organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2029-o2030

4-(4-{[(2-Phenyl­quinazolin-4-yl)­­oxy]methyl}-1H-1,2,3-triazol-1-yl)butan-1-ol hemihydrate

aLaboratoire de Chimie Bio-organique et Macromoléculaire, Faculté des Sciences et Techniques Guéliz, Marrakech, Morocco, bUnité de Chimie Biomoléculaire et Médicinale, Faculté des Sciences Semlalia, Marrakech, Morocco, cLaboratoire de la Matière Condensée et des Nanostructures, Faculté des Sciences et Techniques Guéliz, Marrakech, Morocco, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP. 1014, Rabat, Morocco
*Correspondence e-mail: m_elazhari52@yahoo.com

(Received 29 June 2011; accepted 7 July 2011; online 13 July 2011)

The title compound, C21H21N5O2·0.5H2O, has two fused six-membered rings linked to a benzene ring and to a triazole ring, which is connected to a butanol group. The quinazoline ring forms a dihedral angle of 7.88 (8)° with the benzene ring, while the triazole ring is approximately perpendicular to the benzene ring and to the quinazoline system, making dihedral angles of 84.38 (10) and 76.55 (8)°, respectively. The stereochemical arrangement of the butanol chain, with a C—C—C—C torsion angle of 178.34 (19)°, corresponds to an anti­periplanar conformation. However the position of the –OH group is split into two very close [O—O = 0.810(3) Å] positions of equal occupancy. The crystal structure features O—H⋯N and O—H⋯O hydrogen bonds, building an infinite three-dimensional network. The water molecule is located on a half-filled general position.

Related literature

For details of the synthesis, see: Krim et al. (2009[Krim, J., Sillahi, B., Taourirte, M., Rakib, E. M. & Engels, J. W. (2009). ARKIVOC, xiii, 142-152.]); Mani Chandrika et al. (2010[Mani Chandrika, P. T., Yakaiah Gayatri, G., Pranay Kumar, K., Narsaiah, B., Murthy, U. S. N. & Raghu Ram Rao, A. (2010). Eur. J. Med. Chem. 45, 78-84.]). For the biological activity of quinazolinone derivatives, see: Alvarez et al. (1994[Alvarez, R., Velazquez, S., San-Felix, A., Aquaro, S., De Clercq, E., Perno, C. F., Karlsson, A., Balzarini, J. & Camarasa, M. J. (1994). J. Med. Chem. 37(24), 4185-4194.]); Chan et al. (1997[Chan, J. H., Hong, J. S., Kuyper, L. F., Jones, M. L., Baccanari, D. P., Tansik, R. L., Boytos, C. M., Rudolph, S. K. & Brown, A. D. (1997). J. Heterocycl. Chem. 34, 145-155.]); De Clercq (1997[De Clercq, E. (1997). Clin. Microbiol. Rev. 10, 674-693.], 2002[De Clercq, E. (2002). Nat. Rev. Drug Discov. 1, 13-25.]); Dempcy & Skibo (1991[Dempcy, R. O. & Skibo, E. B. (1991). Biochemistry, 30, 8480-8487.]); Gackenheimer et al. (1995[Gackenheimer, S. L., Schaus, J. M. & Gehlert, D. R. (1995). J. Pharmacol. Exp. Ther. 274, 1558-1565.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21N5O2·0.5H2O

  • Mr = 384.44

  • Monoclinic, P 21 /n

  • a = 11.359 (4) Å

  • b = 7.694 (3) Å

  • c = 22.817 (7) Å

  • β = 101.111 (16)°

  • V = 1956.9 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.55 × 0.31 × 0.28 mm

Data collection
  • Bruker X8 APEX Diffractometer

  • 18195 measured reflections

  • 3709 independent reflections

  • 2879 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.127

  • S = 1.03

  • 3709 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2B—H2B⋯N1i 0.86 2.08 2.935 (3) 170
O2A—H2A⋯O3Wii 0.86 1.90 2.757 (4) 176
O3W—H3WA⋯N3iii 0.86 2.12 2.967 (3) 167
O3W—H3WB⋯N3 0.86 2.00 2.835 (3) 163
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The quinazolinone derivatives are an important class of compounds, as they are present in a large family of products with broad biological activities. For example: anticancers, diuretics, anti-inflammatories, anticonvulsants and antihypertensives (Chan et al. (1997); Gackenheimer et al. (1995); Dempcy et al. (1991)). Also, triazoles associated with various heterocycles are one of the research areas of interesting pharmacological activities, some analogues are used for the treatment of hepatitisC and HIV-1 (De Clercq, (1997); De Clercq, (2002); Alvarez et al. (1994)).

The molecule of the title compound is built up from two fused six-membered rings to a phenyl ring and to a five-membered ring which is connected to butanol group as shown in Fig.1. The fused rings are almost planar, with a maximum deviation of -0.0175 (15) Å and -0.0058 (15) Å for C8 and C1 respectively. The dihedral angle between the quinazoline mean plane and the phenyl ring amount to 7.88 (8)°. The triazol ring is approximately perpendicular to the phenyl ring and to the quinazoline system, with a dihedral angles of 84.38 (10)° and 76.55 (8)° respectively. The stereochemical arrangement of the butanol chain with C18—C19—C20—C21 torsion angles in the range of 178.34 (19) ° corresponds to an anti-periplanar conformation.

An intermolecular O—H···N and O—H···O hydrogen bonds, building an infinite three-dimensional network and ensure the cohesion of the crystal structure as schown in Fig.2 and Table 1.

Related literature top

For details of the synthesis, see: Krim et al. (2009); Mani Chandrika et al. (2010). For the biological activity of quinazolinone derivatives, see: Alvarez et al. (1994); Chan et al. (1997); De Clercq (1997, 2002); Dempcy & Skibo (1991); Gackenheimer et al. (1995).

Experimental top

The title compound, 4-(4-((2-phenylquinazolin-4-yloxy)methyl)-1,2,3-triazol -1-yl)butan-1-ol was achieved by cycloaddition of propargylated quinazolinone and azide under microwave conditions with CuI as catalyst and without solvent. The product was obtained with quantitative yield (93%) and short reaction time (Mani Chandrika et al. (2010); Krim et al. (2009)). The crude product was purified passing through a column packed with silica gel. Crystal suitable for X-ray analysis was obtained by slow evaporation of a methanol / methylene chloride (1:4 v/v) solution. The melting point is about 371 - 372 K.

Refinement top

The structure is solved by direct method technique and refined by full-matrix least-squares using SHELXS97 and SHELXL97 program packages. H atoms were located in a difference map and treated as riding with C—H = 0.97 Å and 0.93 Å for –CH2– and aromatic CH respectively. All H atoms with Uiso(H) = 1.2 Ueq (aromatic, methylene). The O-bound H atom is initially located in a difference map and refined with O—H distance restraints of 0.86 (1). In a the last cycle ther is refined in the riding model approximation with Uiso(H) set to 1.2Ueq(O). In the butanol chain, the OH is statistically distributed on two very close positions with the same occupancy rate and a small atomic displacement parameters and better R-factor. The refinement of the occupancy rate of the water molecule led to 0.5 H20 in the unit cell.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Plot of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. : Tridimensional view of the title compound, showing molecules linked through O—H···N and O–H···O hydrogen bonds (dashed lines).
4-(4-{[(2-Phenylquinazolin-4-yl)oxy]methyl}-1H-1,2,3-triazol- 1-yl)butan-1-ol hemihydrate top
Crystal data top
C21H21N5O2·0.5H2OF(000) = 812
Mr = 384.44Dx = 1.305 Mg m3
Monoclinic, P21/nMelting point: 371(1) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.359 (4) ÅCell parameters from 3709 reflections
b = 7.694 (3) Åθ = 1.8–25.7°
c = 22.817 (7) ŵ = 0.09 mm1
β = 101.111 (16)°T = 296 K
V = 1956.9 (12) Å3Block, colourless
Z = 40.55 × 0.31 × 0.28 mm
Data collection top
Bruker X8 APEX Diffractometer2879 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 25.7°, θmin = 1.8°
ϕ and ω scansh = 1313
18195 measured reflectionsk = 99
3709 independent reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0668P)2 + 0.4064P]
where P = (Fo2 + 2Fc2)/3
3709 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C21H21N5O2·0.5H2OV = 1956.9 (12) Å3
Mr = 384.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.359 (4) ŵ = 0.09 mm1
b = 7.694 (3) ÅT = 296 K
c = 22.817 (7) Å0.55 × 0.31 × 0.28 mm
β = 101.111 (16)°
Data collection top
Bruker X8 APEX Diffractometer2879 reflections with I > 2σ(I)
18195 measured reflectionsRint = 0.028
3709 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.03Δρmax = 0.47 e Å3
3709 reflectionsΔρmin = 0.20 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.58474 (13)0.7779 (2)0.02725 (7)0.0442 (4)
C20.69772 (15)0.8512 (2)0.00495 (8)0.0548 (4)
H20.75290.86480.02990.066*
C30.72682 (16)0.9027 (2)0.05374 (8)0.0588 (5)
H30.80210.95030.06820.071*
C40.64558 (16)0.8851 (2)0.09214 (8)0.0587 (5)
H40.66690.92050.13170.070*
C50.53502 (15)0.8160 (2)0.07146 (7)0.0515 (4)
H50.48060.80440.09690.062*
C60.50330 (13)0.7621 (2)0.01149 (6)0.0416 (3)
C70.39026 (13)0.69043 (19)0.01484 (6)0.0410 (3)
C80.45066 (13)0.6516 (2)0.10360 (6)0.0424 (4)
C90.41915 (14)0.5786 (2)0.16527 (6)0.0446 (4)
C100.49525 (17)0.5955 (3)0.20563 (8)0.0595 (5)
H100.56730.65520.19450.071*
C110.46526 (19)0.5245 (3)0.26255 (8)0.0692 (5)
H110.51670.53900.28930.083*
C120.36108 (19)0.4337 (3)0.27949 (8)0.0634 (5)
H120.34150.38520.31750.076*
C130.28553 (18)0.4149 (3)0.23962 (8)0.0630 (5)
H130.21460.35250.25070.076*
C140.31353 (16)0.4879 (2)0.18315 (7)0.0543 (4)
H140.26060.47560.15700.065*
C150.19503 (14)0.6055 (2)0.00380 (7)0.0499 (4)
H15A0.20480.49100.02000.060*
H15B0.15220.67860.03550.060*
C160.12872 (13)0.5943 (2)0.04624 (6)0.0432 (4)
C170.14267 (15)0.4820 (2)0.09333 (7)0.0537 (4)
H170.19690.39050.10130.064*
C180.04037 (17)0.4596 (3)0.18224 (8)0.0743 (6)
H18A0.02190.33690.17700.089*
H18B0.02890.51690.19260.089*
C190.14564 (16)0.4819 (3)0.23258 (7)0.0575 (4)
H19A0.16750.60380.23570.069*
H19B0.21330.41800.22320.069*
C200.12258 (18)0.4201 (3)0.29266 (8)0.0660 (5)
H20A0.05640.48640.30260.079*
H20B0.09840.29910.28920.079*
C210.22746 (19)0.4373 (3)0.34201 (8)0.0667 (5)
H21A0.21280.39600.38070.080*
H21B0.29870.37220.33080.080*
N10.55697 (11)0.72071 (18)0.08592 (6)0.0481 (3)
N20.36315 (11)0.63662 (16)0.07008 (5)0.0433 (3)
N30.04075 (12)0.7060 (2)0.05220 (6)0.0568 (4)
N40.00007 (13)0.6671 (2)0.10089 (6)0.0631 (4)
N50.06216 (12)0.5313 (2)0.12552 (6)0.0540 (4)
O10.31014 (9)0.68013 (15)0.02114 (4)0.0493 (3)
O2A0.2984 (3)0.5903 (4)0.34478 (14)0.0678 (8)0.50
H2A0.35640.58960.37520.081*0.50
O2B0.2355 (3)0.6236 (4)0.35259 (13)0.0616 (8)0.50
H2B0.17840.65800.36970.074*0.50
O3W0.0201 (2)1.0729 (4)0.05595 (13)0.0792 (8)0.50
H3WA0.00151.12170.02170.095*0.50
H3WB0.03130.96550.04810.095*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0447 (8)0.0407 (9)0.0462 (8)0.0067 (6)0.0062 (6)0.0023 (7)
C20.0434 (9)0.0597 (11)0.0609 (10)0.0016 (8)0.0092 (7)0.0004 (8)
C30.0467 (9)0.0602 (11)0.0643 (11)0.0007 (8)0.0026 (8)0.0035 (9)
C40.0594 (10)0.0640 (12)0.0470 (9)0.0002 (9)0.0041 (8)0.0056 (8)
C50.0548 (9)0.0556 (10)0.0429 (8)0.0008 (8)0.0067 (7)0.0014 (7)
C60.0447 (8)0.0378 (8)0.0408 (8)0.0048 (6)0.0049 (6)0.0025 (6)
C70.0479 (8)0.0376 (8)0.0382 (7)0.0029 (6)0.0096 (6)0.0020 (6)
C80.0471 (8)0.0405 (8)0.0400 (8)0.0064 (7)0.0092 (6)0.0020 (6)
C90.0518 (9)0.0414 (9)0.0403 (8)0.0083 (7)0.0078 (7)0.0021 (6)
C100.0617 (10)0.0690 (12)0.0508 (9)0.0010 (9)0.0181 (8)0.0074 (8)
C110.0792 (13)0.0847 (14)0.0489 (10)0.0080 (11)0.0252 (9)0.0078 (9)
C120.0784 (13)0.0665 (12)0.0417 (9)0.0188 (10)0.0021 (8)0.0097 (8)
C130.0666 (11)0.0667 (12)0.0516 (10)0.0004 (9)0.0010 (8)0.0113 (9)
C140.0573 (10)0.0598 (11)0.0455 (9)0.0004 (8)0.0091 (7)0.0027 (8)
C150.0498 (9)0.0581 (10)0.0409 (8)0.0092 (8)0.0066 (7)0.0037 (7)
C160.0429 (8)0.0453 (9)0.0398 (8)0.0046 (7)0.0042 (6)0.0028 (6)
C170.0592 (10)0.0535 (10)0.0498 (9)0.0066 (8)0.0137 (8)0.0050 (8)
C180.0621 (11)0.1113 (18)0.0518 (10)0.0189 (11)0.0168 (9)0.0169 (11)
C190.0615 (10)0.0667 (12)0.0471 (9)0.0035 (9)0.0174 (8)0.0035 (8)
C200.0722 (12)0.0760 (13)0.0528 (10)0.0031 (10)0.0194 (9)0.0104 (9)
C210.0831 (13)0.0668 (13)0.0500 (10)0.0079 (10)0.0121 (9)0.0081 (9)
N10.0473 (7)0.0531 (8)0.0446 (7)0.0027 (6)0.0108 (6)0.0013 (6)
N20.0485 (7)0.0420 (7)0.0393 (7)0.0009 (6)0.0082 (5)0.0011 (5)
N30.0527 (8)0.0646 (10)0.0523 (8)0.0077 (7)0.0081 (6)0.0070 (7)
N40.0480 (8)0.0879 (12)0.0544 (8)0.0095 (8)0.0121 (7)0.0051 (8)
N50.0463 (7)0.0714 (10)0.0442 (7)0.0060 (7)0.0086 (6)0.0057 (7)
O10.0495 (6)0.0605 (7)0.0392 (5)0.0108 (5)0.0118 (5)0.0065 (5)
O2A0.076 (2)0.067 (2)0.0591 (17)0.0163 (18)0.0112 (16)0.0002 (14)
O2B0.0581 (18)0.073 (2)0.0571 (16)0.0114 (16)0.0198 (14)0.0072 (13)
O3W0.0685 (17)0.0626 (18)0.098 (2)0.0057 (13)0.0061 (15)0.0313 (15)
Geometric parameters (Å, º) top
C1—N11.387 (2)C15—O11.4409 (19)
C1—C61.402 (2)C15—C161.487 (2)
C1—C21.404 (2)C15—H15A0.9700
C2—C31.375 (2)C15—H15B0.9700
C2—H20.9300C16—N31.345 (2)
C3—C41.396 (3)C16—C171.364 (2)
C3—H30.9300C17—N51.333 (2)
C4—C51.362 (2)C17—H170.9300
C4—H40.9300C18—N51.471 (2)
C5—C61.409 (2)C18—C191.500 (3)
C5—H50.9300C18—H18A0.9700
C6—C71.420 (2)C18—H18B0.9700
C7—N21.3058 (19)C19—C201.520 (2)
C7—O11.3404 (17)C19—H19A0.9700
C8—N11.310 (2)C19—H19B0.9700
C8—N21.3710 (19)C20—C211.479 (3)
C8—C91.493 (2)C20—H20A0.9700
C9—C141.380 (2)C20—H20B0.9700
C9—C101.385 (2)C21—O2A1.421 (4)
C10—C111.390 (3)C21—O2B1.453 (4)
C10—H100.9300C21—H21A0.9822
C11—C121.364 (3)C21—H21B1.0253
C11—H110.9300N3—N41.3171 (19)
C12—C131.373 (3)N4—N51.324 (2)
C12—H120.9300O2A—H2A0.8601
C13—C141.385 (2)O2B—H2B0.8600
C13—H130.9300O3W—H3WA0.8599
C14—H140.9300O3W—H3WB0.8599
N1—C1—C6121.74 (14)N3—C16—C17107.52 (14)
N1—C1—C2119.95 (14)N3—C16—C15122.48 (14)
C6—C1—C2118.30 (14)C17—C16—C15129.99 (15)
C3—C2—C1120.02 (16)N5—C17—C16105.43 (15)
C3—C2—H2120.0N5—C17—H17127.3
C1—C2—H2120.0C16—C17—H17127.3
C2—C3—C4121.30 (16)N5—C18—C19112.75 (15)
C2—C3—H3119.4N5—C18—H18A109.0
C4—C3—H3119.4C19—C18—H18A109.0
C5—C4—C3119.83 (16)N5—C18—H18B109.0
C5—C4—H4120.1C19—C18—H18B109.0
C3—C4—H4120.1H18A—C18—H18B107.8
C4—C5—C6119.86 (15)C18—C19—C20113.86 (15)
C4—C5—H5120.1C18—C19—H19A108.8
C6—C5—H5120.1C20—C19—H19A108.8
C1—C6—C5120.69 (15)C18—C19—H19B108.8
C1—C6—C7114.81 (13)C20—C19—H19B108.8
C5—C6—C7124.51 (14)H19A—C19—H19B107.7
N2—C7—O1120.72 (14)C21—C20—C19113.89 (16)
N2—C7—C6123.86 (13)C21—C20—H20A108.8
O1—C7—C6115.42 (12)C19—C20—H20A108.8
N1—C8—N2125.94 (14)C21—C20—H20B108.8
N1—C8—C9118.83 (13)C19—C20—H20B108.8
N2—C8—C9115.22 (13)H20A—C20—H20B107.7
C14—C9—C10118.00 (15)O2A—C21—C20118.3 (2)
C14—C9—C8120.39 (14)O2B—C21—C20103.3 (2)
C10—C9—C8121.60 (15)O2A—C21—H21A114.9
C9—C10—C11120.82 (18)O2B—C21—H21A100.7
C9—C10—H10119.6C20—C21—H21A113.8
C11—C10—H10119.6O2A—C21—H21B87.0
C12—C11—C10120.60 (17)O2B—C21—H21B119.7
C12—C11—H11119.7C20—C21—H21B108.9
C10—C11—H11119.7H21A—C21—H21B110.2
C11—C12—C13119.00 (16)C8—N1—C1116.79 (13)
C11—C12—H12120.5C7—N2—C8116.77 (13)
C13—C12—H12120.5N4—N3—C16109.17 (14)
C12—C13—C14120.86 (18)N3—N4—N5107.01 (13)
C12—C13—H13119.6N4—N5—C17110.87 (13)
C14—C13—H13119.6N4—N5—C18120.20 (15)
C9—C14—C13120.70 (16)C17—N5—C18128.88 (17)
C9—C14—H14119.6C7—O1—C15116.95 (11)
C13—C14—H14119.6O2B—O2A—C2175.9 (4)
O1—C15—C16105.98 (12)O2B—O2A—H2A113.3
O1—C15—H15A110.5C21—O2A—H2A111.7
C16—C15—H15A110.5C21—O2B—H2A84.4
O1—C15—H15B110.5C21—O2B—H2B110.5
C16—C15—H15B110.5H3WA—O3W—H3WB105.0
H15A—C15—H15B108.7
N1—C1—C2—C3177.89 (16)N3—C16—C17—N50.08 (18)
C6—C1—C2—C31.0 (2)C15—C16—C17—N5178.72 (15)
C1—C2—C3—C40.5 (3)N5—C18—C19—C20176.04 (18)
C2—C3—C4—C50.1 (3)C18—C19—C20—C21178.34 (19)
C3—C4—C5—C60.2 (3)C19—C20—C21—O2A41.2 (3)
N1—C1—C6—C5177.93 (15)C19—C20—C21—O2B72.5 (2)
C2—C1—C6—C51.0 (2)N2—C8—N1—C12.5 (2)
N1—C1—C6—C72.5 (2)C9—C8—N1—C1176.43 (13)
C2—C1—C6—C7178.63 (14)C6—C1—N1—C80.2 (2)
C4—C5—C6—C10.4 (2)C2—C1—N1—C8179.13 (15)
C4—C5—C6—C7179.21 (16)O1—C7—N2—C8179.81 (13)
C1—C6—C7—N22.3 (2)C6—C7—N2—C80.0 (2)
C5—C6—C7—N2178.07 (15)N1—C8—N2—C72.7 (2)
C1—C6—C7—O1177.81 (13)C9—C8—N2—C7176.30 (13)
C5—C6—C7—O11.8 (2)C17—C16—N3—N40.03 (19)
N1—C8—C9—C14172.80 (15)C15—C16—N3—N4178.79 (14)
N2—C8—C9—C146.3 (2)C16—N3—N4—N50.04 (19)
N1—C8—C9—C105.6 (2)N3—N4—N5—C170.09 (19)
N2—C8—C9—C10175.30 (15)N3—N4—N5—C18177.93 (15)
C14—C9—C10—C110.6 (3)C16—C17—N5—N40.10 (19)
C8—C9—C10—C11179.04 (17)C16—C17—N5—C18177.71 (16)
C9—C10—C11—C121.2 (3)C19—C18—N5—N4113.8 (2)
C10—C11—C12—C130.7 (3)C19—C18—N5—C1763.6 (3)
C11—C12—C13—C140.5 (3)N2—C7—O1—C150.8 (2)
C10—C9—C14—C130.6 (3)C6—C7—O1—C15179.06 (13)
C8—C9—C14—C13177.90 (15)C16—C15—O1—C7174.82 (12)
C12—C13—C14—C91.1 (3)C20—C21—O2A—O2B69.2 (4)
O1—C15—C16—N3103.78 (17)C20—C21—O2B—O2A122.3 (4)
O1—C15—C16—C1774.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2B—H2B···N1i0.862.082.935 (3)170
O2A—H2A···O3Wii0.861.902.757 (4)176
O3W—H3WA···N3iii0.862.122.967 (3)167
O3W—H3WB···N30.862.002.835 (3)163
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC21H21N5O2·0.5H2O
Mr384.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.359 (4), 7.694 (3), 22.817 (7)
β (°) 101.111 (16)
V3)1956.9 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.55 × 0.31 × 0.28
Data collection
DiffractometerBruker X8 APEX Diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18195, 3709, 2879
Rint0.028
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.127, 1.03
No. of reflections3709
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.20

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2B—H2B···N1i0.862.082.935 (3)170
O2A—H2A···O3Wii0.861.902.757 (4)176
O3W—H3WA···N3iii0.862.122.967 (3)167
O3W—H3WB···N30.862.002.835 (3)163
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x, y+2, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAlvarez, R., Velazquez, S., San-Felix, A., Aquaro, S., De Clercq, E., Perno, C. F., Karlsson, A., Balzarini, J. & Camarasa, M. J. (1994). J. Med. Chem. 37(24), 4185–4194.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, J. H., Hong, J. S., Kuyper, L. F., Jones, M. L., Baccanari, D. P., Tansik, R. L., Boytos, C. M., Rudolph, S. K. & Brown, A. D. (1997). J. Heterocycl. Chem. 34, 145–155.  CrossRef CAS Google Scholar
First citationDe Clercq, E. (1997). Clin. Microbiol. Rev. 10, 674–693.  CAS PubMed Web of Science Google Scholar
First citationDe Clercq, E. (2002). Nat. Rev. Drug Discov. 1, 13–25.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDempcy, R. O. & Skibo, E. B. (1991). Biochemistry, 30, 8480–8487.  CrossRef PubMed CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGackenheimer, S. L., Schaus, J. M. & Gehlert, D. R. (1995). J. Pharmacol. Exp. Ther. 274, 1558–1565.  CAS PubMed Web of Science Google Scholar
First citationKrim, J., Sillahi, B., Taourirte, M., Rakib, E. M. & Engels, J. W. (2009). ARKIVOC, xiii, 142–152.  CrossRef Google Scholar
First citationMani Chandrika, P. T., Yakaiah Gayatri, G., Pranay Kumar, K., Narsaiah, B., Murthy, U. S. N. & Raghu Ram Rao, A. (2010). Eur. J. Med. Chem. 45, 78–84.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2029-o2030
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds