

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ferrocenylphosphonic acid

Bao-Zhang Yang,^a Chao Xu,^a Tai-Ke Duan,^a Qun Chen^b and Qian-Feng Zhang^{a,b}*

^aInstitute of Molecular Engineering and Applied Chemsitry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China, and ^bDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China Correspondence e-mail: zhangqf@ahut.edu.cn

Received 10 June 2011; accepted 7 July 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; R factor = 0.040; wR factor = 0.098; data-to-parameter ratio = 18.4.

In the title compound, $[Fe(C_5H_5)(C_5H_6O_3P)]$, the phosphate group is bonded to the ferrocene unit with a P–C bond length of 1.749 (3) Å. In the crystal, six ferrocenylphosphonic acid molecules are connected by 12 strong intermolecular O– H···O hydrogen bonds, leading to the formation of a highly distorted octahedral cage. The volume of the octahedral cage is about 270 Å³.

Related literature

For background to ferrocenylphosphonates and ferrocenyl derivatives, see: Alley & Henderson (2001); Henderson & Alley (2001); Oms *et al.* (2004*a*,*b*, 2005).

Mo $K\alpha$ radiation $\mu = 1.49 \text{ mm}^{-1}$ T = 296 K

 $0.20 \times 0.16 \times 0.11 \text{ mm}$

Z = 18

Experimental

Crystal data

$[Fe(C_5H_5)(C_5H_6O_3P)]$	
$M_r = 266.01$	
Trigonal, R3	
a = 19.7329 (9) Å	
c = 14.7338 (4) Å	
$V = 4968.5 (5) \text{ Å}^3$	

Data collection

Bruker APEX CCD diffractometer	26557 measured reflections
Absorption correction: multi-scan	2500 independent reflections
(SADABS; Sheldrick, 1996)	1956 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.755, T_{\max} = 0.853$	$R_{\rm int} = 0.044$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ 136 parameters $wR(F^2) = 0.098$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.65$ e Å $^{-3}$ 2500 reflections $\Delta \rho_{min} = -0.51$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2\cdots O1^i$	0.82	1.76	2.559 (3)	165
$O3-H3\cdots O1^{ii}$	0.82	1.79	2.557 (3)	154
			2	

Symmetry codes: (i) -x + y + 1, -x + 1, z; (ii) $y + \frac{1}{3}$, $-x + y + \frac{2}{3}$, $-z - \frac{1}{3}$.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Program for New Century Excellent Talents in Universities of China (NCET-08–0618).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2442).

References

Alley, S. R. & Henderson, W. (2001). J. Organomet. Chem. 637, 216-229.

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Henderson, W. & Alley, S. R. (2001). Inorg. Chim. Acta, 322, 106-112.
- Oms, O., Le Bideau, J., Leroux, F., van der Lee, A., Leclercq, D. & Vioux, A. (2004a). J. Am. Chem. Soc. 126, 12090–12096.
- Oms, O., Maurel, F., Carré, F., Le Bideau, J., Vioux, A. & Leclercq, D. (2004b). J. Organomet. Chem. 689, 2654–2661.
- Oms, O., van der Lee, A., Le Bideau, J. & Leclercq, D. (2005). *Dalton Trans.* pp. 1903–1909.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, m1087 [doi:10.1107/S1600536811027206]

Ferrocenylphosphonic acid

Bao-Zhang Yang, Chao Xu, Tai-Ke Duan, Qun Chen and Qian-Feng Zhang

S1. Comment

Ferrocene and ferrocenyl derivatives are well known for their redox activities and immobilization behaviors with metal ions (Alley & Henderson, 2001; Oms *et al.*, 2004*a*). Ferrocenylphosphonates are ideal building block candidates for incorporation with transition metal ions due to the strong coordination behavior of P=O groups and the high stability of the formed P-O-M (M = metal ion) bonds (Henderson & Alley, 2001; Oms *et al.*, 2005). However, only a few metal ferrocenylphosphonate compounds have been reported from related literature, probably due to the low yield of ferrocenylphosphonic acid in its synthesis (Oms *et al.*, 2004*b*). In this paper, we reported the preparation of the crystalline ferrocenylphosphonic acid in a relatively high yield and its crystal structure.

The molecular structure of the title compound is depicted in Fig. 1. The Fe atom lies between two cyclopentadiene (Cp) planes, with an average Fe—Cp(centroid) of 1.649 (2) Å. The [PO(OH)₂] group is bonded to the ferrocene molecule *via* a P—C bond with a bond length of 1.749 (3) Å. The average bond length of P—O [1.543 (2) Å] is obviously longer than that of P=O [1.498 (2) Å]. The P atom is located in a slightly distorted tetrahedral environment, with the O—P—O and C —P—O bond angles in the ranges of 110.01 (13)–112.81 (13)° and 104.65 (13)—112.69 (13)°, respectively. The bond lengths and angles in the title compound are similar to those found in [FcCH₂P(O)(OH)₂] [Fc = (η^5 -C₃H₄)Fe(η^5 -C₃H₅)] (Oms *et al.*, 2004*b*). It is interesting to note that six ferrocenylphosphonic acid molecules are connected by twelve strong intermolecular O—H…O hydrogen bonds (Table 1), leading to the formation of a highly distorted octahedral cage, as shown in Fig. 2. The volume of the cavity of the octahedral cage is about 270 Å³. The crystal packing is stabilized by these intermolecular hydrogen-bonding interactions.

S2. Experimental

Ferrocenylphosphonic acid was prepared according to literature (Oms *et al.*, 2004*b*). All synthesis was taken in ovendried glassware under a nitrogen atmosphere using standard Schlenk techniques. Me₃SiBr (4.5 g, 30 mmol) was dropwise added to a solution of diethyl ferrocenylphosphonate (3.18 g, 10 mmol) in 20 ml CH₂Cl₂ at room temperature. After the mixture was stirred for 12 h, the solvent was removed under low pressure and the oil residues was dissolved in 20 ml MeCN and then treated with 5 ml H₂O to precipitate the title compound. The precipitate was collected and washed with CH₂Cl₂ and Et₂O (yield: 2.05 g, 80%). Single crystals suitable for X-ray analysis were obtained by recrystallization from methanol/Et₂O. Analysis, calculated, for C₁₀H₁₁FeO₃P: C 45.1, H 4.16%; found: C 45.0, H 4.04%.

S3. Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 and O—H = 0.82 Å and with $U_{iso}(H) = 1.2(1.5 \text{ for hydroxyl})U_{eq}(C,O)$.

Figure 1

Molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level.

Figure 2

Six ferrocenylphosphonic acid molecules are connected by intermolecular O—H…O hydrogen bonds (dashed lines), forming a distorted octahedral cage. [Symmetry codes: (i) 1/3+y, 2/3-x+y, -1/3-z; (ii) 1/3+x-y, -1/3+x, -1/3-z; (iii) 3/4-x, 2/3-y, -1/3-z; (iv) 1-y, x-y, z; (v) 1-x+y, 1-x, z.]

Ferrocenylphosphonic acid

$D_{\rm x} = 1.600 {\rm ~Mg} {\rm ~m}^{-3}$
Mo K α radiation, $\lambda = 0.71073$ Å
Cell parameters from 5069 reflections
$\theta = 2.8 - 22.9^{\circ}$
$\mu = 1.49 \text{ mm}^{-1}$
T = 296 K
Block, red
$0.20 \times 0.16 \times 0.11 \text{ mm}$
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.755, T_{\rm max} = 0.853$
26557 measured reflections
2500 independent reflections

$h = -25 \rightarrow 25$
$k = -25 \rightarrow 25$
$l = -19 \rightarrow 19$
Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.041P)^2 + 9.0107P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.65 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Fe1	0.62280 (2)	0.51797 (2)	0.15180 (3)	0.05726 (16)
P1	0.69358 (4)	0.48371 (4)	-0.03885 (4)	0.04430 (18)
01	0.61726 (12)	0.41531 (10)	-0.06806 (12)	0.0603 (5)
O2	0.74425 (14)	0.45939 (14)	0.01591 (14)	0.0750 (7)
H2	0.7540	0.4309	-0.0152	0.113*
03	0.73972 (13)	0.53301 (11)	-0.12206 (14)	0.0659 (6)
Н3	0.7485	0.5058	-0.1567	0.099*
C1	0.68160 (15)	0.54767 (14)	0.03269 (19)	0.0503 (6)
C2	0.73203 (19)	0.59400 (17)	0.1052 (2)	0.0733 (9)
H2A	0.7784	0.5961	0.1224	0.088*
C3	0.6995 (3)	0.6354 (2)	0.1457 (3)	0.1043 (17)
H3A	0.7200	0.6690	0.1952	0.125*
C4	0.6307 (3)	0.6176 (2)	0.0989 (3)	0.1058 (17)
H4	0.5984	0.6381	0.1118	0.127*
C5	0.6182 (2)	0.5633 (2)	0.0289 (3)	0.0745 (9)
Н5	0.5766	0.5418	-0.0118	0.089*
C6	0.6355 (3)	0.4572 (3)	0.2550 (3)	0.0955 (12)
H6	0.6831	0.4657	0.2776	0.115*
C7	0.5957 (4)	0.4929 (3)	0.2849 (3)	0.121 (2)
H7	0.6112	0.5296	0.3314	0.145*
C8	0.5269 (3)	0.4645 (3)	0.2330 (4)	0.120 (2)
H8	0.4888	0.4788	0.2387	0.144*
C9	0.5268 (2)	0.4100 (2)	0.1706 (3)	0.0803 (10)
Н9	0.4887	0.3818	0.1273	0.096*
C10	0.5939 (2)	0.40671 (18)	0.1861 (2)	0.0677 (8)
H10	0.6086	0.3752	0.1548	0.081*

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U ³³	U^{12}	U^{13}	<i>U</i> ²³
Fe1	0.0606 (3)	0.0423 (2)	0.0670 (3)	0.02441 (19)	0.0177 (2)	-0.00354 (18)

P1	0.0532 (4)	0.0378 (3)	0.0442 (4)	0.0245 (3)	-0.0017 (3)	-0.0026 (3)
01	0.0731 (13)	0.0404 (10)	0.0487 (10)	0.0143 (9)	-0.0092 (9)	-0.0005 (8)
O2	0.1037 (17)	0.1009 (17)	0.0606 (12)	0.0813 (15)	-0.0152 (12)	-0.0171 (12)
O3	0.0780 (14)	0.0469 (11)	0.0628 (12)	0.0238 (10)	0.0178 (10)	0.0001 (9)
C1	0.0497 (14)	0.0372 (13)	0.0620 (16)	0.0202 (11)	0.0101 (12)	0.0008 (11)
C2	0.0607 (18)	0.0508 (17)	0.081 (2)	0.0074 (14)	0.0152 (16)	-0.0202 (15)
C3	0.118 (3)	0.0473 (19)	0.119 (3)	0.020 (2)	0.057 (3)	-0.019 (2)
C4	0.138 (4)	0.061 (2)	0.146 (4)	0.070 (3)	0.084 (3)	0.035 (2)
C5	0.079 (2)	0.068 (2)	0.096 (2)	0.0522 (18)	0.0258 (19)	0.0260 (18)
C6	0.107 (3)	0.098 (3)	0.065 (2)	0.039 (3)	-0.011 (2)	0.005 (2)
C7	0.180 (6)	0.080 (3)	0.076 (3)	0.045 (3)	0.052 (3)	-0.007 (2)
C8	0.120 (4)	0.098 (3)	0.173 (5)	0.076 (3)	0.103 (4)	0.068 (3)
C9	0.060(2)	0.0574 (19)	0.103 (3)	0.0144 (16)	0.0086 (18)	0.0191 (19)
C10	0.092 (2)	0.0541 (17)	0.0598 (18)	0.0391 (17)	0.0121 (17)	0.0068 (14)

Geometric parameters (Å, °)

Fe1—C1	2.022 (3)	C2—C3	1.400 (5)	
Fe1—C7	2.028 (4)	C2—H2A	0.9300	
Fe1—C6	2.028 (4)	C3—C4	1.401 (7)	
Fe1—C8	2.032 (4)	С3—НЗА	0.9300	
Fe1—C2	2.033 (3)	C4—C5	1.417 (6)	
Fe1—C10	2.037 (3)	C4—H4	0.9300	
Fe1—C3	2.040 (4)	С5—Н5	0.9300	
Fe1—C9	2.041 (3)	C6—C7	1.366 (7)	
Fe1—C5	2.042 (4)	C6—C10	1.371 (5)	
Fe1—C4	2.046 (4)	С6—Н6	0.9300	
P1-01	1.4975 (19)	С7—С8	1.407 (7)	
P1	1.537 (2)	С7—Н7	0.9300	
P1O3	1.547 (2)	C8—C9	1.414 (6)	
P1-C1	1.749 (3)	C8—H8	0.9300	
O2—H2	0.8200	C9—C10	1.377 (5)	
O3—H3	0.8200	С9—Н9	0.9300	
C1—C5	1.432 (4)	C10—H10	0.9300	
C1—C2	1.435 (4)			
C1—Fe1—C7	162.4 (2)	C2—C1—Fe1	69.69 (17)	
C1—Fe1—C6	126.80 (16)	P1—C1—Fe1	125.37 (14)	
C7—Fe1—C6	39.4 (2)	C3—C2—C1	108.4 (4)	
C1—Fe1—C8	155.8 (2)	C3—C2—Fe1	70.2 (2)	
C7—Fe1—C8	40.5 (2)	C1—C2—Fe1	68.87 (16)	
C6—Fe1—C8	67.0 (2)	C3—C2—H2A	125.8	
C1—Fe1—C2	41.44 (12)	C1—C2—H2A	125.8	
C7—Fe1—C2	124.0 (2)	Fe1—C2—H2A	126.7	
C6—Fe1—C2	106.88 (18)	C2—C3—C4	108.2 (4)	
C8—Fe1—C2	161.9 (2)	C2—C3—Fe1	69.62 (18)	
C1—Fe1—C10	109.79 (11)	C4—C3—Fe1	70.2 (2)	
C7—Fe1—C10	66.42 (16)	С2—С3—НЗА	125.9	

C6—Fe1—C10	39.41 (15)	С4—С3—Н3А	125.9
C8—Fe1—C10	66.91 (15)	Fe1—C3—H3A	125.9
C2—Fe1—C10	120.09 (15)	C3—C4—C5	109.3 (3)
C1—Fe1—C3	68.93 (13)	C3—C4—Fe1	69.7 (2)
C7—Fe1—C3	105.94 (19)	C5—C4—Fe1	69.55 (18)
C6—Fe1—C3	117.6 (2)	C3—C4—H4	125.4
C8—Fe1—C3	125.81 (19)	С5—С4—Н4	125.4
C2—Fe1—C3	40.21 (14)	Fe1—C4—H4	126.9
C10—Fe1—C3	152.2 (2)	C4—C5—C1	107.0 (4)
C1—Fe1—C9	121.25 (14)	C4—C5—Fe1	69.9 (2)
C7—Fe1—C9	67.7 (2)	C1—C5—Fe1	68.65 (17)
C6—Fe1—C9	66.79 (17)	С4—С5—Н5	126.5
C8—Fe1—C9	40.61 (19)	C1—C5—H5	126.5
C2—Fe1—C9	154.70 (15)	Fe1—C5—H5	126.5
C10—Fe1—C9	39.46 (15)	C7—C6—C10	108.9 (4)
C3—Fe1—C9	164.92 (17)	C7—C6—Fe1	70.3 (3)
C1—Fe1—C5	41.25 (12)	C10-C6-Fe1	70.6 (2)
C7—Fe1—C5	154.2 (2)	С7—С6—Н6	125.6
C6—Fe1—C5	165.83 (17)	С10—С6—Н6	125.6
C8—Fe1—C5	121.1 (2)	Fe1—C6—H6	125.1
C2—Fe1—C5	68.93 (15)	C6—C7—C8	107.9 (4)
C10—Fe1—C5	129.96 (14)	C6—C7—Fe1	70.3 (2)
C3—Fe1—C5	68.53 (19)	C8—C7—Fe1	69.9 (3)
C9—Fe1—C5	110.85 (16)	С6—С7—Н7	126.0
C1—Fe1—C4	68.53 (12)	С8—С7—Н7	126.0
C7—Fe1—C4	119.1 (2)	Fe1—C7—H7	125.3
C6—Fe1—C4	151.7 (2)	C7—C8—C9	106.9 (4)
C8—Fe1—C4	109.11 (17)	C7—C8—Fe1	69.6 (2)
C2—Fe1—C4	67.60 (18)	C9—C8—Fe1	70.0 (2)
C10—Fe1—C4	167.3 (2)	С7—С8—Н8	126.5
C3—Fe1—C4	40.11 (19)	С9—С8—Н8	126.5
C9—Fe1—C4	129.7 (2)	Fe1—C8—H8	125.5
C5—Fe1—C4	40.57 (17)	С10—С9—С8	107.0 (4)
O1—P1—O2	112.81 (13)	C10-C9-Fe1	70.09 (19)
O1—P1—O3	110.46 (11)	C8—C9—Fe1	69.4 (2)
O2—P1—O3	110.01 (13)	С10—С9—Н9	126.5
O1—P1—C1	112.69 (13)	С8—С9—Н9	126.5
O2—P1—C1	104.65 (13)	Fe1—C9—H9	125.6
O3—P1—C1	105.86 (12)	C6—C10—C9	109.2 (4)
Р1—О2—Н2	109.5	C6-C10-Fe1	70.0 (2)
Р1—О3—Н3	109.5	C9-C10-Fe1	70.44 (19)
C5—C1—C2	107.1 (3)	C6—C10—H10	125.4
C5—C1—P1	125.4 (2)	С9—С10—Н10	125.4
C2—C1—P1	127.4 (2)	Fe1—C10—H10	125.8
C5—C1—Fe1	70.10 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
02—H2…O1 ⁱ	0.82	1.76	2.559 (3)	165
O3—H3…O1 ⁱⁱ	0.82	1.79	2.557 (3)	154

Symmetry codes: (i) -x+y+1, -x+1, z; (ii) y+1/3, -x+y+2/3, -z-1/3.