organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Hy­dr­oxy­pyridinium-2-carboxylate

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 23 June 2011; accepted 8 July 2011; online 16 July 2011)

Comparable to many amino acids, the title compound, C6H5NO3, is a substitution product of picolinic acid. The mol­ecule shows approximate non-crystallographic Cs symmetry. Like many amino acids, the mol­ecule is present in its zwitterionic state. Intra- as well as inter­molecular hydrogen bonds are observed, the latter connecting the mol­ecules into zigzag chains along the crystallographic b axis. An inter­molecular C—C distance of only 3.368 (2) Å exclusively involving carbon atoms of aromatic rings (centroid–centroid separation = 3.803 Å) is indicative of ππ inter­actions connecting the mol­ecules into stacks along the crystallographic a axis.

Related literature

For the use of chelate ligands as opposed to monodentate ligands, see: Gade (1998[Gade, L. H. (1998). Koordinationschemie, 1. Auflage, Weinheim: Wiley-VCH.]). For the crystal structures of two mercury coordination compounds applying the title compound as a mono-, as well as a bidentate, ligand, see: Popović et al. (2007[Popović, Z., Matković-Čalogović, D., Popović, J., Vicković, I., Vinković, M. & Vikić-Topić, D. (2007). Polyhedron, 26, 1045-1052.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5NO3

  • Mr = 139.11

  • Monoclinic, P 21

  • a = 3.8034 (1) Å

  • b = 6.8144 (2) Å

  • c = 11.1807 (4) Å

  • β = 95.102 (1)°

  • V = 288.63 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 200 K

  • 0.56 × 0.50 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 2659 measured reflections

  • 768 independent reflections

  • 758 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.083

  • S = 1.07

  • 768 reflections

  • 96 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1 0.84 1.75 2.4997 (17) 148
N1—H71⋯O2i 1.01 (2) 1.80 (3) 2.6767 (17) 143 (3)
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to coordination compounds exclusively applying comparable monodentate ligands (Gade, 1998). Combining two different donor atoms in different states of hybridization might be useful to accomodate a large variety of metal centers of variable Lewis acidity. In this aspect, 3-hyxdroxypicolinic acid seemed of interest due to its possible use as a strictly neutral or, depending on the pH value, as an anionic or cationic ligand. In addition, due to the arrangement of its functional groups, it may act as mono- or bidentate ligand offering the possibility to create five- as well as six-membered chelate rings. To enable comparative studies in terms of bond lengths and angles in envisioned coordination compounds, we determined the molecular and crystal structure of the title compound. Among a few others, the crystal structures of two mercury coordination compounds in which 3-hydroxypicolinic acid acts as mono- or bidentate ligand exist in the literature (Popović et al., 2007).

The molecule (Fig. 1) is present in its zwitterionic tautomeric form and thus resembles natural amino acids. Intracyclic angles span a range of 118.48 (14)–123.88 (12) ° with the biggest angle found on the protonated nitrogen atom. Nearly all atoms of the molecule are in plane. The least-squares planes defined by the aromatic moiety on the one hand and the atoms of the carboxylic acid group on the other hand enclose an angle of only 2.8 (3) °.

Apart from an intramolecular hydrogen bond obvious between the hydroxyl group and the carboxylic acid group, intermolecular hydrogen bonds are observed (Fig. 2). These stem from the protonated nitrogen atom and have one of the carboxylic acid group's oxygen atoms as acceptor. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for this hydrogen bonding system on the unitary level is DC11(5). In total, the molecules are connected to waved zigzag chains along the crystallographic b axis. The presence of π···π interactions becomes manifest upon the presence of an intermolecular C–C distance of only 3.368 (2) Å. This interaction exclusively involves intracyclic carbon atoms and gives rise to stacks of molecules along the crystallographic a axis.

The packing of the compound is shown in Fig. 3.

Related literature top

For the use of chelate ligands as opposed to monodentate ligands, see: Gade (1998). For the crystal structures of two mercury coordination compounds applying the title compound as a mono-, as well as a bidentate, ligand, see: Popović et al. (2007). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

The compound was obtained commercially (Fluka). Crystals suitable for the diffraction study were obtained upon recrystallization of the compound from hot water.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The hydrogen atom of the hydroxyl group was allowed to rotate with a fixed angle around the O–C bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008). The hydrogen atom of the protonated nitrogen atom was located on a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Hydrogen bonds, indicated by green dashed lines, viewed along [-1 0 0]. Symmetry operators: i -x, y - 1/2, -z + 1; ii -x, y + 1/2, -z + 1.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [-1 0 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
3-Hydroxypyridinium-2-carboxylate top
Crystal data top
C6H5NO3F(000) = 144
Mr = 139.11Dx = 1.601 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2465 reflections
a = 3.8034 (1) Åθ = 3.0–28.3°
b = 6.8144 (2) ŵ = 0.13 mm1
c = 11.1807 (4) ÅT = 200 K
β = 95.102 (1)°Block, colourless
V = 288.63 (2) Å30.56 × 0.50 × 0.22 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
758 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 28.3°, θmin = 1.8°
ϕ and ω scansh = 53
2659 measured reflectionsk = 99
768 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.0435P]
where P = (Fo2 + 2Fc2)/3
768 reflections(Δ/σ)max < 0.001
96 parametersΔρmax = 0.26 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C6H5NO3V = 288.63 (2) Å3
Mr = 139.11Z = 2
Monoclinic, P21Mo Kα radiation
a = 3.8034 (1) ŵ = 0.13 mm1
b = 6.8144 (2) ÅT = 200 K
c = 11.1807 (4) Å0.56 × 0.50 × 0.22 mm
β = 95.102 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
758 reflections with I > 2σ(I)
2659 measured reflectionsRint = 0.029
768 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.26 e Å3
768 reflectionsΔρmin = 0.15 e Å3
96 parameters
Special details top

Refinement. Due to the absence of a strong anomalous scatterer, the Flack parameter is meaningless. Thus, Friedel opposites (588 pairs) have been merged and the item was removed from the CIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0877 (3)0.8750 (2)0.28327 (12)0.0355 (3)
O20.0543 (4)0.7074 (2)0.45701 (11)0.0357 (3)
O30.1674 (4)0.7340 (2)0.10355 (11)0.0350 (3)
H30.07960.81890.14650.053*
N10.2583 (3)0.4001 (2)0.35230 (10)0.0207 (3)
H710.188 (7)0.386 (5)0.437 (2)0.051 (7)*
C10.0040 (4)0.7302 (2)0.35008 (14)0.0242 (3)
C20.1756 (4)0.5650 (2)0.28933 (12)0.0191 (3)
C30.2518 (4)0.5751 (2)0.16925 (12)0.0226 (3)
C40.4148 (4)0.4133 (3)0.11965 (12)0.0270 (4)
H40.46990.41690.03850.032*
C50.4942 (4)0.2504 (3)0.18837 (14)0.0274 (3)
H50.60560.14110.15490.033*
C60.4120 (4)0.2445 (3)0.30745 (14)0.0254 (3)
H60.46480.13150.35560.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0439 (7)0.0223 (6)0.0408 (7)0.0096 (6)0.0061 (5)0.0009 (5)
O20.0495 (7)0.0310 (7)0.0287 (5)0.0057 (6)0.0149 (5)0.0076 (5)
O30.0464 (7)0.0322 (7)0.0274 (6)0.0076 (6)0.0081 (5)0.0125 (6)
N10.0247 (6)0.0195 (6)0.0182 (5)0.0026 (5)0.0037 (4)0.0009 (5)
C10.0254 (7)0.0189 (7)0.0288 (7)0.0011 (6)0.0046 (5)0.0054 (6)
C20.0206 (6)0.0175 (6)0.0196 (6)0.0010 (5)0.0034 (4)0.0007 (6)
C30.0240 (6)0.0236 (8)0.0202 (6)0.0008 (6)0.0021 (5)0.0034 (6)
C40.0272 (7)0.0352 (9)0.0194 (6)0.0013 (7)0.0061 (5)0.0038 (7)
C50.0278 (7)0.0261 (8)0.0285 (7)0.0035 (7)0.0045 (5)0.0087 (7)
C60.0282 (7)0.0196 (7)0.0281 (7)0.0007 (6)0.0012 (5)0.0014 (6)
Geometric parameters (Å, º) top
O1—C11.261 (2)C2—C31.4002 (17)
O2—C11.237 (2)C3—C41.403 (2)
O3—C31.332 (2)C4—C51.369 (3)
O3—H30.8400C4—H40.9500
N1—C61.330 (2)C5—C61.395 (2)
N1—C21.348 (2)C5—H50.9500
N1—H711.01 (2)C6—H60.9500
C1—C21.510 (2)
C3—O3—H3109.5O3—C3—C4120.95 (13)
C6—N1—C2123.88 (12)C2—C3—C4118.48 (14)
C6—N1—H71115.9 (19)C5—C4—C3119.92 (12)
C2—N1—H71120.1 (19)C5—C4—H4120.0
O2—C1—O1128.19 (15)C3—C4—H4120.0
O2—C1—C2117.13 (15)C4—C5—C6120.15 (15)
O1—C1—C2114.68 (13)C4—C5—H5119.9
N1—C2—C3118.89 (12)C6—C5—H5119.9
N1—C2—C1118.73 (12)N1—C6—C5118.68 (15)
C3—C2—C1122.36 (13)N1—C6—H6120.7
O3—C3—C2120.57 (13)C5—C6—H6120.7
C6—N1—C2—C30.5 (2)N1—C2—C3—C40.6 (2)
C6—N1—C2—C1179.01 (13)C1—C2—C3—C4179.10 (14)
O2—C1—C2—N12.6 (2)O3—C3—C4—C5179.02 (14)
O1—C1—C2—N1176.69 (13)C2—C3—C4—C50.2 (2)
O2—C1—C2—C3178.94 (14)C3—C4—C5—C60.3 (2)
O1—C1—C2—C31.8 (2)C2—N1—C6—C50.1 (2)
N1—C2—C3—O3178.64 (14)C4—C5—C6—N10.5 (2)
C1—C2—C3—O30.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.841.752.4997 (17)148
N1—H71···O2i1.01 (2)1.80 (3)2.6767 (17)143 (3)
Symmetry code: (i) x, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC6H5NO3
Mr139.11
Crystal system, space groupMonoclinic, P21
Temperature (K)200
a, b, c (Å)3.8034 (1), 6.8144 (2), 11.1807 (4)
β (°) 95.102 (1)
V3)288.63 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.56 × 0.50 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2659, 768, 758
Rint0.029
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.07
No. of reflections768
No. of parameters96
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.15

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.841.752.4997 (17)147.6
N1—H71···O2i1.01 (2)1.80 (3)2.6767 (17)143 (3)
Symmetry code: (i) x, y1/2, z+1.
 

Acknowledgements

The authors thank Mr Keith Moss for helpful discussions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGade, L. H. (1998). Koordinationschemie, 1. Auflage, Weinheim: Wiley–VCH.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPopović, Z., Matković-Čalogović, D., Popović, J., Vicković, I., Vinković, M. & Vikić-Topić, D. (2007). Polyhedron, 26, 1045–1052.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds