organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1941-o1942

Methyl 6-azido-6-de­­oxy-α-D-galactoside

aSchool of Chemical and Physical Sciences, Victoria University of Welllington, PO Box 600, Wellington, New Zealand, bMalaghan Institute of Medical Research, PO Box 7060, Wellington, New Zealand, and cCarbohydrate Chemistry Group, Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 14 June 2011; accepted 27 June 2011; online 9 July 2011)

The structure of the title compound, C7H13N3O5, was solved using data from a multiple fragment crystal. The galactoside ring adopts a 4C1 chair conformation. In the crystal, the molecules are linked by strong O—H⋯O hydrogen bonds, which build linkages around the screw axis of the cell in a similar way to the iodo analogue. These C-5 and C-6 packing motifs expand to R22(10), C22(7) and C222(8) motifs, as found in closely related compounds.

Related literature

For details of the synthesis, see Cheng et al. (2011[Cheng, J. M. H., Chee, S. H., Knight, D. A., Acha-Orbea, H., Hermans, I. F., Timmer, M. S. M. & Stocker, B. L. (2011). Carbohyr. Res. 346, 914-926.]). For related structures, see Sikorski et al. (2009[Sikorski, A., Tuwalska, D., Matjasik, B. & Liberek, B. (2009). Carbohydr. Res. 344, 830-833.]), Robertson & Sheldrick (1965[Robertson, J. H. & Sheldrick, B. (1965). Acta Cryst. 19, 820-826.]), Zhou et al. (2002[Zhou, X.-T., Forestier, C., Goff, R. D., Li, C., Teyton, L., Bendelac, A. & Savage, P. B. (2002). Org. Lett. 4, 1267-1270.]), Kurhade et al.(2011[Kurhade, S. E., Mengawade, T., Bhuniya, D., Palle, V. P. & Reddy, D. S. (2011). Org. Biomol. Chem. 9, 744-747.]). For the iodo derivative, see: Gulab et al. (2010[Gulab, S. A., Cheng, J. M. H., Timmer, M. S. M., Stocker, B. L. & Gainsford, G. J. (2010). Acta Cryst. E66, o1724.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) and for hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the Hooft parameter, see: Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]).

[Scheme 1]

Experimental

Crystal data
  • C7H13N3O5

  • Mr = 219.20

  • Monoclinic, P 21

  • a = 5.8272 (5) Å

  • b = 7.8358 (6) Å

  • c = 11.0387 (10) Å

  • β = 102.117 (7)°

  • V = 492.81 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.09 mm−1

  • T = 123 K

  • 0.20 × 0.10 × 0.02 mm

Data collection
  • Rigaku Spider diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.581, Tmax = 1.0

  • 4122 measured reflections

  • 1114 independent reflections

  • 1039 reflections with I > 2σ(I)

  • Rint = 0.048

  • θmax = 56.9°

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.125

  • S = 1.04

  • 1114 reflections

  • 143 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 491 Friedel pairs

  • Flack parameter: 0.1 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O3i 0.84 1.91 2.742 (4) 170
O4—H4O⋯O2ii 0.81 (3) 2.00 (4) 2.774 (4) 162 (6)
O3—H3O⋯O4i 0.84 2.02 2.841 (4) 165
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+2, y-{\script{1\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: FSProcess in PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); data reduction: FSProcess in PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP in WinGX (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Alkyl azidoglycosides such as the title compound (I) are versatile synthetic intermediates for the synthesis of a wide array of biologically important molecules (Cheng et al., 2011; Kurhade et al.,2011; Zhou et al.,2002).

The asymmetric unit of the title compound (I) contains one independent methyl 6-deoxy-6-azido-α-D-galactoside molecule (Fig. 1). The galactoside ring (C1–C5,O5) has a 4C1 chair conformation with Q 0.581 (4) Å, θ & ϕ 2.5 (5) & 288 (9)° respectively (Cremer & Pople, 1975) identical to that of the iodo-analogues (Gulab et al., 2010) and similar to that of the corresponding glucopyranoside 0.563 (5) Å, 4.8 (5)° & 310 (5)° (BOSLEB, Sikorski et al., 2009), The absolute configurations known from the synthesis of C1(R), C2(R), C3(S), C4(R) and C5(S) are consistent with the weak indications given by the Hooft parameter (0.0 (2), Hooft et al., (2008)), compared with the indeterminate Flack value of 0.1 (5).

Lattice binding is provided by O—H···O hydrogen bonds (Table 1), which build linkages around the b screw axis of the cell (Figure 2). This binding is notably similar to that observed for the iodo derivative (Gulab et al., 2010), the bromohydrin analogue (MGALBH, Robertson & Sheldrick, 1965), and the corresponding glucopyranoside (BOSLEB). The basic motif building blocks (Bernstein et al., 1995) are of C(6) & C(5) types, which combine to give 2R2(10), 2C2(7) & 2C2(8) motifs. Close similarity with the iodo analogue is observed: the major difference concerns the approximately doubled c axis length and the presence of the two additional 21 screw axes in the latter orthorhombic crystal.

Related literature top

For details of the synthesis, see Cheng et al. (2011). For related structures, see Sikorski et al. (2009), Robertson & Sheldrick (1965), Zhou et al. (2002), Kurhade et al.(2011). For the iodo derivative, see: Gulab et al. (2010).For ring conformations see: Cremer & Pople (1975) and for hydrogen-bond motifs, see: Bernstein et al. (1995). For the Hooft parameter, see: Hooft et al. (2008).

Experimental top

Methyl 6-azido-6-deoxy-α-D-galactopyranoside was prepared as described in Cheng et al. (2011) from methyl 6-deoxy-6-iodo-α-D-galactopyranoside as reported in Gulab et al. (2010). The title compound was recrystallized from methanol.

Refinement top

The crystals were predominantly multiple-fragment blocks up to ~0.7 x 0.6 x 0.2 mm in size. The minute crystal which was finally selected consisted of one major fragment with some minor fragments along the long (needle) axis. In addition, the data collection was partially marred by crystal movement initiated by ice buildup. The dataset arises from processing the remaining 155 screens of data after removing the affected 66 slices which were identified by the screen review statistics; this was verified by visual inspection of the screens which showed misalignment and ice rings. In the (automatic) processing, a further 209 outliers were detected and removed. High angle data was also recognized as being weak or suffering from misalignent, so the data outside the 0.92 Å shell was omitted using the SHEL command. A further 20 outlier reflections (ΔF2/σ(F2)>4.2) were removed from the refinement; some of these could be identified as being affected by ice-diffracted scattering or behind the goniometer shadow. As a result, the final dataset is significantly less than 100% complete but is adequate for defining the structure; defining the absolute configuration, known from the synthetic procedure, is not possible.

The hydroxyl atom HO4 on oxygen O4 was not placed correctly using the usual SHELX (AFIX 147) command, as determined by packing analysis inspection. It was placed, and then freely refined, on the basis of careful difference mapping around the O4 site and restrained to be 0.84 (3) Å from O4 using DFIX. The other hydroxyl H atoms were refined by automatic placement at positions indicated by a difference electron density map and their positions were constrained to refine on their parent O atoms with O–H 0.84 Å (using AFIX 147). The hydroxyl H atoms were refined with Uiso(H) = 1.5Ueq(O).

The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the adjacent C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 1.00 (primary) or 0.99 (methylene) Å and and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: FSProcess in PROCESS-AUTO (Rigaku, 1998); data reduction: FSProcess in PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP in WinGX (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Asymmetric unit contents of (I) (Farrugia, 1997) at the 30% thermal ellipsoid level.
[Figure 2] Fig. 2. A packing view (Mercury 2.3, Macrae et al. (2008)) of the cell highlighting major hydrogen bonds (dotted). Symmetry codes: (i) 1 - x, 1/2 + y, 1 - z (ii) x - 1, y, z.
(I) top
Crystal data top
C7H13N3O5F(000) = 232
Mr = 219.20Dx = 1.477 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 4158 reflections
a = 5.8272 (5) Åθ = 7.0–66.7°
b = 7.8358 (6) ŵ = 1.09 mm1
c = 11.0387 (10) ÅT = 123 K
β = 102.117 (7)°Plate, colourless
V = 492.81 (7) Å30.20 × 0.10 × 0.02 mm
Z = 2
Data collection top
Rigaku Spider
diffractometer
1114 independent reflections
Radiation source: Rigaku MM007 rotating anode1039 reflections with I > 2σ(I)
Rigaku VariMax-HF Confocal Optical System monochromatorRint = 0.048
Detector resolution: 10 pixels mm-1θmax = 56.9°, θmin = 7.0°
ω scansh = 63
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 88
Tmin = 0.581, Tmax = 1.0l = 1111
4122 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0786P)2 + 0.1967P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.21 e Å3
1114 reflectionsΔρmin = 0.24 e Å3
143 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.020 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 491 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.1 (5)
Crystal data top
C7H13N3O5V = 492.81 (7) Å3
Mr = 219.20Z = 2
Monoclinic, P21Cu Kα radiation
a = 5.8272 (5) ŵ = 1.09 mm1
b = 7.8358 (6) ÅT = 123 K
c = 11.0387 (10) Å0.20 × 0.10 × 0.02 mm
β = 102.117 (7)°
Data collection top
Rigaku Spider
diffractometer
1114 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1039 reflections with I > 2σ(I)
Tmin = 0.581, Tmax = 1.0Rint = 0.048
4122 measured reflectionsθmax = 56.9°
Refinement top
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125Δρmax = 0.21 e Å3
S = 1.04Δρmin = 0.24 e Å3
1114 reflectionsAbsolute structure: Flack (1983), 491 Friedel pairs
143 parametersAbsolute structure parameter: 0.1 (5)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9756 (5)0.6454 (3)0.6831 (2)0.0291 (8)
O20.8027 (5)0.5541 (3)0.4390 (2)0.0276 (8)
H2O0.73660.63780.46470.041*
O30.4659 (5)0.3064 (4)0.4887 (3)0.0292 (8)
H3O0.40680.38420.43970.044*
O40.7817 (5)0.0839 (3)0.6441 (3)0.0287 (9)
H4O0.913 (5)0.091 (8)0.632 (5)0.043*
O51.1064 (5)0.3653 (3)0.7346 (2)0.0286 (8)
N11.1494 (9)0.2908 (5)0.9995 (3)0.0449 (12)
N21.3424 (9)0.3419 (5)0.9860 (4)0.0449 (12)
N31.5248 (10)0.3958 (7)0.9855 (4)0.0634 (16)
C11.0514 (9)0.4929 (5)0.6392 (4)0.0263 (12)
H11.19460.51610.60530.032*
C20.8568 (7)0.4282 (5)0.5348 (4)0.0241 (11)
H20.91690.32460.49860.029*
C30.6484 (8)0.3764 (5)0.5835 (4)0.0248 (11)
H30.58510.48000.61820.030*
C40.7136 (8)0.2439 (5)0.6880 (4)0.0251 (11)
H40.57330.22460.72520.030*
C50.9054 (8)0.3214 (5)0.7856 (4)0.0320 (12)
H50.84420.42690.81880.038*
C60.9996 (9)0.2007 (6)0.8927 (4)0.0342 (12)
H6A0.86620.14610.92030.041*
H6B1.09270.10960.86360.041*
C71.1589 (9)0.7300 (6)0.7705 (4)0.0389 (13)
H7A1.29330.75060.73200.058*
H7B1.20770.65770.84390.058*
H7C1.10010.83910.79510.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.034 (2)0.0158 (14)0.0364 (15)0.0004 (13)0.0049 (15)0.0036 (13)
O20.0303 (19)0.0160 (15)0.0353 (16)0.0039 (13)0.0038 (15)0.0044 (12)
O30.0261 (18)0.0200 (14)0.0387 (16)0.0024 (13)0.0004 (13)0.0018 (12)
O40.0276 (18)0.0178 (15)0.0398 (17)0.0018 (15)0.0045 (17)0.0030 (13)
O50.0264 (17)0.0206 (14)0.0393 (15)0.0028 (14)0.0083 (15)0.0041 (14)
N10.051 (3)0.041 (2)0.036 (2)0.004 (2)0.007 (2)0.0040 (19)
N20.046 (3)0.039 (3)0.042 (2)0.003 (3)0.009 (3)0.001 (2)
N30.039 (3)0.080 (4)0.061 (3)0.013 (3)0.014 (3)0.015 (3)
C10.034 (3)0.016 (2)0.029 (2)0.0015 (18)0.009 (2)0.0030 (17)
C20.024 (2)0.0133 (19)0.034 (2)0.0015 (18)0.005 (2)0.0042 (17)
C30.026 (2)0.0115 (19)0.035 (2)0.0000 (19)0.003 (2)0.0067 (19)
C40.026 (3)0.018 (2)0.033 (2)0.0044 (18)0.009 (2)0.0015 (19)
C50.039 (3)0.014 (2)0.039 (2)0.0002 (19)0.002 (2)0.0067 (19)
C60.040 (3)0.024 (3)0.036 (2)0.0039 (19)0.003 (2)0.0008 (18)
C70.049 (3)0.024 (2)0.038 (2)0.005 (2)0.005 (2)0.004 (2)
Geometric parameters (Å, º) top
O1—C11.395 (5)C1—H11.0000
O1—C71.441 (5)C2—C31.484 (6)
O2—C21.432 (5)C2—H21.0000
O2—H2O0.8400C3—C41.540 (6)
O3—C31.435 (5)C3—H31.0000
O3—H3O0.8400C4—C51.508 (5)
O4—C41.430 (5)C4—H41.0000
O4—H4O0.81 (3)C5—C61.523 (5)
O5—C11.439 (5)C5—H51.0000
O5—C51.444 (6)C6—H6A0.9900
N1—N21.232 (6)C6—H6B0.9900
N1—C61.489 (5)C7—H7A0.9800
N2—N31.144 (7)C7—H7B0.9800
C1—C21.524 (6)C7—H7C0.9800
C1—O1—C7112.5 (3)O4—C4—C5112.2 (3)
C2—O2—H2O109.5O4—C4—C3112.3 (3)
C3—O3—H3O109.5C5—C4—C3107.0 (3)
C4—O4—H4O110 (4)O4—C4—H4108.4
C1—O5—C5112.1 (3)C5—C4—H4108.4
N2—N1—C6117.2 (4)C3—C4—H4108.4
N3—N2—N1173.1 (5)O5—C5—C4110.9 (3)
O1—C1—O5112.3 (3)O5—C5—C6105.1 (4)
O1—C1—C2108.0 (4)C4—C5—C6113.4 (3)
O5—C1—C2109.8 (3)O5—C5—H5109.1
O1—C1—H1108.9C4—C5—H5109.1
O5—C1—H1108.9C6—C5—H5109.1
C2—C1—H1108.9N1—C6—C5112.1 (4)
O2—C2—C3112.7 (3)N1—C6—H6A109.2
O2—C2—C1110.0 (3)C5—C6—H6A109.2
C3—C2—C1110.7 (3)N1—C6—H6B109.2
O2—C2—H2107.8C5—C6—H6B109.2
C3—C2—H2107.8H6A—C6—H6B107.9
C1—C2—H2107.8O1—C7—H7A109.5
O3—C3—C2112.2 (3)O1—C7—H7B109.5
O3—C3—C4108.5 (3)H7A—C7—H7B109.5
C2—C3—C4111.3 (3)O1—C7—H7C109.5
O3—C3—H3108.2H7A—C7—H7C109.5
C2—C3—H3108.2H7B—C7—H7C109.5
C4—C3—H3108.2
C7—O1—C1—O566.9 (5)C2—C3—C4—O467.6 (4)
C7—O1—C1—C2172.0 (4)O3—C3—C4—C5179.9 (4)
C5—O5—C1—O160.9 (4)C2—C3—C4—C556.0 (4)
C5—O5—C1—C259.1 (4)C1—O5—C5—C462.8 (4)
O1—C1—C2—O257.9 (4)C1—O5—C5—C6174.3 (3)
O5—C1—C2—O2179.5 (3)O4—C4—C5—O565.1 (4)
O1—C1—C2—C367.3 (4)C3—C4—C5—O558.6 (4)
O5—C1—C2—C355.3 (5)O4—C4—C5—C653.0 (5)
O2—C2—C3—O359.4 (4)C3—C4—C5—C6176.6 (4)
C1—C2—C3—O3177.0 (3)N2—N1—C6—C570.3 (5)
O2—C2—C3—C4178.8 (3)O5—C5—C6—N171.0 (4)
C1—C2—C3—C455.2 (4)C4—C5—C6—N1167.6 (4)
O3—C3—C4—O456.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O3i0.841.912.742 (4)170
O4—H4O···O2ii0.81 (3)2.00 (4)2.774 (4)162 (6)
O3—H3O···O4i0.842.022.841 (4)165
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC7H13N3O5
Mr219.20
Crystal system, space groupMonoclinic, P21
Temperature (K)123
a, b, c (Å)5.8272 (5), 7.8358 (6), 11.0387 (10)
β (°) 102.117 (7)
V3)492.81 (7)
Z2
Radiation typeCu Kα
µ (mm1)1.09
Crystal size (mm)0.20 × 0.10 × 0.02
Data collection
DiffractometerRigaku Spider
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.581, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
4122, 1114, 1039
Rint0.048
θmax (°)56.9
(sin θ/λ)max1)0.543
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.125, 1.04
No. of reflections1114
No. of parameters143
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.24
Absolute structureFlack (1983), 491 Friedel pairs
Absolute structure parameter0.1 (5)

Computer programs: CrystalClear (Rigaku, 2005), FSProcess in PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), ORTEP in WinGX (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O3i0.841.912.742 (4)170
O4—H4O···O2ii0.81 (3)2.00 (4)2.774 (4)162 (6)
O3—H3O···O4i0.842.022.841 (4)165
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+2, y1/2, z+1.
 

Acknowledgements

This work was supported by a New Zealand Foundation for Research Science and Technology contract [No. C08X0701] (SAG & GJG), the Health Research Council of New Zealand (MSMT) and the Cancer Society of New Zealand (MSMT and BLS). We thank the MacDiarmid Institute for Advanced Materials and Nanotechnology for funding of the diffractometer equipment.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCheng, J. M. H., Chee, S. H., Knight, D. A., Acha-Orbea, H., Hermans, I. F., Timmer, M. S. M. & Stocker, B. L. (2011). Carbohyr. Res. 346, 914–926.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGulab, S. A., Cheng, J. M. H., Timmer, M. S. M., Stocker, B. L. & Gainsford, G. J. (2010). Acta Cryst. E66, o1724.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKurhade, S. E., Mengawade, T., Bhuniya, D., Palle, V. P. & Reddy, D. S. (2011). Org. Biomol. Chem. 9, 744–747.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationRobertson, J. H. & Sheldrick, B. (1965). Acta Cryst. 19, 820–826.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSikorski, A., Tuwalska, D., Matjasik, B. & Liberek, B. (2009). Carbohydr. Res. 344, 830–833.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, X.-T., Forestier, C., Goff, R. D., Li, C., Teyton, L., Bendelac, A. & Savage, P. B. (2002). Org. Lett. 4, 1267–1270.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1941-o1942
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds