organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phenyl bis­­(morpholin-4-yl­amido)­phosphinate

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and bDepartment of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, Brno CZ-61137, Czech Republic
*Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

(Received 1 July 2011; accepted 22 July 2011; online 30 July 2011)

In the title compound, C14H23N4O4P, the P atom is in a distorted tetra­hedral environment with bond angles in the range 96.87 (6)–119.86 (6)°. The two morpholinyl groups adopt a chair conformation. The phenyl ring is disordered over two sets of sites with equal occupancies [0.500 (2)]. In the crystal, adjacent mol­ecules are linked via N—H⋯O hydrogen bonds into an extended chain running parallel to the a axis. Only one of the amidate N—H groups is involved in hydrogen bonding.

Related literature

For background to compounds having a P(=O)(O)(N)(N) skeleton, see: Sabbaghi et al. (2010[Sabbaghi, F., Mancilla Percino, T., Pourayoubi, M. & Leyva, M. A. (2010). Acta Cryst. E66, o1755.]). For bond lengths and angles in related structures, see: Ghadimi et al. (2009[Ghadimi, S., Pourayoubi, M. & Ebrahimi Valmoozi, A. A. (2009). Z. Naturforsch. Teil B, 64, 565-569.]).

[Scheme 1]

Experimental

Crystal data
  • C14H23N4O4P

  • Mr = 342.33

  • Triclinic, [P \overline 1]

  • a = 4.7469 (2) Å

  • b = 12.3528 (5) Å

  • c = 14.2149 (5) Å

  • α = 90.542 (3)°

  • β = 98.389 (4)°

  • γ = 93.009 (4)°

  • V = 823.35 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 120 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur S diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.877, Tmax = 1.000

  • 10043 measured reflections

  • 2888 independent reflections

  • 2272 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.070

  • S = 0.99

  • 2888 reflections

  • 262 parameters

  • 162 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O1i 0.823 (15) 2.093 (16) 2.8951 (16) 164.9 (15)
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Structure determination of the title compound, P(O)[OC6H5][NHNC4H8O]2 (Fig. 1), was performed as a part of a project in our laboratory on the synthesis of compounds having a P(O)(O)(N)(N) skeleton (Sabbaghi et al., 2010). Single crystals of title compound were obtained from a mixture of CH3OH/CH3CN (4:1 v/v) after slow evaporation at room temperature.

The PO (1.4705 (10) Å), P—O (1.5975 (10) Å) and P—N (1.6295 (13) Å & 1.6331 (13) Å) bond lengths and the C—O—P angle (122.17 (8)°) are standard for this category of compounds (Ghadimi et al., 2009). The P atom has a distorted tetrahedral configuration (Fig. 1), the bond angles at the P atom vary in the range from 96.87 (6)° [the angle O2—P1—N3] to 119.86 (6)° [the angle O1—P1—N3].

In the crystal, the molecules are hydrogen-bonded in a linear arrangement parallel to [100] through N3—H3N···O1i [symmetry code: (i) x - 1, y, z] hydrogen bond (Table 1, Fig. 2).

Related literature top

For background to about compounds having a P(O)(O)(N)(N) skeleton, see: Sabbaghi et al. (2010). For bond lengths in related structures, see: Ghadimi et al. (2009).

Experimental top

To a solution of phenyldichlorophosphate (2.507 mmol) in chloroform (15 ml), a solution of aminomorpholine (10.028 mmol) in chloroform (30 ml) was added at 273 K. After 4 h of stirring, the solvent was evaporated in vacuum. The solid was washed with distilled water. Single crystals, suitable for crystallography, were obtained from a solution of the title compound in methanol and acetonitrile (4:1) after slow evaporation at room temperature. IR (KBr, cm-1): 3278, 3107, 2945, 2869, 2830, 1588, 1488, 1223, 1107, 926, 869, 759, 698.

Refinement top

All carbon bound H atoms were placed at calculated positions and were refined as riding with their Uiso set to 1.2Ueq of the respective carrier atoms. Nitrogen bound H atoms were located in a difference Fourier map and refined isotropically. The disordered phenyl group was modeled over two sites using similarity restraints on anisotropic displacement parameters.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids shown at the 50% probability level. The disorder is not shown.
[Figure 2] Fig. 2. Partial packing view showing the formation of the chain through N—H···O hydrogen bond (shown as dotted lines). H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) x - 1, y, z]
N-[(morpholin-4-ylamino)(phenoxy)phosphoryl]morpholin-4-amine top
Crystal data top
C14H23N4O4PZ = 2
Mr = 342.33F(000) = 364
Triclinic, P1Dx = 1.381 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.7469 (2) ÅCell parameters from 5042 reflections
b = 12.3528 (5) Åθ = 3.3–27.2°
c = 14.2149 (5) ŵ = 0.19 mm1
α = 90.542 (3)°T = 120 K
β = 98.389 (4)°Prism, colorless
γ = 93.009 (4)°0.20 × 0.10 × 0.10 mm
V = 823.35 (6) Å3
Data collection top
Oxford Diffraction Xcalibur S
diffractometer
2888 independent reflections
Radiation source: Enhance (Mo) X-ray Source2272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.4353 pixels mm-1θmax = 25.0°, θmin = 3.3°
ω scansh = 55
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1414
Tmin = 0.877, Tmax = 1.000l = 169
10043 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0404P)2P]
where P = (Fo2 + 2Fc2)/3
2888 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.22 e Å3
162 restraintsΔρmin = 0.32 e Å3
Crystal data top
C14H23N4O4Pγ = 93.009 (4)°
Mr = 342.33V = 823.35 (6) Å3
Triclinic, P1Z = 2
a = 4.7469 (2) ÅMo Kα radiation
b = 12.3528 (5) ŵ = 0.19 mm1
c = 14.2149 (5) ÅT = 120 K
α = 90.542 (3)°0.20 × 0.10 × 0.10 mm
β = 98.389 (4)°
Data collection top
Oxford Diffraction Xcalibur S
diffractometer
2888 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2272 reflections with I > 2σ(I)
Tmin = 0.877, Tmax = 1.000Rint = 0.021
10043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029162 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.22 e Å3
2888 reflectionsΔρmin = 0.32 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.34183 (7)0.63069 (3)0.29935 (3)0.01615 (12)
O10.55619 (19)0.55524 (7)0.33888 (7)0.0196 (2)
O20.11776 (19)0.58245 (7)0.21233 (7)0.0196 (3)
O30.1822 (2)0.80213 (10)0.63761 (8)0.0382 (3)
O40.3795 (2)1.01932 (8)0.11186 (8)0.0310 (3)
N30.1088 (3)0.67116 (10)0.36409 (9)0.0180 (3)
C10.1500 (3)0.48228 (11)0.16832 (11)0.0169 (3)
C2A0.1144 (7)0.3882 (2)0.2144 (3)0.0201 (8)0.500 (2)
H2AA0.07540.38960.27810.024*0.500 (2)
C3A0.1348 (8)0.2902 (2)0.1688 (3)0.0228 (8)0.500 (2)
H3AA0.11120.22360.20040.027*0.500 (2)
C4A0.192 (5)0.2917 (13)0.0735 (11)0.0236 (19)0.500 (2)
H4AA0.21980.22530.04260.028*0.500 (2)
C5A0.2073 (6)0.3829 (2)0.0270 (2)0.0222 (8)0.500 (2)
H5AA0.23320.38130.03810.027*0.500 (2)
C6A0.1858 (6)0.4815 (2)0.0724 (2)0.0193 (8)0.500 (2)
H6AA0.19530.54750.03880.023*0.500 (2)
C2B0.0552 (7)0.4023 (2)0.1721 (2)0.0220 (8)0.500 (2)
H2BA0.21600.41450.20280.026*0.500 (2)
C3B0.0253 (8)0.3024 (3)0.1303 (3)0.0276 (9)0.500 (2)
H3BA0.17180.24700.13060.033*0.500 (2)
C4B0.203 (5)0.2816 (13)0.0897 (11)0.023 (2)0.500 (2)
H4BA0.22300.21160.06420.027*0.500 (2)
C5B0.4184 (6)0.3673 (2)0.0852 (2)0.0255 (9)0.500 (2)
H5BA0.57760.35530.05380.031*0.500 (2)
C6B0.3922 (6)0.4675 (2)0.1271 (2)0.0214 (8)0.500 (2)
H6BA0.53580.52410.12740.026*0.500 (2)
N10.2242 (2)0.72689 (9)0.45092 (9)0.0187 (3)
C80.0377 (3)0.81391 (12)0.46689 (12)0.0274 (4)
H8A0.15710.78320.47060.033*
H8B0.02680.86510.41340.033*
C90.1576 (4)0.87271 (13)0.55883 (13)0.0374 (5)
H9A0.34800.90640.55300.045*
H9B0.03190.93140.57030.045*
C100.3616 (4)0.71670 (14)0.62119 (12)0.0330 (4)
H10A0.37720.66730.67590.040*
H10B0.55520.74780.61600.040*
C110.2460 (3)0.65330 (12)0.53168 (11)0.0257 (4)
H11A0.37460.59500.52170.031*
H11B0.05570.61940.53730.031*
N40.5044 (3)0.73922 (10)0.26441 (10)0.0217 (3)
N20.3561 (2)0.82518 (9)0.21815 (9)0.0182 (3)
C130.3853 (3)0.82364 (12)0.11680 (11)0.0219 (4)
H13A0.29140.75620.08620.026*
H13B0.58980.82510.10960.026*
C140.2503 (3)0.92070 (12)0.06897 (12)0.0280 (4)
H14A0.27140.91920.00070.034*
H14B0.04400.91710.07370.034*
C150.3467 (4)1.02243 (12)0.20977 (13)0.0334 (4)
H15A0.14121.02060.21560.040*
H15B0.43641.09110.23930.040*
C160.4816 (3)0.92776 (12)0.26208 (12)0.0267 (4)
H16A0.68960.93220.26030.032*
H16B0.45140.93080.32950.032*
H3N0.035 (3)0.6311 (12)0.3652 (11)0.024 (4)*
H4N0.674 (4)0.7378 (13)0.2627 (12)0.032 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01465 (19)0.01504 (19)0.0181 (3)0.00138 (14)0.00015 (16)0.00092 (16)
O10.0163 (5)0.0179 (5)0.0238 (7)0.0023 (4)0.0004 (4)0.0032 (5)
O20.0187 (5)0.0187 (5)0.0201 (7)0.0048 (4)0.0027 (5)0.0049 (5)
O30.0424 (7)0.0456 (7)0.0272 (8)0.0048 (6)0.0110 (6)0.0135 (6)
O40.0410 (7)0.0185 (6)0.0328 (8)0.0035 (5)0.0047 (6)0.0074 (5)
N30.0157 (6)0.0174 (6)0.0196 (8)0.0032 (5)0.0004 (6)0.0047 (6)
C10.0163 (7)0.0169 (7)0.0168 (9)0.0032 (6)0.0004 (6)0.0007 (7)
C2A0.0189 (16)0.0240 (16)0.0173 (19)0.0026 (13)0.0012 (15)0.0018 (14)
C3A0.0257 (18)0.0142 (15)0.026 (2)0.0001 (14)0.0026 (18)0.0050 (15)
C4A0.028 (3)0.023 (4)0.020 (4)0.006 (3)0.000 (4)0.005 (3)
C5A0.0229 (17)0.0264 (17)0.0173 (19)0.0017 (13)0.0037 (15)0.0025 (14)
C6A0.0189 (16)0.0177 (14)0.0203 (19)0.0018 (12)0.0000 (15)0.0051 (13)
C2B0.0207 (17)0.0256 (16)0.020 (2)0.0007 (13)0.0047 (16)0.0038 (14)
C3B0.0274 (19)0.0203 (16)0.033 (2)0.0035 (15)0.0000 (18)0.0058 (16)
C4B0.033 (3)0.012 (2)0.022 (5)0.009 (2)0.003 (4)0.005 (3)
C5B0.0223 (16)0.0326 (17)0.022 (2)0.0087 (13)0.0020 (15)0.0064 (15)
C6B0.0180 (16)0.0232 (15)0.022 (2)0.0006 (12)0.0003 (14)0.0008 (14)
N10.0203 (6)0.0183 (6)0.0169 (8)0.0005 (5)0.0007 (6)0.0030 (6)
C80.0283 (8)0.0213 (8)0.0322 (11)0.0036 (7)0.0028 (8)0.0077 (7)
C90.0410 (10)0.0298 (9)0.0412 (13)0.0025 (8)0.0063 (9)0.0134 (9)
C100.0393 (10)0.0366 (10)0.0228 (11)0.0037 (8)0.0059 (8)0.0001 (8)
C110.0318 (9)0.0248 (8)0.0207 (10)0.0010 (7)0.0052 (8)0.0026 (8)
N40.0140 (6)0.0227 (7)0.0279 (9)0.0020 (5)0.0007 (6)0.0088 (6)
N20.0222 (6)0.0142 (6)0.0172 (8)0.0013 (5)0.0011 (6)0.0035 (6)
C130.0272 (8)0.0201 (8)0.0177 (10)0.0015 (6)0.0022 (7)0.0006 (7)
C140.0341 (9)0.0240 (8)0.0241 (11)0.0027 (7)0.0006 (8)0.0055 (7)
C150.0449 (10)0.0179 (8)0.0381 (12)0.0018 (7)0.0097 (9)0.0020 (8)
C160.0345 (9)0.0223 (8)0.0224 (10)0.0063 (7)0.0040 (8)0.0034 (7)
Geometric parameters (Å, º) top
P1—O11.4705 (10)C5B—C6B1.387 (4)
P1—O21.5975 (10)C5B—H5BA0.9500
P1—N41.6295 (13)C6B—H6BA0.9500
P1—N31.6331 (13)N1—C81.4645 (17)
O2—C11.4068 (16)N1—C111.4663 (19)
O3—C91.421 (2)C8—C91.510 (2)
O3—C101.4286 (19)C8—H8A0.9900
O4—C151.4233 (19)C8—H8B0.9900
O4—C141.4249 (17)C9—H9A0.9900
N3—N11.4297 (17)C9—H9B0.9900
N3—H3N0.823 (15)C10—C111.505 (2)
C1—C2A1.354 (3)C10—H10A0.9900
C1—C2B1.358 (3)C10—H10B0.9900
C1—C6B1.384 (3)C11—H11A0.9900
C1—C6A1.399 (3)C11—H11B0.9900
C2A—C3A1.382 (4)N4—N21.4186 (16)
C2A—H2AA0.9500N4—H4N0.811 (16)
C3A—C4A1.421 (17)N2—C161.4656 (18)
C3A—H3AA0.9500N2—C131.4674 (18)
C4A—C5A1.316 (15)C13—C141.510 (2)
C4A—H4AA0.9500C13—H13A0.9900
C5A—C6A1.389 (4)C13—H13B0.9900
C5A—H5AA0.9500C14—H14A0.9900
C6A—H6AA0.9500C14—H14B0.9900
C2B—C3B1.388 (4)C15—C161.512 (2)
C2B—H2BA0.9500C15—H15A0.9900
C3B—C4B1.33 (2)C15—H15B0.9900
C3B—H3BA0.9500C16—H16A0.9900
C4B—C5B1.44 (2)C16—H16B0.9900
C4B—H4BA0.9500
O1—P1—O2114.63 (5)N1—C8—H8A109.9
O1—P1—N4108.95 (6)C9—C8—H8A109.9
O2—P1—N4108.62 (6)N1—C8—H8B109.9
O1—P1—N3119.86 (6)C9—C8—H8B109.9
O2—P1—N396.87 (6)H8A—C8—H8B108.3
N4—P1—N3106.95 (7)O3—C9—C8112.07 (14)
C1—O2—P1122.17 (8)O3—C9—H9A109.2
C9—O3—C10109.51 (13)C8—C9—H9A109.2
C15—O4—C14109.64 (12)O3—C9—H9B109.2
N1—N3—P1115.73 (9)C8—C9—H9B109.2
N1—N3—H3N116.7 (11)H9A—C9—H9B107.9
P1—N3—H3N116.9 (11)O3—C10—C11111.43 (13)
C2A—C1—C6B103.2 (2)O3—C10—H10A109.3
C2B—C1—C6B122.9 (2)C11—C10—H10A109.3
C2A—C1—C6A120.6 (2)O3—C10—H10B109.3
C2B—C1—C6A103.1 (2)C11—C10—H10B109.3
C2A—C1—O2120.66 (18)H10A—C10—H10B108.0
C2B—C1—O2117.71 (18)N1—C11—C10109.01 (13)
C6B—C1—O2119.37 (17)N1—C11—H11A109.9
C6A—C1—O2118.26 (16)C10—C11—H11A109.9
C1—C2A—C3A120.0 (3)N1—C11—H11B109.9
C1—C2A—H2AA120.0C10—C11—H11B109.9
C3A—C2A—H2AA120.0H11A—C11—H11B108.3
C2A—C3A—C4A118.2 (7)N2—N4—P1122.73 (9)
C2A—C3A—H3AA120.9N2—N4—H4N118.0 (12)
C4A—C3A—H3AA120.9P1—N4—H4N117.8 (12)
C5A—C4A—C3A121.4 (13)N4—N2—C16108.27 (11)
C5A—C4A—H4AA119.3N4—N2—C13109.67 (11)
C3A—C4A—H4AA119.3C16—N2—C13109.55 (11)
C4A—C5A—C6A120.4 (8)N2—C13—C14109.89 (12)
C4A—C5A—H5AA119.8N2—C13—H13A109.7
C6A—C5A—H5AA119.8C14—C13—H13A109.7
C5A—C6A—C1119.0 (3)N2—C13—H13B109.7
C5A—C6A—H6AA120.5C14—C13—H13B109.7
C1—C6A—H6AA120.5H13A—C13—H13B108.2
C1—C2B—C3B118.6 (3)O4—C14—C13111.09 (12)
C1—C2B—H2BA120.7O4—C14—H14A109.4
C3B—C2B—H2BA120.7C13—C14—H14A109.4
C4B—C3B—C2B122.1 (8)O4—C14—H14B109.4
C4B—C3B—H3BA119.0C13—C14—H14B109.4
C2B—C3B—H3BA119.0H14A—C14—H14B108.0
C3B—C4B—C5B118.9 (13)O4—C15—C16111.29 (13)
C3B—C4B—H4BA120.6O4—C15—H15A109.4
C5B—C4B—H4BA120.6C16—C15—H15A109.4
C6B—C5B—C4B119.7 (9)O4—C15—H15B109.4
C6B—C5B—H5BA120.2C16—C15—H15B109.4
C4B—C5B—H5BA120.2H15A—C15—H15B108.0
C1—C6B—C5B117.8 (3)N2—C16—C15110.24 (13)
C1—C6B—H6BA121.1N2—C16—H16A109.6
C5B—C6B—H6BA121.1C15—C16—H16A109.6
N3—N1—C8108.48 (11)N2—C16—H16B109.6
N3—N1—C11111.34 (11)C15—C16—H16B109.6
C8—N1—C11109.63 (13)H16A—C16—H16B108.1
N1—C8—C9108.73 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1i0.823 (15)2.093 (16)2.8951 (16)164.9 (15)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H23N4O4P
Mr342.33
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)4.7469 (2), 12.3528 (5), 14.2149 (5)
α, β, γ (°)90.542 (3), 98.389 (4), 93.009 (4)
V3)823.35 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur S
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.877, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10043, 2888, 2272
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.070, 0.99
No. of reflections2888
No. of parameters262
No. of restraints162
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.32

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1i0.823 (15)2.093 (16)2.8951 (16)164.9 (15)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhadimi, S., Pourayoubi, M. & Ebrahimi Valmoozi, A. A. (2009). Z. Naturforsch. Teil B, 64, 565–569.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSabbaghi, F., Mancilla Percino, T., Pourayoubi, M. & Leyva, M. A. (2010). Acta Cryst. E66, o1755.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds