (19)0.29679 (7)0.0241 (5)
C110.0136 (3)0.6163 (2)0.08050 (8)0.0269 (5)
N30.0130 (2)0.58138 (16)0.43217 (6)0.0255 (4)
O20.0038 (2)0.66402 (14)0.04128 (6)0.0339 (4)
O30.1746 (3)0.36656 (14)0.47517 (6)0.0342 (4)
H3WB0.118 (3)0.3056 (17)0.4696 (9)0.041*
H3WA0.269 (3)0.355 (2)0.4908 (8)0.041*
C70.0205 (3)0.6920 (2)0.42625 (8)0.0287 (6)
H7A0.02590.73770.45250.034*
C30.1516 (3)0.83095 (19)0.28983 (8)0.0295 (5)
H3B0.18140.87810.31470.035*
C90.0026 (3)0.5610 (2)0.34959 (8)0.0301 (6)
H9A0.00590.51350.32390.036*
C80.0249 (3)0.5184 (2)0.39326 (8)0.0309 (6)
H8A0.05340.44180.39620.037*
C20.1763 (4)0.86515 (19)0.24447 (8)0.0311 (6)
H2B0.22450.93720.23910.037*
C60.0476 (3)0.7421 (2)0.38362 (8)0.0294 (5)
H6A0.06850.81970.38150.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0297 (2)0.0257 (2)0.0188 (2)0.00061 (16)0.00071 (16)0.00053 (15)
S10.0392 (4)0.0303 (3)0.0191 (3)0.0049 (3)0.0001 (3)0.0019 (2)
N20.0318 (11)0.0314 (11)0.0259 (10)0.0026 (9)0.0017 (9)0.0039 (9)
N10.0317 (12)0.0287 (11)0.0187 (10)0.0006 (8)0.0007 (8)0.0016 (8)
O40.0326 (10)0.0363 (10)0.0255 (9)0.0049 (8)0.0041 (8)0.0036 (8)
C10.0233 (12)0.0312 (13)0.0222 (12)0.0020 (10)0.0017 (9)0.0006 (10)
C100.0328 (14)0.0304 (13)0.0216 (12)0.0034 (10)0.0017 (10)0.0032 (10)
O10.0562 (12)0.0353 (10)0.0274 (10)0.0098 (9)0.0089 (9)0.0006 (8)
C50.0238 (12)0.0261 (12)0.0210 (12)0.0020 (9)0.0029 (9)0.0013 (10)
C40.0218 (12)0.0287 (12)0.0217 (12)0.0019 (10)0.0018 (10)0.0008 (10)
C110.0275 (13)0.0307 (13)0.0226 (12)0.0033 (10)0.0000 (10)0.0015 (10)
N30.0291 (11)0.0275 (11)0.0200 (10)0.0010 (8)0.0004 (8)0.0019 (8)
O20.0474 (11)0.0340 (10)0.0203 (9)0.0031 (8)0.0014 (7)0.0017 (7)
O30.0373 (11)0.0329 (10)0.0325 (10)0.0045 (8)0.0010 (8)0.0016 (8)
C70.0347 (14)0.0288 (13)0.0225 (12)0.0031 (10)0.0018 (10)0.0062 (10)
C30.0339 (14)0.0271 (13)0.0276 (13)0.0002 (10)0.0047 (11)0.0022 (10)
C90.0393 (15)0.0289 (13)0.0220 (12)0.0023 (11)0.0014 (10)0.0066 (10)
C80.0436 (16)0.0257 (12)0.0233 (13)0.0046 (11)0.0005 (11)0.0001 (10)
C20.0328 (14)0.0267 (13)0.0339 (14)0.0042 (11)0.0028 (11)0.0045 (11)
C60.0358 (14)0.0247 (12)0.0277 (13)0.0001 (10)0.0036 (11)0.0015 (10)
Geometric parameters (Å, º) top
Zn1—O42.070 (2)C5—C91.393 (3)
Zn1—O4i2.070 (2)C5—C61.392 (3)
Zn1—O3i2.137 (2)C5—C41.483 (3)
Zn1—O32.137 (2)C4—C31.388 (3)
Zn1—N3i2.176 (2)C11—O21.267 (3)
Zn1—N32.176 (2)N3—C71.337 (3)
S1—C11.753 (3)N3—C81.346 (3)
S1—C101.804 (3)O3—H3WB0.843 (16)
N2—C21.328 (3)O3—H3WA0.822 (17)
N2—C11.335 (3)C7—C61.375 (3)
N1—C11.336 (3)C7—H7A0.9300
N1—C41.339 (3)C3—C21.377 (3)
O4—H4WB0.810 (16)C3—H3B0.9300
O4—H4WA0.821 (16)C9—C81.367 (4)
C10—C111.508 (3)C9—H9A0.9300
C10—H10A0.9700C8—H8A0.9300
C10—H10B0.9700C2—H2B0.9300
O1—C111.240 (3)C6—H6A0.9300
O4—Zn1—O4i180.00 (8)C6—C5—C4122.3 (2)
O4—Zn1—O3i88.60 (9)N1—C4—C3121.0 (2)
O4i—Zn1—O3i91.40 (9)N1—C4—C5116.1 (2)
O4—Zn1—O391.40 (9)C3—C4—C5122.9 (2)
O4i—Zn1—O388.60 (9)O1—C11—O2125.1 (2)
O3i—Zn1—O3180.0O1—C11—C10118.2 (2)
O4—Zn1—N3i90.94 (7)O2—C11—C10116.6 (2)
O4i—Zn1—N3i89.06 (7)C7—N3—C8116.3 (2)
O3i—Zn1—N3i89.99 (8)C7—N3—Zn1122.44 (15)
O3—Zn1—N3i90.01 (8)C8—N3—Zn1120.33 (17)
O4—Zn1—N389.06 (7)Zn1—O3—H3WB113.9 (19)
O4i—Zn1—N390.94 (7)Zn1—O3—H3WA114.9 (19)
O3i—Zn1—N390.01 (8)H3WB—O3—H3WA111 (3)
O3—Zn1—N389.99 (8)N3—C7—C6123.9 (2)
N3i—Zn1—N3180.0N3—C7—H7A118.0
C1—S1—C10102.37 (13)C6—C7—H7A118.0
C2—N2—C1114.66 (19)C2—C3—C4116.9 (2)
C1—N1—C4116.4 (2)C2—C3—H3B121.5
Zn1—O4—H4WB115.2 (19)C4—C3—H3B121.5
Zn1—O4—H4WA114.8 (18)C8—C9—C5119.9 (2)
H4WB—O4—H4WA104 (3)C8—C9—H9A120.0
N2—C1—N1127.3 (2)C5—C9—H9A120.0
N2—C1—S1120.71 (17)N3—C8—C9123.5 (2)
N1—C1—S1111.96 (18)N3—C8—H8A118.2
C11—C10—S1109.75 (17)C9—C8—H8A118.2
C11—C10—H10A109.7N2—C2—C3123.6 (2)
S1—C10—H10A109.7N2—C2—H2B118.2
C11—C10—H10B109.7C3—C2—H2B118.2
S1—C10—H10B109.7C7—C6—C5119.4 (2)
H10A—C10—H10B108.2C7—C6—H6A120.3
C9—C5—C6116.8 (2)C5—C6—H6A120.3
C9—C5—C4121.0 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4WB···O2ii0.81 (2)1.96 (2)2.759 (3)170 (3)
O4—H4WA···O1iii0.82 (2)1.82 (2)2.632 (3)172 (2)
O3—H3WB···O2iv0.84 (2)1.89 (2)2.728 (3)176 (3)
O3—H3WA···O2v0.82 (2)2.24 (2)3.060 (3)172 (3)
Symmetry codes: (ii) x+1/2, y+1, z+1/2; (iii) x+1/2, y, z+1/2; (iv) x, y1/2, z+1/2; (v) x1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C11H8N3O2S)2(H2O)4]
Mr630.00
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)7.199 (7), 11.792 (11), 28.77 (3)
V3)2442 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.780, 0.830
No. of measured, independent and
observed [I > 2σ(I)] reflections
16776, 2465, 1836
Rint0.051
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 1.02
No. of reflections2465
No. of parameters190
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.45

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4WB···O2i0.810 (16)1.957 (17)2.759 (3)170 (3)
O4—H4WA···O1ii0.821 (16)1.818 (16)2.632 (3)172 (2)
O3—H3WB···O2iii0.843 (16)1.886 (17)2.728 (3)176 (3)
O3—H3WA···O2iv0.822 (17)2.243 (17)3.060 (3)172 (3)
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y, z+1/2; (iii) x, y1/2, z+1/2; (iv) x1/2, y+1, z+1/2.
 

Acknowledgements

The authors acknowledge the Teaching and Research Programme for Excellent Young Teachers of Southeast University (grant No. 3207041202).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H.-B., Xu, G. & Sun, Y.-Y. (2009). Acta Cryst. E65, m1126.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds