organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1954-o1955

1,3-Bis(4-fluoro­phen­yl)-N,N′-(propane-1,3-diyl­­idene)di­hydroxyl­amine

aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and eDepartment of Chemistry, P.A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 30 June 2011; accepted 4 July 2011; online 9 July 2011)

The title compound, C15H12F2N2O2, crystallizes with two mol­ecules (A and B) in the asymmetric unit. Both aromatic rings of both mol­ecules are disordered over two orientations [occupancy ratios of 0.768 (3):0.232 (3) and 0.770 (3):0.230 (3) for mol­ecule A and 0.789 (3):0.211 (3) and 0.789 (3):0.211 (3) for mol­ecule B]. The dihedral angles between the planes of the major and minor components of the disordered aromatic rings are 72.0 (4) and 71.2 (4)° for mol­ecule A, and 70.2 (4) and 71.5 (2)° for mol­ecule B. In the crystal, both mol­ecules form inversion dimers with R22(6) ring motifs via pairs of inter­molecular O—H⋯N hydrogen bonds. The dimers are linked, forming zigzag C(7) chains along the c axis. Weak C—H⋯π inter­actions help to consolidate the packing.

Related literature

For related 4,4′-difluoro chalcone and oxime structures and background references, see: Baktır et al. (2011a[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1262-o1263.],b[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o1292-o1293.]); Fun et al. (2010a[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582-o583.],b[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864-o865.]); Jasinski et al. (2010a[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o2018.],b[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o1948-o1949.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12F2N2O2

  • Mr = 290.27

  • Triclinic, [P \overline 1]

  • a = 9.9233 (7) Å

  • b = 10.4236 (6) Å

  • c = 13.2422 (11) Å

  • α = 86.419 (6)°

  • β = 79.205 (7)°

  • γ = 89.932 (5)°

  • V = 1342.78 (17) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.99 mm−1

  • T = 295 K

  • 0.42 × 0.28 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.754, Tmax = 0.782

  • 7806 measured reflections

  • 7849 independent reflections

  • 5008 reflections with I > 2σ(I)

  • Rint = 0.000

Refinement
  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.236

  • S = 1.01

  • 7849 reflections

  • 376 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg4, Cg5 and Cg8 are the centroids of the C3A–C8A, C9C–C14C, C3B–C8B and C9D–C14D benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯N2Bi 0.82 2.06 2.782 (4) 146
O1B—H1B⋯N2A 0.82 2.07 2.778 (4) 145
O2A—H2A⋯N1B 0.82 2.03 2.750 (4) 147
O2B—H2B⋯N1Aii 0.82 2.04 2.759 (4) 146
C10A—H10ACg5iii 0.93 2.94 3.690 (3) 139
C13A—H13ACg5iv 0.93 2.98 3.746 (3) 141
C14B—H14CCg1iv 0.93 2.94 3.702 (5) 140
C4C—H4CACg8iii 0.93 2.92 3.674 (11) 139
C7C—H7CACg8iv 0.93 2.97 3.749 (11) 143
C4D—H4DACg4iv 0.93 2.90 3.651 (10) 139
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) -x+1, -y+1, -z+1; (iv) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on the syntheses and structures of derivatives of 4,4'-difluoro chalcones and oximes (Fun et al., 2010a,b; Jasinski et al., 2010a,b; Baktır et al., 2011a,b), the title compound (I) was prepared and its crystal structure is now reported.

In the title compound (I), two symmetry independent molecules 1 (with F1A) and 2 (with F1B) exist in the asymmetric unit. Fig. 1 shows one of them. The dihedral angles between the planes of the major and minor components of the disordered aromatic rings of (I) are 72.0 (4)°, 71.2 (4)° for molecule 1, and 70.2 (4)°, 71.5 (2)° for molecule 2, respectively. The dihedral angle between the two aromatic rings is 89.09 (17)° (major component), 89.6 (5) ° (minor component) for molecule 1, and 88.7 (2)° (major component), 87.4 (7)° (minor component) for molecule 2, respectively.

In the crystal, intermolecular O—H···N hydrogen bonds (Table 1, Fig. 2) connect molecules, forming inversion dimers with R22(6) ring motifs (Bernstein et al., 1995). These interactions link the symmetry-related molecules into as infinite zigzag chains along the c axis (Fig. 3). In addition, C—H···π interactions are observed (Table 1).

Related literature top

For related 4,4'-difluoro chalcone and oxime structures and background references, see: Baktır et al. (2011a,b); Fun et al. (2010a,b); Jasinski et al. (2010a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A solution of 2,3-dibromo-1,3-bis(4-fluorophenyl)propan-1-one (4.04 g, 0.01 mol) and hydroxylamine hydrochloride (1.4 g, 0.02 mol) in 25 ml e thanol containing 5 ml of triethylamine was refluxed for 12 h. The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate formed was collected by filtration and dried. Colourless prisms of (I) were grown from DMSO by slow evaporation and yield of the compound was 72%. (m.p. 485 K).

Refinement top

H atoms were placed in idealized positions with d(C—H) = 0.97 (CH2) and 0.93 Å (CH) and d(O—H) = 0.82 (OH) and refined using a riding model with Uiso(H) fixed at 1.5 Ueq(O) for OH and 1.2 Ueq(C) for CH and CH2. The two aromatic rings of two molecules in the asymmetric unit are disordered over two sites with the refined occupancy ratios of 0.768 (3): 0.232 (3) and 0.770 (3): 0.230 (3) for molecule 1 (with F1A), and 0.789 (3): 0.211 (3) and 0.789 (3): 0.211 (3) for molecule 2 (with F1B). Poorly fitted reflections were omitted from the refinement.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. One of the two molecules of (I) in the asymmetric unit, showing displacement ellipsoids for non-H atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. View of inversion dimers of (I) in the unit cell, with R22(6) ring motifs, forming by intermolecular O—H···N hydrogen bonds. Hydrogen atoms not involved in H-bonds have been omitted for clarity.
[Figure 3] Fig. 3. The crystal packing and hydrogen bonding of (I) shown down the c axis. Hydrogen atoms not involved in H-bonds have been omitted for clarity.
N-[1,3-bis(4-fluorophenyl)-3-(hydroxyimino)propylidene]hydroxylamine top
Crystal data top
C15H12F2N2O2Z = 4
Mr = 290.27F(000) = 600
Triclinic, P1Dx = 1.436 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 9.9233 (7) ÅCell parameters from 1758 reflections
b = 10.4236 (6) Åθ = 4.5–73.4°
c = 13.2422 (11) ŵ = 0.99 mm1
α = 86.419 (6)°T = 295 K
β = 79.205 (7)°Prism, colourless
γ = 89.932 (5)°0.42 × 0.28 × 0.25 mm
V = 1342.78 (17) Å3
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
7849 independent reflections
Radiation source: Enhance (Cu) X-ray Source5008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 10.5081 pixels mm-1θmax = 67.5°, θmin = 5.3°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 1212
Tmin = 0.754, Tmax = 0.782l = 1515
7806 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.236H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0848P)2 + 1.187P]
where P = (Fo2 + 2Fc2)/3
7849 reflections(Δ/σ)max < 0.001
376 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C15H12F2N2O2γ = 89.932 (5)°
Mr = 290.27V = 1342.78 (17) Å3
Triclinic, P1Z = 4
a = 9.9233 (7) ÅCu Kα radiation
b = 10.4236 (6) ŵ = 0.99 mm1
c = 13.2422 (11) ÅT = 295 K
α = 86.419 (6)°0.42 × 0.28 × 0.25 mm
β = 79.205 (7)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
7849 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
5008 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 0.782Rint = 0.000
7806 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0830 restraints
wR(F2) = 0.236H-atom parameters constrained
S = 1.01Δρmax = 0.34 e Å3
7849 reflectionsΔρmin = 0.22 e Å3
376 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F1A0.0906 (3)0.8715 (3)0.00153 (16)0.0858 (10)
F2A0.1596 (3)0.6327 (3)0.99701 (16)0.0859 (10)
O1A0.1328 (3)0.8991 (2)0.56874 (16)0.0516 (8)
O2A0.1813 (3)0.5948 (2)0.43283 (17)0.0541 (8)
N1A0.1482 (3)0.9103 (2)0.46093 (19)0.0422 (8)
N2A0.1393 (3)0.5835 (2)0.54025 (19)0.0456 (8)
C1A0.0274 (3)0.7411 (3)0.4983 (2)0.0465 (10)
C2A0.0698 (3)0.8334 (3)0.4274 (2)0.0388 (9)
C3A0.0740 (3)0.8406 (3)0.31399 (16)0.0403 (10)0.768 (3)
C4A0.0563 (4)0.7322 (2)0.2616 (2)0.0572 (16)0.768 (3)
C5A0.0615 (4)0.7433 (2)0.1558 (2)0.0603 (17)0.768 (3)
C6A0.0844 (4)0.8627 (3)0.10236 (16)0.0566 (11)0.768 (3)
C7A0.1021 (4)0.9711 (2)0.1548 (2)0.0615 (17)0.768 (3)
C8A0.0969 (3)0.9600 (2)0.2606 (2)0.0490 (12)0.768 (3)
C9A0.0120 (3)0.6510 (3)0.68451 (15)0.0409 (10)0.770 (3)
C10A0.0764 (2)0.6255 (3)0.7530 (2)0.0552 (14)0.770 (3)
C11A0.0263 (3)0.6198 (4)0.85855 (19)0.0633 (17)0.770 (3)
C12A0.1122 (3)0.6396 (4)0.89551 (16)0.0575 (11)0.770 (3)
C13A0.2007 (2)0.6651 (4)0.8270 (2)0.0639 (19)0.770 (3)
C14A0.1505 (3)0.6708 (3)0.7215 (2)0.0502 (14)0.770 (3)
C15A0.0390 (3)0.6565 (3)0.5715 (2)0.0402 (9)
C6C0.0856 (11)0.8607 (12)0.1053 (5)0.0566 (11)0.232 (3)
C7C0.0382 (9)0.8401 (10)0.1736 (7)0.0615 (17)0.232 (3)
C8C0.0414 (8)0.8352 (10)0.2791 (7)0.0490 (12)0.232 (3)
C9C0.0278 (11)0.6568 (10)0.6836 (5)0.0409 (10)0.230 (3)
C10C0.0324 (11)0.5375 (8)0.7374 (7)0.0552 (14)0.230 (3)
C11C0.0760 (12)0.5278 (9)0.8437 (7)0.0633 (17)0.230 (3)
C12C0.1149 (13)0.6373 (11)0.8962 (5)0.0575 (11)0.230 (3)
C13C0.1102 (12)0.7565 (9)0.8424 (7)0.0639 (19)0.230 (3)
C14C0.0666 (11)0.7663 (8)0.7361 (7)0.0502 (14)0.230 (3)
C3C0.0791 (10)0.8508 (11)0.3164 (5)0.0403 (10)0.232 (3)
C4C0.2028 (8)0.8714 (10)0.2482 (7)0.0572 (16)0.232 (3)
C5C0.2061 (9)0.8764 (11)0.1426 (6)0.0603 (17)0.232 (3)
F1B0.6590 (3)0.3717 (3)0.00105 (16)0.0917 (10)
F2B0.4100 (3)0.1317 (3)0.99706 (17)0.0914 (10)
O1B0.3328 (3)0.3986 (2)0.56877 (17)0.0530 (8)
O2B0.3525 (3)0.0955 (2)0.43261 (17)0.0542 (8)
N1B0.3716 (3)0.4104 (2)0.46091 (18)0.0427 (8)
N2B0.3404 (3)0.0842 (2)0.54041 (19)0.0446 (8)
C1B0.5275 (3)0.2410 (3)0.4984 (3)0.0486 (10)
C2B0.4666 (3)0.3322 (3)0.4272 (2)0.0418 (9)
C3B0.5192 (3)0.3400 (3)0.31310 (16)0.0414 (10)0.789 (3)
C4B0.5230 (3)0.4599 (2)0.2604 (2)0.0518 (12)0.789 (3)
C5B0.5702 (4)0.4718 (2)0.1545 (2)0.0632 (17)0.789 (3)
C6B0.6136 (4)0.3638 (3)0.10139 (16)0.0615 (13)0.789 (3)
C7B0.6098 (4)0.2439 (3)0.1541 (2)0.0631 (17)0.789 (3)
C8B0.5626 (3)0.2320 (2)0.2600 (2)0.0545 (14)0.789 (3)
C9B0.4219 (6)0.1513 (5)0.6833 (3)0.0426 (10)0.789 (3)
C10B0.5395 (4)0.1700 (4)0.7227 (3)0.0524 (14)0.789 (3)
C11B0.5368 (5)0.1652 (5)0.8271 (4)0.0658 (19)0.789 (3)
C12B0.4134 (8)0.1387 (6)0.8921 (4)0.0603 (15)0.789 (3)
C13B0.2955 (5)0.1192 (5)0.8581 (4)0.0659 (17)0.789 (3)
C14B0.2991 (5)0.1256 (5)0.7540 (3)0.0554 (14)0.789 (3)
C15B0.4257 (3)0.1567 (3)0.5718 (2)0.0427 (10)
C6D0.6141 (12)0.3597 (14)0.1079 (6)0.0615 (13)0.211 (3)
C7D0.7021 (9)0.3343 (12)0.1768 (8)0.0631 (17)0.211 (3)
C8D0.6514 (10)0.3284 (11)0.2822 (8)0.0545 (14)0.211 (3)
C9D0.4275 (18)0.1589 (12)0.6897 (7)0.0426 (10)0.211 (3)
C10D0.4407 (14)0.2673 (10)0.7432 (9)0.0524 (14)0.211 (3)
C11D0.4343 (16)0.2554 (11)0.8492 (9)0.0658 (19)0.211 (3)
C12D0.415 (2)0.1352 (13)0.9016 (7)0.0603 (15)0.211 (3)
C13D0.4016 (16)0.0267 (11)0.8480 (9)0.0659 (17)0.211 (3)
C14D0.4080 (15)0.0386 (11)0.7421 (9)0.0554 (14)0.211 (3)
C3D0.5127 (11)0.3479 (12)0.3188 (6)0.0414 (10)0.211 (3)
C4D0.4247 (8)0.3733 (11)0.2499 (8)0.0518 (12)0.211 (3)
C5D0.4754 (11)0.3792 (12)0.1445 (7)0.0632 (17)0.211 (3)
H11A0.085500.602800.904400.0760*0.770 (3)
H13A0.293300.678300.851700.0770*0.770 (3)
H14A0.209700.687800.675600.0600*0.770 (3)
H1AA0.099100.790200.538300.0560*
H1A0.189200.945800.586800.0770*
H1AB0.070700.686600.456600.0560*
H2A0.245400.546200.415700.0810*
H4AA0.041000.652300.297300.0690*0.768 (3)
H5AA0.049700.670800.120700.0720*0.768 (3)
H7AA0.117401.051000.119000.0740*0.768 (3)
H8AA0.108701.032500.295600.0590*0.768 (3)
H10A0.169100.612300.728300.0660*0.770 (3)
H4CA0.283400.881900.273100.0690*0.232 (3)
H5CA0.288900.890200.096900.0720*0.232 (3)
H7CA0.118800.829700.148600.0740*0.232 (3)
H8CA0.124200.821400.324800.0590*0.232 (3)
H10B0.006400.464300.702300.0660*0.230 (3)
H11B0.079100.448000.879700.0760*0.230 (3)
H13B0.136200.829800.877500.0770*0.230 (3)
H14B0.063500.846100.700100.0600*0.230 (3)
H14C0.218500.112800.729500.0670*0.789 (3)
H7BA0.638900.171700.118600.0760*0.789 (3)
H8BA0.560100.151800.295200.0650*0.789 (3)
H1B0.275600.453200.587600.0790*
H2B0.304800.040200.414700.0810*
H10C0.622300.186100.677600.0630*0.789 (3)
H1BA0.578800.290600.538200.0580*
H11C0.616000.179500.853000.0790*0.789 (3)
H1BB0.592000.186300.457100.0580*
H4BA0.493900.532200.295900.0620*0.789 (3)
H13C0.213700.101800.904200.0790*0.789 (3)
H5BA0.572700.552000.119200.0760*0.789 (3)
H10D0.453800.347800.708200.0630*0.211 (3)
H11D0.443100.328000.885000.0790*0.211 (3)
H13D0.388500.053700.883100.0790*0.211 (3)
H14D0.399200.034000.706300.0670*0.211 (3)
H4DA0.331900.386300.274300.0620*0.211 (3)
H5DA0.416500.396100.098400.0760*0.211 (3)
H7DA0.794900.321200.152400.0760*0.211 (3)
H8DA0.710300.311400.328300.0650*0.211 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1A0.112 (2)0.105 (2)0.0427 (12)0.0046 (16)0.0206 (12)0.0054 (12)
F2A0.0852 (18)0.126 (2)0.0419 (12)0.0055 (15)0.0004 (11)0.0060 (13)
O1A0.0632 (16)0.0500 (14)0.0436 (12)0.0012 (11)0.0134 (10)0.0080 (10)
O2A0.0627 (16)0.0546 (14)0.0423 (12)0.0091 (11)0.0019 (10)0.0055 (10)
N1A0.0432 (14)0.0431 (14)0.0407 (14)0.0033 (11)0.0081 (11)0.0060 (11)
N2A0.0565 (16)0.0406 (14)0.0388 (14)0.0019 (12)0.0062 (11)0.0047 (11)
C1A0.0358 (16)0.0598 (19)0.0435 (16)0.0011 (14)0.0075 (13)0.0000 (14)
C2A0.0360 (15)0.0371 (15)0.0446 (16)0.0077 (12)0.0096 (12)0.0059 (13)
C3A0.0380 (17)0.0396 (17)0.0443 (17)0.0036 (13)0.0100 (13)0.0044 (13)
C4A0.077 (3)0.044 (2)0.052 (3)0.006 (2)0.015 (2)0.0047 (19)
C5A0.072 (3)0.058 (3)0.058 (3)0.008 (2)0.025 (2)0.020 (2)
C6A0.062 (2)0.069 (2)0.0391 (18)0.0091 (18)0.0106 (15)0.0036 (16)
C7A0.072 (3)0.053 (3)0.059 (3)0.002 (2)0.014 (2)0.005 (2)
C8A0.048 (2)0.047 (2)0.052 (2)0.0004 (17)0.0096 (18)0.0035 (18)
C9A0.0369 (18)0.0445 (17)0.0416 (17)0.0039 (13)0.0084 (13)0.0016 (13)
C10A0.048 (2)0.071 (3)0.048 (2)0.010 (2)0.0121 (19)0.006 (2)
C11A0.065 (3)0.074 (3)0.053 (3)0.003 (2)0.019 (2)0.003 (2)
C12A0.064 (2)0.069 (2)0.0378 (17)0.0094 (18)0.0046 (15)0.0049 (16)
C13A0.049 (3)0.088 (4)0.052 (3)0.002 (2)0.001 (2)0.010 (2)
C14A0.038 (2)0.062 (3)0.051 (2)0.0020 (18)0.0089 (17)0.0056 (19)
C15A0.0400 (16)0.0392 (16)0.0417 (16)0.0016 (12)0.0088 (12)0.0016 (13)
C6C0.062 (2)0.069 (2)0.0391 (18)0.0091 (18)0.0106 (15)0.0036 (16)
C7C0.072 (3)0.053 (3)0.059 (3)0.002 (2)0.014 (2)0.005 (2)
C8C0.048 (2)0.047 (2)0.052 (2)0.0004 (17)0.0096 (18)0.0035 (18)
C9C0.0369 (18)0.0445 (17)0.0416 (17)0.0039 (13)0.0084 (13)0.0016 (13)
C10C0.048 (2)0.071 (3)0.048 (2)0.010 (2)0.0121 (19)0.006 (2)
C11C0.065 (3)0.074 (3)0.053 (3)0.003 (2)0.019 (2)0.003 (2)
C12C0.064 (2)0.069 (2)0.0378 (17)0.0094 (18)0.0046 (15)0.0049 (16)
C13C0.049 (3)0.088 (4)0.052 (3)0.002 (2)0.001 (2)0.010 (2)
C14C0.038 (2)0.062 (3)0.051 (2)0.0020 (18)0.0089 (17)0.0056 (19)
C3C0.0380 (17)0.0396 (17)0.0443 (17)0.0036 (13)0.0100 (13)0.0044 (13)
C4C0.077 (3)0.044 (2)0.052 (3)0.006 (2)0.015 (2)0.0047 (19)
C5C0.072 (3)0.058 (3)0.058 (3)0.008 (2)0.025 (2)0.020 (2)
F1B0.111 (2)0.112 (2)0.0441 (13)0.0035 (16)0.0064 (12)0.0061 (13)
F2B0.100 (2)0.133 (2)0.0439 (13)0.0124 (17)0.0194 (12)0.0090 (14)
O1B0.0651 (16)0.0505 (14)0.0426 (12)0.0085 (11)0.0069 (10)0.0075 (10)
O2B0.0622 (16)0.0559 (14)0.0456 (13)0.0048 (11)0.0122 (11)0.0063 (10)
N1B0.0476 (15)0.0419 (14)0.0378 (13)0.0034 (11)0.0051 (11)0.0056 (10)
N2B0.0524 (16)0.0418 (14)0.0407 (14)0.0013 (11)0.0105 (11)0.0062 (11)
C1B0.0352 (16)0.063 (2)0.0485 (17)0.0033 (14)0.0116 (13)0.0004 (15)
C2B0.0372 (16)0.0411 (16)0.0482 (17)0.0056 (12)0.0109 (13)0.0035 (13)
C3B0.0356 (16)0.0428 (17)0.0462 (17)0.0016 (13)0.0080 (13)0.0059 (14)
C4B0.050 (2)0.049 (2)0.057 (2)0.0044 (18)0.0127 (19)0.0013 (19)
C5B0.066 (3)0.064 (3)0.058 (3)0.002 (2)0.011 (2)0.007 (2)
C6B0.065 (2)0.078 (3)0.0380 (18)0.0030 (19)0.0003 (16)0.0041 (18)
C7B0.060 (3)0.062 (3)0.064 (3)0.002 (2)0.003 (2)0.024 (2)
C8B0.058 (3)0.049 (2)0.054 (2)0.0013 (19)0.003 (2)0.0060 (19)
C9B0.0388 (18)0.0447 (17)0.0456 (18)0.0051 (14)0.0108 (13)0.0047 (14)
C10B0.039 (2)0.067 (3)0.054 (2)0.0043 (18)0.0140 (17)0.010 (2)
C11B0.062 (3)0.084 (4)0.057 (3)0.011 (2)0.022 (2)0.015 (2)
C12B0.072 (3)0.072 (3)0.0400 (19)0.0120 (19)0.0177 (18)0.0063 (18)
C13B0.055 (3)0.081 (3)0.057 (3)0.007 (2)0.001 (2)0.003 (2)
C14B0.046 (2)0.069 (3)0.052 (2)0.0058 (19)0.0110 (19)0.005 (2)
C15B0.0385 (16)0.0447 (17)0.0452 (17)0.0051 (13)0.0085 (13)0.0030 (13)
C6D0.065 (2)0.078 (3)0.0380 (18)0.0030 (19)0.0003 (16)0.0041 (18)
C7D0.060 (3)0.062 (3)0.064 (3)0.002 (2)0.003 (2)0.024 (2)
C8D0.058 (3)0.049 (2)0.054 (2)0.0013 (19)0.003 (2)0.0060 (19)
C9D0.0388 (18)0.0447 (17)0.0456 (18)0.0051 (14)0.0108 (13)0.0047 (14)
C10D0.039 (2)0.067 (3)0.054 (2)0.0043 (18)0.0140 (17)0.010 (2)
C11D0.062 (3)0.084 (4)0.057 (3)0.011 (2)0.022 (2)0.015 (2)
C12D0.072 (3)0.072 (3)0.0400 (19)0.0120 (19)0.0177 (18)0.0063 (18)
C13D0.055 (3)0.081 (3)0.057 (3)0.007 (2)0.001 (2)0.003 (2)
C14D0.046 (2)0.069 (3)0.052 (2)0.0058 (19)0.0110 (19)0.005 (2)
C3D0.0356 (16)0.0428 (17)0.0462 (17)0.0016 (13)0.0080 (13)0.0059 (14)
C4D0.050 (2)0.049 (2)0.057 (2)0.0044 (18)0.0127 (19)0.0013 (19)
C5D0.066 (3)0.064 (3)0.058 (3)0.002 (2)0.011 (2)0.007 (2)
Geometric parameters (Å, º) top
F1A—C6A1.323 (3)C8A—H8AA0.9300
F1A—C6C1.363 (7)C8C—H8CA0.9300
F2A—C12A1.336 (3)C10A—H10A0.9300
F2A—C12C1.323 (7)C10C—H10B0.9300
F1B—C6B1.318 (3)C11A—H11A0.9300
F1B—C6D1.399 (8)C11C—H11B0.9300
F2B—C12B1.381 (6)C13A—H13A0.9300
F2B—C12D1.254 (10)C13C—H13B0.9300
O1A—N1A1.405 (3)C14A—H14A0.9300
O2A—N2A1.403 (3)C14C—H14B0.9300
O1A—H1A0.8200C1B—C2B1.503 (4)
O2A—H2A0.8200C1B—C15B1.505 (4)
O1B—N1B1.406 (3)C2B—C3D1.422 (8)
O2B—N2B1.407 (3)C2B—C3B1.500 (3)
O1B—H1B0.8200C3B—C4B1.390 (4)
O2B—H2B0.8200C3B—C8B1.390 (4)
N1A—C2A1.273 (4)C3D—C4D1.390 (14)
N2A—C15A1.274 (4)C3D—C8D1.390 (15)
N1B—C2B1.280 (4)C4B—C5B1.391 (4)
N2B—C15B1.278 (4)C4D—C5D1.390 (14)
C1A—C2A1.513 (4)C5B—C6B1.390 (4)
C1A—C15A1.511 (4)C5D—C6D1.390 (16)
C2A—C3C1.455 (7)C6B—C7B1.390 (4)
C2A—C3A1.492 (3)C6D—C7D1.390 (14)
C3A—C4A1.390 (4)C7B—C8B1.391 (4)
C3A—C8A1.390 (4)C7D—C8D1.390 (15)
C3C—C4C1.389 (12)C9B—C10B1.383 (7)
C3C—C8C1.390 (13)C9B—C14B1.406 (7)
C4A—C5A1.390 (4)C9B—C15B1.468 (5)
C4C—C5C1.390 (12)C9D—C15B1.566 (10)
C5A—C6A1.390 (4)C9D—C10D1.390 (16)
C5C—C6C1.390 (14)C9D—C14D1.390 (17)
C6A—C7A1.391 (4)C10B—C11B1.376 (6)
C6C—C7C1.391 (13)C10D—C11D1.391 (17)
C7A—C8A1.390 (4)C11B—C12B1.376 (9)
C7C—C8C1.389 (13)C11D—C12D1.389 (17)
C9A—C10A1.389 (4)C12B—C13B1.350 (9)
C9A—C15A1.485 (3)C12D—C13D1.392 (17)
C9A—C14A1.390 (4)C13B—C14B1.370 (7)
C9C—C14C1.390 (13)C13D—C14D1.390 (17)
C9C—C15A1.508 (7)C1B—H1BA0.9700
C9C—C10C1.390 (13)C1B—H1BB0.9700
C10A—C11A1.391 (4)C4B—H4BA0.9300
C10C—C11C1.390 (13)C4D—H4DA0.9300
C11A—C12A1.390 (4)C5B—H5BA0.9300
C11C—C12C1.390 (14)C5D—H5DA0.9300
C12A—C13A1.390 (4)C7B—H7BA0.9300
C12C—C13C1.390 (14)C7D—H7DA0.9300
C13A—C14A1.390 (4)C8B—H8BA0.9300
C13C—C14C1.390 (13)C8D—H8DA0.9300
C1A—H1AA0.9700C10B—H10C0.9300
C1A—H1AB0.9700C10D—H10D0.9300
C4A—H4AA0.9300C11B—H11C0.9300
C4C—H4CA0.9300C11D—H11D0.9300
C5A—H5AA0.9300C13B—H13C0.9300
C5C—H5CA0.9300C13D—H13D0.9300
C7A—H7AA0.9300C14B—H14C0.9300
C7C—H7CA0.9300C14D—H14D0.9300
N1A—O1A—H1A109.00C13A—C14A—H14A120.00
N2A—O2A—H2A110.00C9A—C14A—H14A120.00
N1B—O1B—H1B109.00C13C—C14C—H14B120.00
N2B—O2B—H2B109.00C9C—C14C—H14B120.00
O1A—N1A—C2A112.5 (2)C2B—C1B—C15B115.2 (3)
O2A—N2A—C15A112.4 (2)N1B—C2B—C1B121.9 (3)
O1B—N1B—C2B112.4 (2)C1B—C2B—C3B121.3 (3)
O2B—N2B—C15B112.4 (2)N1B—C2B—C3B116.7 (3)
C2A—C1A—C15A114.7 (3)N1B—C2B—C3D113.1 (5)
C1A—C2A—C3A120.6 (3)C1B—C2B—C3D124.8 (5)
C1A—C2A—C3C125.0 (5)C4B—C3B—C8B120.0 (2)
N1A—C2A—C3C112.6 (5)C2B—C3B—C8B122.1 (3)
N1A—C2A—C3A117.0 (3)C2B—C3B—C4B117.9 (3)
N1A—C2A—C1A122.3 (2)C2B—C3D—C4D123.0 (9)
C4A—C3A—C8A120.0 (2)C2B—C3D—C8D116.9 (8)
C2A—C3A—C8A118.1 (3)C4D—C3D—C8D120.0 (8)
C2A—C3A—C4A121.9 (3)C3B—C4B—C5B120.0 (2)
C2A—C3C—C8C116.9 (7)C3D—C4D—C5D120.0 (9)
C4C—C3C—C8C120.0 (7)C4B—C5B—C6B120.0 (2)
C2A—C3C—C4C122.9 (8)C4D—C5D—C6D120.0 (9)
C3A—C4A—C5A120.0 (2)F1B—C6B—C5B121.6 (3)
C3C—C4C—C5C120.0 (8)F1B—C6B—C7B118.4 (3)
C4A—C5A—C6A120.0 (2)C5B—C6B—C7B120.0 (2)
C4C—C5C—C6C120.0 (8)F1B—C6D—C7D123.0 (9)
F1A—C6A—C5A119.3 (3)F1B—C6D—C5D117.0 (8)
F1A—C6A—C7A120.7 (3)C5D—C6D—C7D120.0 (8)
C5A—C6A—C7A120.0 (2)C6B—C7B—C8B120.0 (3)
C5C—C6C—C7C120.0 (7)C6D—C7D—C8D120.0 (9)
F1A—C6C—C7C121.1 (9)C3B—C8B—C7B120.0 (2)
F1A—C6C—C5C118.9 (8)C3D—C8D—C7D120.0 (9)
C6A—C7A—C8A120.0 (2)C14B—C9B—C15B121.3 (5)
C6C—C7C—C8C120.0 (8)C10B—C9B—C14B117.5 (4)
C3A—C8A—C7A120.0 (2)C10B—C9B—C15B121.2 (4)
C3C—C8C—C7C120.0 (8)C14D—C9D—C15B113.7 (9)
C10A—C9A—C14A120.0 (2)C10D—C9D—C15B126.2 (9)
C10A—C9A—C15A120.9 (3)C10D—C9D—C14D120.0 (9)
C14A—C9A—C15A119.1 (2)C9B—C10B—C11B121.5 (4)
C10C—C9C—C15A114.5 (8)C9D—C10D—C11D120.0 (10)
C10C—C9C—C14C120.0 (7)C10B—C11B—C12B118.0 (5)
C14C—C9C—C15A125.0 (8)C10D—C11D—C12D120.1 (10)
C9A—C10A—C11A120.0 (2)C11B—C12B—C13B123.1 (5)
C9C—C10C—C11C120.0 (8)F2B—C12B—C11B118.5 (6)
C10A—C11A—C12A120.0 (2)F2B—C12B—C13B118.5 (6)
C10C—C11C—C12C120.0 (8)F2B—C12D—C13D123.5 (11)
C11A—C12A—C13A120.0 (2)F2B—C12D—C11D116.6 (11)
F2A—C12A—C11A119.6 (3)C11D—C12D—C13D120.0 (10)
F2A—C12A—C13A120.4 (3)C12B—C13B—C14B118.4 (5)
F2A—C12C—C11C122.3 (9)C12D—C13D—C14D120.0 (10)
F2A—C12C—C13C117.7 (9)C9B—C14B—C13B121.4 (5)
C11C—C12C—C13C120.0 (7)C9D—C14D—C13D120.0 (11)
C12A—C13A—C14A119.9 (2)N2B—C15B—C1B122.0 (3)
C12C—C13C—C14C120.0 (8)N2B—C15B—C9B116.6 (3)
C9A—C14A—C13A120.1 (2)N2B—C15B—C9D120.1 (6)
C9C—C14C—C13C120.0 (8)C1B—C15B—C9B121.4 (3)
N2A—C15A—C1A122.4 (2)C1B—C15B—C9D117.9 (6)
N2A—C15A—C9C122.0 (5)C2B—C1B—H1BA108.00
N2A—C15A—C9A116.0 (3)C2B—C1B—H1BB108.00
C1A—C15A—C9A121.6 (3)C15B—C1B—H1BA108.00
C1A—C15A—C9C115.5 (5)C15B—C1B—H1BB108.00
C2A—C1A—H1AB109.00H1BA—C1B—H1BB107.00
C15A—C1A—H1AA109.00C3B—C4B—H4BA120.00
C15A—C1A—H1AB109.00C5B—C4B—H4BA120.00
H1AA—C1A—H1AB107.00C5D—C4D—H4DA120.00
C2A—C1A—H1AA109.00C3D—C4D—H4DA120.00
C5A—C4A—H4AA120.00C4B—C5B—H5BA120.00
C3A—C4A—H4AA120.00C6B—C5B—H5BA120.00
C3C—C4C—H4CA120.00C4D—C5D—H5DA120.00
C5C—C4C—H4CA120.00C6D—C5D—H5DA120.00
C4A—C5A—H5AA120.00C8B—C7B—H7BA120.00
C6A—C5A—H5AA120.00C6B—C7B—H7BA120.00
C6C—C5C—H5CA120.00C6D—C7D—H7DA120.00
C4C—C5C—H5CA120.00C8D—C7D—H7DA120.00
C8A—C7A—H7AA120.00C3B—C8B—H8BA120.00
C6A—C7A—H7AA120.00C7B—C8B—H8BA120.00
C8C—C7C—H7CA120.00C7D—C8D—H8DA120.00
C6C—C7C—H7CA120.00C3D—C8D—H8DA120.00
C3A—C8A—H8AA120.00C11B—C10B—H10C119.00
C7A—C8A—H8AA120.00C9B—C10B—H10C119.00
C3C—C8C—H8CA120.00C9D—C10D—H10D120.00
C7C—C8C—H8CA120.00C11D—C10D—H10D120.00
C9A—C10A—H10A120.00C10B—C11B—H11C121.00
C11A—C10A—H10A120.00C12B—C11B—H11C121.00
C11C—C10C—H10B120.00C12D—C11D—H11D120.00
C9C—C10C—H10B120.00C10D—C11D—H11D120.00
C12A—C11A—H11A120.00C12B—C13B—H13C121.00
C10A—C11A—H11A120.00C14B—C13B—H13C121.00
C10C—C11C—H11B120.00C12D—C13D—H13D120.00
C12C—C11C—H11B120.00C14D—C13D—H13D120.00
C14A—C13A—H13A120.00C13B—C14B—H14C119.00
C12A—C13A—H13A120.00C9B—C14B—H14C119.00
C12C—C13C—H13B120.00C9D—C14D—H14D120.00
C14C—C13C—H13B120.00C13D—C14D—H14D120.00
O1A—N1A—C2A—C1A0.3 (4)C10A—C11A—C12A—C13A0.0 (6)
O1A—N1A—C2A—C3A177.8 (2)C11A—C12A—C13A—C14A0.0 (6)
O2A—N2A—C15A—C1A1.9 (4)F2A—C12A—C13A—C14A179.4 (4)
O2A—N2A—C15A—C9A179.8 (2)C12A—C13A—C14A—C9A0.0 (5)
O1B—N1B—C2B—C1B0.7 (4)C15B—C1B—C2B—N1B53.8 (4)
O1B—N1B—C2B—C3B177.9 (2)C15B—C1B—C2B—C3B129.0 (3)
O2B—N2B—C15B—C1B1.1 (4)C2B—C1B—C15B—N2B55.5 (4)
O2B—N2B—C15B—C9B179.6 (3)C2B—C1B—C15B—C9B126.1 (4)
C15A—C1A—C2A—N1A53.2 (4)N1B—C2B—C3B—C4B33.5 (4)
C2A—C1A—C15A—C9A125.3 (3)N1B—C2B—C3B—C8B146.1 (3)
C15A—C1A—C2A—C3A128.9 (3)C1B—C2B—C3B—C4B143.8 (3)
C2A—C1A—C15A—N2A56.5 (4)C1B—C2B—C3B—C8B36.6 (4)
C1A—C2A—C3A—C4A36.0 (4)C2B—C3B—C4B—C5B179.6 (3)
N1A—C2A—C3A—C8A33.8 (4)C8B—C3B—C4B—C5B0.0 (5)
C1A—C2A—C3A—C8A144.3 (3)C2B—C3B—C8B—C7B179.6 (3)
N1A—C2A—C3A—C4A145.9 (3)C4B—C3B—C8B—C7B0.0 (5)
C2A—C3A—C4A—C5A179.8 (3)C3B—C4B—C5B—C6B0.0 (5)
C8A—C3A—C4A—C5A0.0 (5)C4B—C5B—C6B—F1B180.0 (3)
C2A—C3A—C8A—C7A179.8 (3)C4B—C5B—C6B—C7B0.0 (6)
C4A—C3A—C8A—C7A0.0 (5)F1B—C6B—C7B—C8B180.0 (3)
C3A—C4A—C5A—C6A0.0 (6)C5B—C6B—C7B—C8B0.0 (6)
C4A—C5A—C6A—C7A0.0 (6)C6B—C7B—C8B—C3B0.0 (5)
C4A—C5A—C6A—F1A179.3 (4)C14B—C9B—C10B—C11B0.7 (7)
F1A—C6A—C7A—C8A179.2 (3)C15B—C9B—C10B—C11B180.0 (4)
C5A—C6A—C7A—C8A0.0 (6)C10B—C9B—C14B—C13B0.0 (8)
C6A—C7A—C8A—C3A0.0 (5)C15B—C9B—C14B—C13B179.3 (5)
C15A—C9A—C14A—C13A179.5 (3)C10B—C9B—C15B—N2B148.0 (4)
C10A—C9A—C15A—C1A150.2 (3)C10B—C9B—C15B—C1B30.5 (6)
C14A—C9A—C15A—N2A148.0 (3)C14B—C9B—C15B—N2B31.3 (6)
C10A—C9A—C15A—N2A31.5 (4)C14B—C9B—C15B—C1B150.2 (4)
C14A—C9A—C10A—C11A0.0 (5)C9B—C10B—C11B—C12B1.2 (7)
C15A—C9A—C10A—C11A179.5 (3)C10B—C11B—C12B—F2B179.0 (5)
C10A—C9A—C14A—C13A0.0 (5)C10B—C11B—C12B—C13B1.0 (9)
C14A—C9A—C15A—C1A30.3 (4)F2B—C12B—C13B—C14B179.7 (5)
C9A—C10A—C11A—C12A0.0 (6)C11B—C12B—C13B—C14B0.3 (9)
C10A—C11A—C12A—F2A179.4 (4)C12B—C13B—C14B—C9B0.2 (8)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg4, Cg5 and Cg8 are the centroids of the C3A–C8A, C9C–C14C, C3B–C8B and C9D–C14D benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N2Bi0.822.062.782 (4)146
O1B—H1B···N2A0.822.072.778 (4)145
O2A—H2A···N1B0.822.032.750 (4)147
O2B—H2B···N1Aii0.822.042.759 (4)146
C10A—H10A···Cg5iii0.932.943.690 (3)139
C13A—H13A···Cg5iv0.932.983.746 (3)141
C14B—H14C···Cg1iv0.932.943.702 (5)140
C4C—H4CA···Cg8iii0.932.923.674 (11)139
C7C—H7CA···Cg8iv0.932.973.749 (11)143
C4D—H4DA···Cg4iv0.932.903.651 (10)139
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H12F2N2O2
Mr290.27
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.9233 (7), 10.4236 (6), 13.2422 (11)
α, β, γ (°)86.419 (6), 79.205 (7), 89.932 (5)
V3)1342.78 (17)
Z4
Radiation typeCu Kα
µ (mm1)0.99
Crystal size (mm)0.42 × 0.28 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.754, 0.782
No. of measured, independent and
observed [I > 2σ(I)] reflections
7806, 7849, 5008
Rint0.000
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.236, 1.01
No. of reflections7849
No. of parameters376
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg4, Cg5 and Cg8 are the centroids of the C3A–C8A, C9C–C14C, C3B–C8B and C9D–C14D benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N2Bi0.822.062.782 (4)146
O1B—H1B···N2A0.822.072.778 (4)145
O2A—H2A···N1B0.822.032.750 (4)147
O2B—H2B···N1Aii0.822.042.759 (4)146
C10A—H10A···Cg5iii0.932.943.690 (3)139
C13A—H13A···Cg5iv0.932.983.746 (3)141
C14B—H14C···Cg1iv0.932.943.702 (5)140
C4C—H4CA···Cg8iii0.932.923.674 (11)139
C7C—H7CA···Cg8iv0.932.973.749 (11)143
C4D—H4DA···Cg4iv0.932.903.651 (10)139
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1.
 

Acknowledgements

BN thanks Mangalore University for the research facilities and the UGC SAP for financial assistance for the purchase of chemicals. HSY thanks the UOM for the research facilities. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1262–o1263.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o1292–o1293.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864–o865.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o2018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o1948–o1949.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1954-o1955
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds