organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Fluoro­phen­yl)-1-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline monohydrate

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and dDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 27 June 2011; accepted 2 July 2011; online 9 July 2011)

In the title compound, C25H15FN4·H2O, the fused ring system is essentially planar [maximum deviation of 0.0822 (14) Å]. The imidazole ring makes dihedral angles of 76.83 (7) and 32.22 (7)° with the phenyl group attached to nitro­gen and the fluoro­benzene group to carbon, respectively. The dihedral angle between the two phenyl rings is 72.13 (7)°. Inter­molecular O—H⋯N, O—H⋯F, C—H⋯F, C—H⋯O and C—H⋯N hydrogen bonds are found in the crystal structure.

Related literature

For a related structure, see: Rosepriya et al. (2011[Rosepriya, S., Thiruvalluvar, A., Jayabharathi, J., Venkatesh Perumal, M., Butcher, R. J., Jasinski, J. P. & Golen, J. A. (2011). Acta Cryst. E67, o989.]). For technological and biological applications of related compounds, see: Liu et al. (2005[Liu, Q. D., Jia, W. L. & Wang, S. N. (2005). Inorg. Chem. 44, 1332-1343.]); Bian et al. (2002[Bian, Z. Q., Wang, K. Z. & Jin, L. P. (2002). Polyhedron, 21, 313-319.]).

[Scheme 1]

Experimental

Crystal data
  • C25H15FN4·H2O

  • Mr = 408.43

  • Triclinic, [P \overline 1]

  • a = 9.0103 (10) Å

  • b = 10.0946 (9) Å

  • c = 11.3994 (9) Å

  • α = 86.987 (7)°

  • β = 75.950 (8)°

  • γ = 82.396 (8)°

  • V = 996.75 (17) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.75 mm−1

  • T = 170 K

  • 0.34 × 0.25 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.784, Tmax = 0.864

  • 6315 measured reflections

  • 3765 independent reflections

  • 3382 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.122

  • S = 1.04

  • 3765 reflections

  • 288 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯N10i 0.96 (3) 2.62 (3) 3.282 (2) 127 (2)
O1W—H1W⋯N13i 0.96 (3) 1.97 (3) 2.902 (2) 163 (3)
O1W—H2W⋯F4ii 0.92 (4) 2.41 (3) 3.159 (2) 139 (3)
C9—H9⋯F4iii 0.95 2.49 3.248 (2) 136
C14—H14⋯O1Wiv 0.95 2.56 3.510 (2) 176
C19—H19⋯N3v 0.95 2.61 3.5209 (19) 162
Symmetry codes: (i) x-1, y, z+1; (ii) x-1, y+1, z; (iii) x, y+1, z-1; (iv) -x+2, -y+1, -z; (v) -x+2, -y, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

1,10-Phenanthroline has a rigid framework and possesses a superb ability to chelate many metal ions via two nitrogen donors, which show potential for technological applications, due to their high charge transfer mobility, bright light-emission and good electro- and photo-active properties (Liu et al., (2005)). Phenanthroline ligands are particularly attractive species for developing new diagnostic and therapeutic agents that can recognize and cleave DNA. 1,10-Phenanthroline and its derivatives are commonly used as ligands in metal complexes (Bian et al., (2002)). Rosepriya et al. (2011) have reported the crystal structure of 1,2-Diphenyl-1H-imidazo[4,5-f][1,10]phenanthroline. Since our group is doing research in organic light emitting devices (OLEDs), we are interested to use the title compound for synthesizing Ir(III) complexes and to study its photophysical properties.

The asymmetric unit of the title compound, C25H15FN4.H2O, contains a 2-(4-Fluorophenyl)-1-phenyl-1H-imidazo[4,5-f][1,10] phenanthroline molecule and a water solvent molecule. The fused ring system is essentially planar [maximum deviation of -0.0822 (14) Å for C15]. The imidazole ring makes dihedral angles of 76.83 (7) and 32.22 (7)° with the phenyl group attached to nitrogen and fluorobenzene group attached to carbon respectively. The dihedral angle between the phenyl ring and the benzene ring is 72.13 (7)°. Intermolecular O1W—H1W···N10, O1W—H1W···N13, O1W—H2W···F4, C9—H9···F4, C14—H14···O1W and C19—H19···N3 hydrogen bonds are found in the crystal structure (Table 1, Fig. 2).

Related literature top

For a related structure, see: Rosepriya et al. (2011). For technological and biological applications of related compounds, see: Liu et al. (2005); Bian et al. (2002).

Experimental top

To the pure 1,10-Phenanthroline-5,6-dione (2.10 g, 10 mmol) in ethanol (10 ml), aniline (0.91 g, 10 mmol), ammonium acetate (0.77 g, 10 mmol) and 4-fluorobenzaldehyde (1.1 g, 10 mmol) was over a period of about 1 h by maintaining the temperature at 333 K. The reaction mixture was refluxed for 7 days and then extracted with dichloromethane. The solid separated was purified by column chromatography using Benzene: Ethyl acetate as the eluent. Yield: 1.57 g (40%). Crystals suitable for X-ray diffraction studies were grown by slow solvent evaporation of a solution of the compound in dichloromethane.

Refinement top

H1W and H2W attached to O1W were located in a difference Fourier map and refined freely. Remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å; Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
2-(4-Fluorophenyl)-1-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline monohydrate top
Crystal data top
C25H15FN4·H2OZ = 2
Mr = 408.43F(000) = 424
Triclinic, P1Dx = 1.361 Mg m3
Hall symbol: -P 1Melting point: 567 K
a = 9.0103 (10) ÅCu Kα radiation, λ = 1.54178 Å
b = 10.0946 (9) ÅCell parameters from 4456 reflections
c = 11.3994 (9) Åθ = 4.0–71.6°
α = 86.987 (7)°µ = 0.75 mm1
β = 75.950 (8)°T = 170 K
γ = 82.396 (8)°Block, pale-yellow
V = 996.75 (17) Å30.34 × 0.25 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
3765 independent reflections
Radiation source: Enhance (Cu) X-ray Source3382 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Detector resolution: 16.1500 pixels mm-1θmax = 71.7°, θmin = 4.0°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1211
Tmin = 0.784, Tmax = 0.864l = 139
6315 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.1908P]
where P = (Fo2 + 2Fc2)/3
3765 reflections(Δ/σ)max = 0.001
288 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C25H15FN4·H2Oγ = 82.396 (8)°
Mr = 408.43V = 996.75 (17) Å3
Triclinic, P1Z = 2
a = 9.0103 (10) ÅCu Kα radiation
b = 10.0946 (9) ŵ = 0.75 mm1
c = 11.3994 (9) ÅT = 170 K
α = 86.987 (7)°0.34 × 0.25 × 0.20 mm
β = 75.950 (8)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
3765 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
3382 reflections with I > 2σ(I)
Tmin = 0.784, Tmax = 0.864Rint = 0.013
6315 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.20 e Å3
3765 reflectionsΔρmin = 0.20 e Å3
288 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F40.97668 (13)0.28116 (12)0.54415 (10)0.0786 (4)
N10.92907 (12)0.16988 (11)0.12069 (9)0.0359 (3)
N31.18158 (12)0.09894 (11)0.08946 (10)0.0391 (3)
N101.01571 (15)0.48776 (13)0.23133 (12)0.0521 (4)
N131.31915 (15)0.39690 (13)0.26380 (11)0.0501 (4)
C21.04372 (15)0.08612 (13)0.15819 (11)0.0369 (4)
C41.15633 (15)0.19490 (13)0.00436 (11)0.0368 (4)
C51.00239 (15)0.24120 (13)0.02073 (11)0.0358 (4)
C60.94466 (15)0.34434 (13)0.05427 (12)0.0372 (4)
C70.79054 (17)0.40253 (15)0.03881 (14)0.0457 (4)
C80.75310 (18)0.49897 (16)0.11884 (15)0.0532 (5)
C90.8689 (2)0.53716 (17)0.21396 (16)0.0584 (5)
C111.05532 (16)0.39312 (13)0.15231 (12)0.0394 (4)
C121.21950 (16)0.34406 (14)0.17030 (12)0.0400 (4)
C141.46849 (18)0.35781 (17)0.27695 (15)0.0551 (5)
C151.52874 (18)0.26431 (17)0.20121 (15)0.0529 (5)
C161.42936 (16)0.20624 (16)0.10893 (13)0.0456 (4)
C171.27071 (15)0.24631 (14)0.09146 (12)0.0380 (4)
C180.76897 (14)0.19088 (13)0.18319 (11)0.0353 (3)
C190.66066 (16)0.13798 (15)0.13745 (13)0.0433 (4)
C200.50721 (17)0.15814 (17)0.19911 (14)0.0515 (5)
C210.46428 (17)0.22966 (18)0.30488 (15)0.0545 (5)
C220.57309 (18)0.28226 (17)0.34889 (14)0.0540 (5)
C230.72683 (17)0.26361 (14)0.28769 (13)0.0441 (4)
C241.01826 (15)0.00849 (13)0.26178 (12)0.0383 (4)
C250.88803 (18)0.07485 (15)0.29655 (13)0.0458 (4)
C260.87439 (19)0.16753 (16)0.39112 (14)0.0518 (5)
C270.99130 (19)0.19174 (16)0.45003 (14)0.0525 (5)
C281.12160 (18)0.12905 (18)0.41907 (15)0.0563 (5)
C291.13416 (16)0.03709 (16)0.32457 (14)0.0483 (5)
O1W0.26297 (19)0.49467 (15)0.50499 (13)0.0729 (5)
H70.713050.374860.026910.0549*
H80.649600.539250.109580.0639*
H90.840850.602870.270070.0701*
H141.538580.395880.341940.0662*
H151.637000.241250.213420.0636*
H161.467170.139900.057570.0547*
H190.691310.088710.064960.0519*
H200.431440.122930.168870.0618*
H210.359030.242590.347460.0654*
H220.542510.331450.421420.0647*
H230.802140.300360.317250.0529*
H250.807860.056340.254980.0549*
H260.785930.213390.414730.0621*
H281.200880.148360.461450.0675*
H291.223490.007730.301710.0580*
H1W0.260 (3)0.470 (3)0.588 (3)0.115 (9)*
H2W0.161 (4)0.521 (3)0.507 (3)0.115 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F40.0789 (7)0.0849 (8)0.0670 (7)0.0159 (6)0.0147 (5)0.0469 (6)
N10.0323 (5)0.0407 (6)0.0329 (5)0.0076 (4)0.0042 (4)0.0066 (4)
N30.0338 (5)0.0466 (6)0.0347 (6)0.0061 (5)0.0048 (4)0.0066 (5)
N100.0500 (7)0.0548 (7)0.0476 (7)0.0085 (6)0.0071 (6)0.0181 (6)
N130.0477 (7)0.0549 (7)0.0423 (7)0.0139 (6)0.0011 (5)0.0114 (5)
C20.0354 (7)0.0406 (7)0.0339 (6)0.0068 (5)0.0064 (5)0.0039 (5)
C40.0339 (6)0.0431 (7)0.0327 (6)0.0092 (5)0.0049 (5)0.0032 (5)
C50.0351 (7)0.0405 (7)0.0312 (6)0.0105 (5)0.0044 (5)0.0036 (5)
C60.0367 (7)0.0397 (7)0.0351 (7)0.0090 (5)0.0071 (5)0.0033 (5)
C70.0391 (7)0.0484 (8)0.0470 (8)0.0078 (6)0.0062 (6)0.0098 (6)
C80.0433 (8)0.0537 (9)0.0601 (10)0.0023 (7)0.0123 (7)0.0129 (7)
C90.0563 (9)0.0576 (9)0.0580 (10)0.0043 (7)0.0143 (7)0.0240 (8)
C110.0428 (7)0.0399 (7)0.0351 (7)0.0103 (5)0.0071 (5)0.0056 (5)
C120.0416 (7)0.0430 (7)0.0338 (6)0.0125 (6)0.0028 (5)0.0029 (5)
C140.0451 (8)0.0644 (10)0.0483 (8)0.0177 (7)0.0070 (7)0.0100 (7)
C150.0373 (8)0.0648 (10)0.0515 (9)0.0111 (7)0.0017 (6)0.0001 (7)
C160.0380 (7)0.0548 (8)0.0419 (7)0.0089 (6)0.0046 (6)0.0028 (6)
C170.0359 (7)0.0444 (7)0.0331 (6)0.0109 (5)0.0041 (5)0.0004 (5)
C180.0319 (6)0.0381 (6)0.0333 (6)0.0071 (5)0.0036 (5)0.0088 (5)
C190.0395 (7)0.0519 (8)0.0383 (7)0.0120 (6)0.0064 (5)0.0036 (6)
C200.0367 (7)0.0685 (10)0.0508 (9)0.0165 (7)0.0106 (6)0.0108 (7)
C210.0335 (7)0.0713 (10)0.0498 (9)0.0014 (7)0.0024 (6)0.0092 (7)
C220.0498 (9)0.0608 (9)0.0434 (8)0.0001 (7)0.0012 (6)0.0046 (7)
C230.0432 (7)0.0471 (7)0.0413 (7)0.0075 (6)0.0076 (6)0.0007 (6)
C240.0384 (7)0.0398 (7)0.0328 (6)0.0035 (5)0.0029 (5)0.0039 (5)
C250.0512 (8)0.0472 (8)0.0424 (7)0.0147 (6)0.0150 (6)0.0086 (6)
C260.0563 (9)0.0503 (8)0.0488 (8)0.0194 (7)0.0087 (7)0.0118 (7)
C270.0566 (9)0.0513 (8)0.0429 (8)0.0032 (7)0.0046 (7)0.0181 (7)
C280.0437 (8)0.0697 (10)0.0507 (9)0.0003 (7)0.0105 (7)0.0206 (8)
C290.0350 (7)0.0579 (9)0.0474 (8)0.0049 (6)0.0047 (6)0.0143 (7)
O1W0.0730 (9)0.0857 (10)0.0516 (8)0.0067 (7)0.0022 (6)0.0075 (6)
Geometric parameters (Å, º) top
F4—C271.358 (2)C18—C191.387 (2)
O1W—H1W0.96 (3)C19—C201.384 (2)
O1W—H2W0.92 (4)C20—C211.384 (2)
N1—C181.4386 (17)C21—C221.378 (2)
N1—C21.3821 (17)C22—C231.384 (2)
N1—C51.3883 (16)C24—C291.396 (2)
N3—C41.3716 (17)C24—C251.392 (2)
N3—C21.3164 (18)C25—C261.383 (2)
N10—C111.3516 (19)C26—C271.371 (2)
N10—C91.322 (2)C27—C281.369 (2)
N13—C121.3524 (19)C28—C291.378 (2)
N13—C141.325 (2)C7—H70.9500
C2—C241.4721 (18)C8—H80.9500
C4—C51.374 (2)C9—H90.9500
C4—C171.4353 (19)C14—H140.9500
C5—C61.4369 (19)C15—H150.9500
C6—C111.4201 (19)C16—H160.9500
C6—C71.407 (2)C19—H190.9500
C7—C81.365 (2)C20—H200.9500
C8—C91.388 (2)C21—H210.9500
C11—C121.465 (2)C22—H220.9500
C12—C171.408 (2)C23—H230.9500
C14—C151.392 (2)C25—H250.9500
C15—C161.367 (2)C26—H260.9500
C16—C171.401 (2)C28—H280.9500
C18—C231.3787 (19)C29—H290.9500
H1W—O1W—H2W102 (3)C18—C23—C22118.99 (14)
C2—N1—C18126.14 (10)C2—C24—C25123.33 (13)
C5—N1—C18127.06 (11)C2—C24—C29117.98 (13)
C2—N1—C5106.32 (11)C25—C24—C29118.63 (13)
C2—N3—C4104.84 (11)C24—C25—C26120.54 (15)
C9—N10—C11117.97 (14)C25—C26—C27118.54 (16)
C12—N13—C14118.04 (13)F4—C27—C26118.50 (15)
N1—C2—N3112.21 (11)C26—C27—C28123.04 (15)
N1—C2—C24125.07 (12)F4—C27—C28118.46 (15)
N3—C2—C24122.72 (12)C27—C28—C29117.95 (15)
N3—C4—C5111.71 (11)C24—C29—C28121.30 (14)
N3—C4—C17126.82 (12)C8—C7—H7120.00
C5—C4—C17121.46 (12)C6—C7—H7120.00
N1—C5—C6131.96 (13)C9—C8—H8121.00
C4—C5—C6123.11 (12)C7—C8—H8121.00
N1—C5—C4104.91 (11)N10—C9—H9118.00
C5—C6—C11116.29 (12)C8—C9—H9118.00
C7—C6—C11117.27 (12)N13—C14—H14118.00
C5—C6—C7126.43 (13)C15—C14—H14118.00
C6—C7—C8119.59 (14)C16—C15—H15121.00
C7—C8—C9118.83 (16)C14—C15—H15121.00
N10—C9—C8124.07 (16)C15—C16—H16121.00
N10—C11—C12116.99 (12)C17—C16—H16121.00
C6—C11—C12120.77 (12)C20—C19—H19121.00
N10—C11—C6122.22 (13)C18—C19—H19121.00
N13—C12—C11117.77 (12)C19—C20—H20120.00
C11—C12—C17120.63 (12)C21—C20—H20120.00
N13—C12—C17121.60 (13)C22—C21—H21120.00
N13—C14—C15123.90 (15)C20—C21—H21120.00
C14—C15—C16118.82 (15)C21—C22—H22120.00
C15—C16—C17118.81 (14)C23—C22—H22120.00
C4—C17—C12117.64 (13)C22—C23—H23121.00
C4—C17—C16123.59 (13)C18—C23—H23121.00
C12—C17—C16118.76 (13)C24—C25—H25120.00
N1—C18—C19119.61 (11)C26—C25—H25120.00
N1—C18—C23118.92 (12)C27—C26—H26121.00
C19—C18—C23121.47 (13)C25—C26—H26121.00
C18—C19—C20118.93 (13)C27—C28—H28121.00
C19—C20—C21119.92 (15)C29—C28—H28121.00
C20—C21—C22120.50 (15)C24—C29—H29119.00
C21—C22—C23120.18 (15)C28—C29—H29119.00
C5—N1—C2—N30.42 (15)C5—C6—C7—C8179.24 (14)
C5—N1—C2—C24179.84 (12)C11—C6—C7—C81.8 (2)
C18—N1—C2—N3172.89 (12)C5—C6—C11—N10178.39 (13)
C18—N1—C2—C247.7 (2)C5—C6—C11—C122.95 (19)
C2—N1—C5—C40.35 (14)C7—C6—C11—N102.6 (2)
C2—N1—C5—C6178.18 (14)C7—C6—C11—C12176.11 (13)
C18—N1—C5—C4172.74 (12)C6—C7—C8—C90.0 (2)
C18—N1—C5—C65.8 (2)C7—C8—C9—N101.4 (3)
C2—N1—C18—C19107.55 (15)N10—C11—C12—N130.22 (19)
C2—N1—C18—C2372.48 (17)N10—C11—C12—C17179.47 (13)
C5—N1—C18—C1981.51 (17)C6—C11—C12—N13178.51 (13)
C5—N1—C18—C2398.46 (16)C6—C11—C12—C170.7 (2)
C4—N3—C2—N10.29 (15)N13—C12—C17—C4179.27 (13)
C4—N3—C2—C24179.73 (12)N13—C12—C17—C161.9 (2)
C2—N3—C4—C50.05 (14)C11—C12—C17—C41.5 (2)
C2—N3—C4—C17179.34 (13)C11—C12—C17—C16177.36 (13)
C11—N10—C9—C80.8 (2)N13—C14—C15—C161.5 (3)
C9—N10—C11—C61.3 (2)C14—C15—C16—C172.1 (2)
C9—N10—C11—C12177.42 (14)C15—C16—C17—C4178.24 (14)
C14—N13—C12—C11176.69 (13)C15—C16—C17—C120.6 (2)
C14—N13—C12—C172.6 (2)N1—C18—C19—C20179.50 (13)
C12—N13—C14—C150.9 (2)C23—C18—C19—C200.5 (2)
N1—C2—C24—C2533.4 (2)N1—C18—C23—C22179.07 (13)
N1—C2—C24—C29149.58 (14)C19—C18—C23—C221.0 (2)
N3—C2—C24—C25146.01 (14)C18—C19—C20—C210.3 (2)
N3—C2—C24—C2931.05 (19)C19—C20—C21—C220.6 (3)
N3—C4—C5—N10.20 (15)C20—C21—C22—C230.2 (3)
N3—C4—C5—C6178.50 (12)C21—C22—C23—C180.6 (2)
C17—C4—C5—N1179.62 (12)C2—C24—C25—C26176.81 (13)
C17—C4—C5—C60.9 (2)C29—C24—C25—C260.2 (2)
N3—C4—C17—C12179.23 (13)C2—C24—C29—C28177.09 (14)
N3—C4—C17—C162.0 (2)C25—C24—C29—C280.1 (2)
C5—C4—C17—C121.4 (2)C24—C25—C26—C270.4 (2)
C5—C4—C17—C16177.37 (14)C25—C26—C27—F4178.94 (14)
N1—C5—C6—C72.4 (2)C25—C26—C27—C280.5 (2)
N1—C5—C6—C11178.60 (13)F4—C27—C28—C29179.07 (15)
C4—C5—C6—C7175.86 (14)C26—C27—C28—C290.3 (3)
C4—C5—C6—C113.10 (19)C27—C28—C29—C240.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N10i0.96 (3)2.62 (3)3.282 (2)127 (2)
O1W—H1W···N13i0.96 (3)1.97 (3)2.902 (2)163 (3)
O1W—H2W···F4ii0.92 (4)2.41 (3)3.159 (2)139 (3)
C9—H9···F4iii0.952.493.248 (2)136
C14—H14···O1Wiv0.952.563.510 (2)176
C19—H19···N3v0.952.613.5209 (19)162
Symmetry codes: (i) x1, y, z+1; (ii) x1, y+1, z; (iii) x, y+1, z1; (iv) x+2, y+1, z; (v) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC25H15FN4·H2O
Mr408.43
Crystal system, space groupTriclinic, P1
Temperature (K)170
a, b, c (Å)9.0103 (10), 10.0946 (9), 11.3994 (9)
α, β, γ (°)86.987 (7), 75.950 (8), 82.396 (8)
V3)996.75 (17)
Z2
Radiation typeCu Kα
µ (mm1)0.75
Crystal size (mm)0.34 × 0.25 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.784, 0.864
No. of measured, independent and
observed [I > 2σ(I)] reflections
6315, 3765, 3382
Rint0.013
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.122, 1.04
No. of reflections3765
No. of parameters288
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N10i0.96 (3)2.62 (3)3.282 (2)127 (2)
O1W—H1W···N13i0.96 (3)1.97 (3)2.902 (2)163 (3)
O1W—H2W···F4ii0.92 (4)2.41 (3)3.159 (2)139 (3)
C9—H9···F4iii0.952.493.248 (2)136
C14—H14···O1Wiv0.952.563.510 (2)176
C19—H19···N3v0.952.613.5209 (19)162
Symmetry codes: (i) x1, y, z+1; (ii) x1, y+1, z; (iii) x, y+1, z1; (iv) x+2, y+1, z; (v) x+2, y, z.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationBian, Z. Q., Wang, K. Z. & Jin, L. P. (2002). Polyhedron, 21, 313–319.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLiu, Q. D., Jia, W. L. & Wang, S. N. (2005). Inorg. Chem. 44, 1332–1343.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRosepriya, S., Thiruvalluvar, A., Jayabharathi, J., Venkatesh Perumal, M., Butcher, R. J., Jasinski, J. P. & Golen, J. A. (2011). Acta Cryst. E67, o989.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds