organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1-Di­benzyl-3-(4-fluoro­benzo­yl)thio­urea

aFuel Cell Institute, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia, bDepartment of Chemical and Process Engineering, Faculty of Engineering, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia, and cSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia
*Correspondence e-mail: ibnhum@gmail.com

(Received 28 June 2011; accepted 4 July 2011; online 9 July 2011)

In the title compound, C22H19FN2OS, the 2-fluoro­benzoyl group adopts a trans conformation with respect to the thiono S atom across the N—C bond. In the crystal, inter­molecular N—H⋯S, C—H⋯S and C—H⋯O hydrogen bonds link the mol­ecules, forming a two-dimensional network parallel to (101).

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Nasir et al. (2011[Nasir, M. F. M., Hassan, I. N., Wan Daud, W. R., Yamin, B. M. & Kassim, M. B. (2011). Acta Cryst. E67, o1218.]); Yamin & Hassan (2004[Yamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513-o2514.]); Hassan et al. (2008a[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.],b[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083.],c[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167.], 2009[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078.]). For the synthesis, see: Hassan et al. (2008a[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19FN2OS

  • Mr = 378.45

  • Monoclinic, P 21 /n

  • a = 10.683 (3) Å

  • b = 7.026 (2) Å

  • c = 26.435 (7) Å

  • β = 101.100 (6)°

  • V = 1946.9 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 298 K

  • 0.42 × 0.21 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.925, Tmax = 0.967

  • 8644 measured reflections

  • 3425 independent reflections

  • 2659 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.138

  • S = 1.15

  • 3425 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.86 2.61 3.422 (2) 159
C1—H1A⋯S1i 0.93 2.87 3.727 (3) 154
C4—H4⋯O1ii 0.93 2.50 3.322 (4) 147
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL and PLATON.

Supporting information


Comment top

The title compound, I, is a thiourea derivative of dibenzylamine analogous to our previous reported, 1,1-sibenzyl-3-(3-chlorobenzoyl)thiourea, II (Nasir et al. 2011). The molecule maintains the the same trans and cis conformation for both the 3-fluorobenzoyl and the dibenzylamine groups, respectively, relative to the S atom across the N2—C8 bond (Fig 1). The dihedral angle between the phenyl ring, (C1—C6), and the thiourea fragment, (S1/N1/N2/C8) is 70.95 (13)° , whereas in II was 72.9 (2)°. The bond lengths and angles in the molecules are in normal ranges (Allen et al., 1987) and comparable with those of II. However, the C=S bond length [1.678 (2)Å] is slightly longer than that of (II) [1.672 (6)Å]

Both phenyl rings, [C10/C11/C12/C13/C14/C15] and [C17/C18/C19/C20/C21/C22] are essentially planar and are twisted to each other by a dihedral angle of 22.4 (4)°. The intermolecular N1—H1···S1, C1—H1A···S and C4—H4···O1 hydrogen bonds (Table 1,) links the molecules into two dimensional ribbon parallel to the (1 0 1) plane (Fig 2).

Related literature top

For standard bond lengths, see: Allen et al. (1987). For related structures, see: Nasir et al. (2011); Yamin & Hassan (2004); Hassan et al. (2008a,b,c, 2009). For the synthesis, see: Hassan et al. (2008a).

Experimental top

The title compound was synthesized according to a previously reported compound (Hassan et al., 2008a). A colourless crystal, suitable for X-ray crystallography, was obtained by a slow evaporation from ethanolic solution at room temperature (yield 87%).

Refinement top

H atoms of C and N atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso= 1.2Ueq (C) for aromatic 0.93 Å, Uiso = 1.2Ueq (C) for CH2 0.97 Å, Uiso = 1.2Ueq (N) for N—H 0.86 Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), XP in SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atoms labeling scheme and displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing of (I) view down the b axis. H bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.
1,1-Dibenzyl-3-(4-fluorobenzoyl)thiourea top
Crystal data top
C22H19FN2OSF(000) = 792
Mr = 378.45Dx = 1.291 Mg m3
Monoclinic, P21/nMelting point: 410 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.683 (3) ÅCell parameters from 2659 reflections
b = 7.026 (2) Åθ = 2.0–25.0°
c = 26.435 (7) ŵ = 0.19 mm1
β = 101.100 (6)°T = 298 K
V = 1946.9 (10) Å3Block, colourless
Z = 40.42 × 0.21 × 0.18 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3425 independent reflections
Radiation source: fine-focus sealed tube2659 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 128
Tmin = 0.925, Tmax = 0.967k = 88
8644 measured reflectionsl = 3128
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.5146P]
where P = (Fo2 + 2Fc2)/3
3425 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C22H19FN2OSV = 1946.9 (10) Å3
Mr = 378.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.683 (3) ŵ = 0.19 mm1
b = 7.026 (2) ÅT = 298 K
c = 26.435 (7) Å0.42 × 0.21 × 0.18 mm
β = 101.100 (6)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3425 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2659 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.967Rint = 0.027
8644 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.15Δρmax = 0.25 e Å3
3425 reflectionsΔρmin = 0.23 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.8992 (2)0.7024 (3)0.17795 (9)0.1137 (8)
S10.47635 (8)0.26603 (10)0.02677 (3)0.0641 (3)
O10.5719 (2)0.0400 (3)0.17142 (7)0.0736 (6)
N10.5164 (2)0.0377 (3)0.08698 (7)0.0502 (6)
H10.52100.12220.06390.060*
N20.3452 (2)0.1514 (3)0.09743 (7)0.0453 (5)
C10.6626 (3)0.3835 (4)0.11002 (10)0.0570 (7)
H1A0.60470.37730.07890.068*
C20.7407 (3)0.5402 (5)0.12067 (12)0.0697 (8)
H20.73690.63910.09700.084*
C30.8236 (3)0.5463 (5)0.16670 (13)0.0742 (9)
C40.8339 (3)0.4041 (6)0.20216 (12)0.0807 (10)
H40.89240.41200.23310.097*
C50.7554 (3)0.2481 (5)0.19116 (10)0.0694 (9)
H50.76050.15010.21510.083*
C60.6688 (2)0.2352 (4)0.14481 (9)0.0495 (6)
C70.5840 (2)0.0665 (4)0.13658 (9)0.0507 (7)
C80.4407 (3)0.1238 (3)0.07298 (8)0.0460 (6)
C90.2742 (3)0.3312 (4)0.09357 (10)0.0532 (7)
H9A0.18420.30520.08150.064*
H9B0.30270.41230.06830.064*
C100.2914 (3)0.4349 (3)0.14432 (9)0.0482 (6)
C110.4099 (3)0.4550 (4)0.17540 (11)0.0627 (8)
H110.48010.39680.16590.075*
C120.4261 (4)0.5594 (5)0.22019 (12)0.0768 (10)
H120.50690.57180.24060.092*
C130.3240 (4)0.6450 (4)0.23477 (12)0.0796 (10)
H130.33510.71640.26490.096*
C140.2052 (4)0.6251 (4)0.20481 (13)0.0776 (10)
H140.13520.68230.21480.093*
C150.1887 (3)0.5196 (4)0.15949 (11)0.0625 (8)
H150.10760.50620.13930.075*
C160.2919 (3)0.0015 (4)0.12613 (9)0.0506 (7)
H16A0.27900.05170.15890.061*
H16B0.35170.10360.13300.061*
C170.1667 (3)0.0689 (4)0.09543 (9)0.0521 (7)
C180.0539 (3)0.0329 (5)0.11120 (12)0.0716 (9)
H180.05390.04020.14050.086*
C190.0598 (3)0.1044 (7)0.08383 (17)0.0976 (12)
H190.13570.08020.09500.117*
C200.0607 (5)0.2105 (7)0.04053 (17)0.1034 (14)
H200.13710.25950.02240.124*
C210.0496 (5)0.2446 (5)0.02384 (13)0.0921 (12)
H210.04820.31500.00600.111*
C220.1643 (3)0.1750 (4)0.05112 (11)0.0680 (8)
H220.23980.19960.03970.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1048 (16)0.1189 (18)0.1105 (16)0.0546 (14)0.0040 (13)0.0346 (14)
S10.1037 (6)0.0484 (4)0.0428 (4)0.0095 (4)0.0210 (4)0.0047 (3)
O10.0912 (15)0.0817 (15)0.0405 (10)0.0164 (12)0.0058 (10)0.0154 (10)
N10.0710 (14)0.0460 (12)0.0316 (10)0.0060 (11)0.0050 (10)0.0024 (9)
N20.0605 (13)0.0358 (11)0.0379 (11)0.0003 (10)0.0055 (10)0.0029 (8)
C10.0627 (18)0.0552 (17)0.0482 (15)0.0041 (15)0.0013 (13)0.0088 (13)
C20.075 (2)0.063 (2)0.0670 (19)0.0095 (17)0.0033 (16)0.0058 (15)
C30.064 (2)0.087 (2)0.072 (2)0.0230 (18)0.0127 (17)0.0279 (19)
C40.064 (2)0.121 (3)0.0510 (18)0.020 (2)0.0025 (15)0.020 (2)
C50.0630 (18)0.099 (3)0.0424 (15)0.0080 (19)0.0008 (14)0.0019 (15)
C60.0500 (15)0.0624 (17)0.0360 (13)0.0023 (14)0.0080 (11)0.0092 (12)
C70.0567 (16)0.0580 (17)0.0350 (13)0.0042 (14)0.0027 (12)0.0001 (12)
C80.0644 (17)0.0389 (14)0.0309 (12)0.0067 (13)0.0007 (12)0.0060 (10)
C90.0685 (18)0.0413 (15)0.0468 (14)0.0062 (14)0.0038 (13)0.0037 (11)
C100.0657 (17)0.0346 (13)0.0452 (14)0.0024 (13)0.0125 (13)0.0041 (11)
C110.072 (2)0.0539 (18)0.0614 (17)0.0025 (15)0.0122 (15)0.0097 (14)
C120.101 (3)0.065 (2)0.0594 (19)0.012 (2)0.0029 (18)0.0140 (16)
C130.143 (3)0.0475 (19)0.0521 (18)0.005 (2)0.029 (2)0.0051 (14)
C140.118 (3)0.0539 (19)0.074 (2)0.018 (2)0.051 (2)0.0056 (16)
C150.076 (2)0.0505 (17)0.0659 (18)0.0077 (16)0.0252 (16)0.0086 (14)
C160.0652 (17)0.0459 (15)0.0415 (13)0.0018 (13)0.0126 (12)0.0053 (11)
C170.0682 (18)0.0428 (15)0.0455 (14)0.0060 (14)0.0114 (13)0.0071 (12)
C180.074 (2)0.078 (2)0.0655 (19)0.0069 (18)0.0196 (17)0.0071 (16)
C190.067 (2)0.127 (4)0.098 (3)0.021 (2)0.014 (2)0.022 (3)
C200.100 (3)0.116 (3)0.083 (3)0.051 (3)0.011 (2)0.022 (2)
C210.135 (4)0.074 (2)0.060 (2)0.038 (3)0.001 (2)0.0021 (17)
C220.092 (2)0.0541 (17)0.0564 (17)0.0092 (17)0.0109 (16)0.0003 (14)
Geometric parameters (Å, º) top
F1—C31.360 (4)C10—C111.376 (4)
S1—C81.678 (3)C11—C121.375 (4)
O1—C71.213 (3)C11—H110.9300
N1—C71.385 (3)C12—C131.365 (5)
N1—C81.401 (3)C12—H120.9300
N1—H10.8600C13—C141.367 (5)
N2—C81.323 (3)C13—H130.9300
N2—C91.467 (3)C14—C151.391 (4)
N2—C161.475 (3)C14—H140.9300
C1—C21.378 (4)C15—H150.9300
C1—C61.383 (4)C16—C171.508 (4)
C1—H1A0.9300C16—H16A0.9700
C2—C31.361 (4)C16—H16B0.9700
C2—H20.9300C17—C181.372 (4)
C3—C41.360 (5)C17—C221.385 (4)
C4—C51.376 (4)C18—C191.383 (5)
C4—H40.9300C18—H180.9300
C5—C61.389 (4)C19—C201.364 (6)
C5—H50.9300C19—H190.9300
C6—C71.482 (4)C20—C211.356 (6)
C9—C101.507 (3)C20—H200.9300
C9—H9A0.9700C21—C221.386 (5)
C9—H9B0.9700C21—H210.9300
C10—C151.375 (4)C22—H220.9300
C7—N1—C8122.6 (2)C12—C11—C10121.2 (3)
C7—N1—H1118.7C12—C11—H11119.4
C8—N1—H1118.7C10—C11—H11119.4
C8—N2—C9122.0 (2)C13—C12—C11120.2 (3)
C8—N2—C16123.8 (2)C13—C12—H12119.9
C9—N2—C16113.9 (2)C11—C12—H12119.9
C2—C1—C6121.1 (3)C12—C13—C14119.6 (3)
C2—C1—H1A119.4C12—C13—H13120.2
C6—C1—H1A119.4C14—C13—H13120.2
C3—C2—C1118.2 (3)C13—C14—C15120.2 (3)
C3—C2—H2120.9C13—C14—H14119.9
C1—C2—H2120.9C15—C14—H14119.9
C4—C3—F1118.4 (3)C10—C15—C14120.4 (3)
C4—C3—C2123.0 (3)C10—C15—H15119.8
F1—C3—C2118.5 (3)C14—C15—H15119.8
C3—C4—C5118.3 (3)N2—C16—C17110.32 (19)
C3—C4—H4120.8N2—C16—H16A109.6
C5—C4—H4120.8C17—C16—H16A109.6
C4—C5—C6120.9 (3)N2—C16—H16B109.6
C4—C5—H5119.5C17—C16—H16B109.6
C6—C5—H5119.5H16A—C16—H16B108.1
C1—C6—C5118.4 (3)C18—C17—C22118.8 (3)
C1—C6—C7123.7 (2)C18—C17—C16121.1 (3)
C5—C6—C7117.8 (3)C22—C17—C16120.1 (3)
O1—C7—N1121.1 (2)C17—C18—C19120.5 (3)
O1—C7—C6122.2 (2)C17—C18—H18119.7
N1—C7—C6116.7 (2)C19—C18—H18119.7
N2—C8—N1116.7 (2)C20—C19—C18120.1 (4)
N2—C8—S1124.9 (2)C20—C19—H19120.0
N1—C8—S1118.3 (2)C18—C19—H19120.0
N2—C9—C10112.4 (2)C21—C20—C19120.2 (4)
N2—C9—H9A109.1C21—C20—H20119.9
C10—C9—H9A109.1C19—C20—H20119.9
N2—C9—H9B109.1C20—C21—C22120.3 (4)
C10—C9—H9B109.1C20—C21—H21119.8
H9A—C9—H9B107.8C22—C21—H21119.8
C15—C10—C11118.4 (3)C17—C22—C21120.0 (3)
C15—C10—C9120.1 (3)C17—C22—H22120.0
C11—C10—C9121.5 (3)C21—C22—H22120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···S10.972.553.076 (3)114
N1—H1···S1i0.862.613.422 (2)159
C1—H1A···S1i0.932.873.727 (3)154
C4—H4···O1ii0.932.503.322 (4)147
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H19FN2OS
Mr378.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.683 (3), 7.026 (2), 26.435 (7)
β (°) 101.100 (6)
V3)1946.9 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.42 × 0.21 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.925, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
8644, 3425, 2659
Rint0.027
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.138, 1.15
No. of reflections3425
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), XP in SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···S10.972.553.076 (3)114
N1—H1···S1i0.862.613.422 (2)159
C1—H1A···S1i0.932.873.727 (3)154
C4—H4···O1ii0.932.503.322 (4)147
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia for providing facilities and grants (postdoctoral for INH, UKM-GUP-BTT-07–30-190 and UKM-OUP-TK-16– 73/2010&2011 for MBK sabbatical leave). They also expresstheir appreciation to the Kementerian Pengajian Tinggi, Malaysia, for the research fund No. UKM-ST-06-FRGS0111–2009.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNasir, M. F. M., Hassan, I. N., Wan Daud, W. R., Yamin, B. M. & Kassim, M. B. (2011). Acta Cryst. E67, o1218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513–o2514.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds