organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Di­chloro­bi­phenyl-4,4′-diaminium sulfate

aCollege of Sciences, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bState Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: qhf@njut.edu.cn

(Received 11 July 2011; accepted 12 July 2011; online 16 July 2011)

In the title compound, C12H12Cl2N22+·SO42−, the two rings are not coplanar [dihedral angle = 48.7 (2)°]. In the crystal, multiple N—H⋯O hydrogen-bond inter­actions are found between the ammonium and sulfate groups.

Related literature

For related compounds, see: Chawdhury et al. (1968[Chawdhury, S. A., Hargreaves, A. & Rizvi, S. H. (1968). Acta Cryst. B24, 1633-1638.]); Chu et al. (2007[Chu, Z.-L., Fan, Y., Huang, W. & Liu, J.-L. (2007). Acta Cryst. E63, o4927.]); Dobrzycki & Wozniak (2007[Dobrzycki, L. & Wozniak, K. (2007). CrystEngComm, 9, 1029-1041.]); You et al. (2009[You, W., Fan, Y., Qian, H.-F., Yao, C. & Huang, W. (2009). Acta Cryst. E65, o115.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12Cl2N22+·SO42−

  • Mr = 351.20

  • Triclinic, [P \overline 1]

  • a = 6.5475 (11) Å

  • b = 7.9353 (13) Å

  • c = 13.363 (2) Å

  • α = 82.300 (2)°

  • β = 81.309 (3)°

  • γ = 88.765 (2)°

  • V = 680.12 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 291 K

  • 0.12 × 0.12 × 0.10 mm

Data collection
  • Bruker 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.926, Tmax = 0.939

  • 3484 measured reflections

  • 2369 independent reflections

  • 1825 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.091

  • S = 1.00

  • 2369 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.89 1.78 2.668 (3) 173
N1—H1B⋯O2 0.89 2.10 2.874 (3) 144
N1—H1C⋯O4ii 0.89 1.90 2.775 (3) 167
N2—H2A⋯O4iii 0.89 1.90 2.781 (3) 172
N2—H2B⋯O2iv 0.89 1.99 2.865 (3) 166
N2—H2C⋯O3v 0.89 2.06 2.938 (3) 168
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z; (iii) -x+1, -y, -z+1; (iv) x, y, z+1; (v) x+1, y, z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There have been two single-crystal structural investigations on 4,4'-diamino-3,3'-dichlorobiphenyl, namely 4,4'-diamino-3,3'-dichlorobiphenyl (Chawdhury et al., 1968) and 4,4'-Diammonio-3,3'-dichlorobiphenyl dichloride (Dobrzycki & Wozniak, 2007). We have previously reported the single-crystal structures of 2-aminobenzimidazolium hydrogen sulfate (You et al., 2009) and (1R,3S)-1,2,2-trimethylcyclopentane-1,3-diammonium sulfate (Chu et al., 2007). In this work, we describe the single-crystal structure of a sulfate salt of 4,4'-diamino-3,3'-dichlorobiphenyl.

The atom-numbering scheme of the title salt is shown in Fig. 1. The two phenyl rings are not coplanar with a dihedral angle of 48.7 (2)°. In the crystal packing, multiple N—H···O hydrogen-bond interactions are found between the ammonio and sulfate groups.

Related literature top

For related compounds, see: Chawdhury et al. (1968); Chu et al. (2007); Dobrzycki & Wozniak (2007); You et al. (2009).

Experimental top

The treatment of 4,4'-diamino-3,3'-dichlorobiphenyl dissolved in methanol with an excess of sulfuric acid yields the title compound. Single crystals suitable for X-ray diffraction measurement were obtained after 5 days' slow evaporation of the mother liquid at room temperature in air. Anal. Calcd. For C12H12N2Cl22+.SO42-: C, 41.04; H, 3.44; N, 7.98%. Found: C, 41.22; H, 3.63; N, 7.79%.

Refinement top

The non-hydrogen atoms were refined anisotropically, whereas the H atoms bonded with carbon, nitrogen and oxygen atoms were placed in geometrically idealized positions (C—H = 0.93 Å and N—H = 0.89 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP drawing of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
3,3'-Dichlorobiphenyl-4,4'-diaminium sulfate top
Crystal data top
C12H12Cl2N22+·SO42Z = 2
Mr = 351.20F(000) = 360
Triclinic, P1Dx = 1.715 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5475 (11) ÅCell parameters from 1332 reflections
b = 7.9353 (13) Åθ = 2.8–27.6°
c = 13.363 (2) ŵ = 0.65 mm1
α = 82.300 (2)°T = 291 K
β = 81.309 (3)°Block, colourless
γ = 88.765 (2)°0.12 × 0.12 × 0.10 mm
V = 680.12 (19) Å3
Data collection top
Bruker 1K CCD area-detector
diffractometer
2369 independent reflections
Radiation source: fine-focus sealed tube1825 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 77
Tmin = 0.926, Tmax = 0.939k = 89
3484 measured reflectionsl = 815
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0394P)2]
where P = (Fo2 + 2Fc2)/3
2369 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C12H12Cl2N22+·SO42γ = 88.765 (2)°
Mr = 351.20V = 680.12 (19) Å3
Triclinic, P1Z = 2
a = 6.5475 (11) ÅMo Kα radiation
b = 7.9353 (13) ŵ = 0.65 mm1
c = 13.363 (2) ÅT = 291 K
α = 82.300 (2)°0.12 × 0.12 × 0.10 mm
β = 81.309 (3)°
Data collection top
Bruker 1K CCD area-detector
diffractometer
2369 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1825 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.939Rint = 0.030
3484 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.00Δρmax = 0.25 e Å3
2369 reflectionsΔρmin = 0.38 e Å3
192 parameters
Special details top

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7508 (4)0.2990 (3)0.4692 (2)0.0268 (6)
C20.5748 (4)0.2423 (3)0.4365 (2)0.0282 (6)
H20.46530.19650.48430.034*
C30.5626 (4)0.2540 (3)0.3332 (2)0.0264 (6)
C40.7242 (4)0.3252 (3)0.2613 (2)0.0236 (6)
C50.8970 (4)0.3847 (4)0.2935 (2)0.0290 (7)
H51.00430.43460.24580.035*
C60.9099 (4)0.3697 (4)0.3965 (2)0.0298 (7)
H61.02780.40790.41740.036*
C70.7701 (4)0.2740 (3)0.5796 (2)0.0259 (6)
C80.9509 (4)0.2014 (3)0.6102 (2)0.0291 (7)
H81.05810.17210.56160.035*
C90.9706 (4)0.1731 (3)0.7124 (2)0.0252 (6)
C100.8127 (4)0.2160 (3)0.7859 (2)0.0230 (6)
C110.6338 (4)0.2909 (3)0.7563 (2)0.0273 (6)
H110.52790.32170.80510.033*
C120.6141 (4)0.3193 (3)0.6538 (2)0.0277 (6)
H120.49430.36970.63420.033*
Cl10.35323 (11)0.16699 (10)0.29449 (6)0.0399 (2)
Cl21.19670 (10)0.08523 (9)0.74738 (6)0.0351 (2)
N10.7263 (3)0.3316 (3)0.15195 (16)0.0266 (5)
H1A0.74370.43860.12220.040*
H1B0.60690.29230.14040.040*
H1C0.82950.26780.12630.040*
N20.8311 (3)0.1779 (3)0.89363 (16)0.0267 (5)
H2A0.85530.06730.90870.040*
H2B0.71410.20580.93100.040*
H2C0.93510.23730.90710.040*
O10.2424 (3)0.4428 (2)0.08113 (15)0.0381 (5)
O20.4527 (3)0.2079 (2)0.02918 (15)0.0335 (5)
O30.2129 (3)0.3412 (2)0.07783 (14)0.0306 (5)
O40.0875 (3)0.1693 (2)0.07938 (15)0.0311 (5)
S10.25232 (10)0.29314 (8)0.02901 (5)0.02355 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0310 (15)0.0270 (15)0.0227 (15)0.0027 (12)0.0041 (13)0.0045 (12)
C20.0283 (15)0.0300 (16)0.0234 (15)0.0024 (12)0.0028 (12)0.0000 (13)
C30.0234 (14)0.0286 (16)0.0269 (16)0.0015 (12)0.0037 (12)0.0029 (13)
C40.0298 (15)0.0206 (14)0.0195 (14)0.0013 (11)0.0039 (12)0.0002 (11)
C50.0284 (15)0.0311 (16)0.0257 (16)0.0100 (12)0.0008 (13)0.0011 (13)
C60.0311 (15)0.0347 (17)0.0239 (15)0.0073 (13)0.0038 (13)0.0047 (13)
C70.0301 (15)0.0286 (15)0.0193 (15)0.0046 (12)0.0033 (12)0.0040 (12)
C80.0264 (15)0.0346 (17)0.0249 (16)0.0005 (12)0.0041 (13)0.0077 (13)
C90.0232 (14)0.0220 (14)0.0303 (16)0.0028 (11)0.0023 (12)0.0042 (12)
C100.0261 (14)0.0231 (14)0.0198 (14)0.0046 (11)0.0033 (12)0.0019 (12)
C110.0249 (14)0.0334 (16)0.0235 (15)0.0029 (12)0.0010 (12)0.0069 (13)
C120.0270 (15)0.0300 (16)0.0258 (16)0.0030 (12)0.0065 (13)0.0008 (13)
Cl10.0288 (4)0.0558 (5)0.0356 (5)0.0112 (3)0.0081 (3)0.0029 (4)
Cl20.0242 (4)0.0399 (4)0.0404 (5)0.0043 (3)0.0044 (3)0.0040 (4)
N10.0275 (12)0.0301 (13)0.0220 (13)0.0012 (10)0.0030 (10)0.0027 (11)
N20.0269 (12)0.0304 (13)0.0233 (13)0.0014 (10)0.0039 (10)0.0057 (11)
O10.0500 (13)0.0323 (12)0.0339 (12)0.0032 (10)0.0032 (10)0.0142 (10)
O20.0250 (10)0.0389 (12)0.0351 (12)0.0058 (9)0.0044 (9)0.0010 (10)
O30.0355 (11)0.0356 (12)0.0209 (10)0.0000 (9)0.0091 (9)0.0008 (9)
O40.0269 (10)0.0288 (11)0.0346 (12)0.0033 (8)0.0008 (9)0.0013 (9)
S10.0221 (4)0.0265 (4)0.0211 (4)0.0020 (3)0.0017 (3)0.0015 (3)
Geometric parameters (Å, º) top
C1—C61.385 (4)C9—Cl21.724 (3)
C1—C21.396 (4)C10—C111.389 (3)
C1—C71.486 (4)C10—N21.454 (3)
C2—C31.386 (4)C11—C121.383 (4)
C2—H20.9300C11—H110.9300
C3—C41.391 (4)C12—H120.9300
C3—Cl11.725 (3)N1—H1A0.8900
C4—C51.383 (4)N1—H1B0.8900
C4—N11.453 (3)N1—H1C0.8900
C5—C61.381 (4)N2—H2A0.8900
C5—H50.9300N2—H2B0.8900
C6—H60.9300N2—H2C0.8900
C7—C121.389 (4)O1—S11.4506 (19)
C7—C81.398 (4)O2—S11.4636 (18)
C8—C91.379 (4)O3—S11.4871 (19)
C8—H80.9300O4—S11.4939 (19)
C9—C101.384 (4)
C6—C1—C2118.6 (3)C9—C10—C11119.7 (2)
C6—C1—C7121.2 (2)C9—C10—N2120.2 (2)
C2—C1—C7120.1 (3)C11—C10—N2120.1 (2)
C3—C2—C1120.3 (3)C12—C11—C10119.6 (2)
C3—C2—H2119.8C12—C11—H11120.2
C1—C2—H2119.8C10—C11—H11120.2
C2—C3—C4120.2 (2)C11—C12—C7121.2 (2)
C2—C3—Cl1119.3 (2)C11—C12—H12119.4
C4—C3—Cl1120.3 (2)C7—C12—H12119.4
C5—C4—C3119.6 (2)C4—N1—H1A109.5
C5—C4—N1117.4 (2)C4—N1—H1B109.5
C3—C4—N1122.8 (2)H1A—N1—H1B109.5
C6—C5—C4119.8 (3)C4—N1—H1C109.5
C6—C5—H5120.1H1A—N1—H1C109.5
C4—C5—H5120.1H1B—N1—H1C109.5
C5—C6—C1121.4 (3)C10—N2—H2A109.5
C5—C6—H6119.3C10—N2—H2B109.5
C1—C6—H6119.3H2A—N2—H2B109.5
C12—C7—C8118.6 (2)C10—N2—H2C109.5
C12—C7—C1122.3 (2)H2A—N2—H2C109.5
C8—C7—C1119.1 (2)H2B—N2—H2C109.5
C9—C8—C7120.2 (2)O1—S1—O2111.47 (11)
C9—C8—H8119.9O1—S1—O3109.96 (12)
C7—C8—H8119.9O2—S1—O3109.85 (11)
C8—C9—C10120.7 (2)O1—S1—O4110.49 (12)
C8—C9—Cl2118.9 (2)O2—S1—O4108.41 (11)
C10—C9—Cl2120.3 (2)O3—S1—O4106.53 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.891.782.668 (3)173
N1—H1B···O20.892.102.874 (3)144
N1—H1C···O4ii0.891.902.775 (3)167
N2—H2A···O4iii0.891.902.781 (3)172
N2—H2B···O2iv0.891.992.865 (3)166
N2—H2C···O3v0.892.062.938 (3)168
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x, y, z+1; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H12Cl2N22+·SO42
Mr351.20
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)6.5475 (11), 7.9353 (13), 13.363 (2)
α, β, γ (°)82.300 (2), 81.309 (3), 88.765 (2)
V3)680.12 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.12 × 0.12 × 0.10
Data collection
DiffractometerBruker 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.926, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
3484, 2369, 1825
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.091, 1.00
No. of reflections2369
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.38

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.891.782.668 (3)173
N1—H1B···O20.892.102.874 (3)144
N1—H1C···O4ii0.891.902.775 (3)167
N2—H2A···O4iii0.891.902.781 (3)172
N2—H2B···O2iv0.891.992.865 (3)166
N2—H2C···O3v0.892.062.938 (3)168
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x, y, z+1; (v) x+1, y, z+1.
 

Acknowledgements

We acknowledge the National Natural Science Foundation of China (No. 20871065) and the Jiangsu Province Department of Science and Technology (No. BK2009226) for financial aid.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChawdhury, S. A., Hargreaves, A. & Rizvi, S. H. (1968). Acta Cryst. B24, 1633–1638.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationChu, Z.-L., Fan, Y., Huang, W. & Liu, J.-L. (2007). Acta Cryst. E63, o4927.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDobrzycki, L. & Wozniak, K. (2007). CrystEngComm, 9, 1029–1041.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYou, W., Fan, Y., Qian, H.-F., Yao, C. & Huang, W. (2009). Acta Cryst. E65, o115.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds