metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­­[4-(4H-1,2,4-triazol-4-yl)benzoato-κN1]manganese(II) deca­hydrate

aDepartment of Laboratory and Equipment Management, Yanbian University, Yanbian 133002, People's Republic of China
*Correspondence e-mail: zyxuan2011@163.com

(Received 21 June 2011; accepted 28 June 2011; online 9 July 2011)

In the title compound, [Mn(C9H6N3O2)2(H2O)4]·10H2O, the MnII ion is coordinated by two N atoms from two 4-(4H-1,2,4-triazol-4-yl)benzoate ligands and four water mol­ecules in a distorted octa­hedral geometry. The MnII ion and two coordinated water mol­ecules lie on a twofold rotation axis. The water mol­ecules are involved in O—H⋯N and O—H⋯O hydrogen bonds with the triazole N atoms and carboxyl­ate O atoms, yielding a three-dimensional supra­molecular network. ππ inter­actions between the benzene rings [centroid–centroid distance = 3.836 (9) Å] are observed.

Related literature

For general background to the applications of coordination polymers, see: Guo et al. (2009[Guo, H.-D., Guo, X.-M., Batten, S. R., Song, J.-F., Song, S.-Y., Dang, S., Zheng, G.-L., Tang, J.-K. & Zhang, H.-J. (2009). Cryst. Growth Des. 9, 2098-2109.]); Wang et al. (2009[Wang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. E65, m1568-m1569.]); Zang et al. (2006[Zang, S.-Q., Su, Y., Li, Y.-Z., Ni, Z.-P. & Meng, Q.-J. (2006). Inorg. Chem. 44, 7122-7129.]). For a related structure, see: Wang (2011[Wang, X.-H. (2011). Acta Cryst. E67, m423-m424.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C9H6N3O2)2(H2O)4]·10H2O

  • Mr = 683.50

  • Monoclinic, C 2/c

  • a = 25.9966 (13) Å

  • b = 7.9393 (4) Å

  • c = 16.8495 (9) Å

  • β = 112.214 (1)°

  • V = 3219.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 76 K

  • 0.28 × 0.23 × 0.20 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.85, Tmax = 0.91

  • 8592 measured reflections

  • 3189 independent reflections

  • 2760 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.073

  • S = 0.99

  • 3189 reflections

  • 238 parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O4W 0.82 (2) 1.94 (2) 2.7602 (17) 171 (2)
O1W—H1B⋯O5W 0.85 (2) 1.83 (2) 2.6724 (16) 169 (2)
O2W—H2A⋯O1i 0.84 (1) 1.87 (1) 2.6936 (15) 164 (2)
O3W—H3A⋯O1ii 0.85 (2) 1.91 (2) 2.7445 (15) 166 (2)
O4W—H4A⋯O2iii 0.85 (2) 1.95 (2) 2.7985 (15) 176 (2)
O4W—H4B⋯N2iv 0.82 (2) 2.17 (2) 2.9369 (17) 154 (2)
O5W—H5A⋯O2v 0.85 (2) 1.83 (2) 2.6765 (16) 171 (2)
O5W—H5B⋯O8Wii 0.83 (2) 1.90 (2) 2.7299 (18) 172 (2)
O6W—H6A⋯O7Wvi 0.86 (2) 1.89 (2) 2.754 (2) 177 (2)
O6W—H6B⋯O5Wii 0.83 (2) 1.95 (2) 2.7828 (18) 173 (2)
O7W—H7A⋯O6W 0.84 (2) 1.89 (2) 2.7256 (19) 171 (2)
O7W—H7B⋯O8Wvi 0.83 (2) 1.94 (2) 2.7605 (18) 171 (2)
O8W—H8A⋯O1 0.84 (2) 1.92 (2) 2.7564 (16) 173 (2)
O8W—H8B⋯O4Wi 0.86 (2) 1.91 (2) 2.7616 (17) 172 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+1, z-{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of novel coordination polymers is the current interest in the field of supramolecular chemistry and crystal engineering, not only for their interesting topologies and crystal packing motifs but also for their potential applications as functional materials (Wang et al., 2009; Zang et al., 2006). As an important family of multidentate O-donor ligands, organic aromatic carboxylate ligands have been extensively employed in the preparation of metal-organic complexes (Guo et al., 2009). In this paper, we selected 4-(1,2,4-triazol-4-yl)benzoic acid as an organic carboxylate ligand, generating the title compound, which is reported here.

In the title compound, the MnII ions lies on a twofold rotation axis and is approximately octahedrally coordinated by two N atoms from two 4-(1,2,4-triazol-4-yl)benzoate ligands and four water molecules, two of which lie on the twofold rotation axis (Fig. 1). The Mn—N and Mn—O bond lengths and the O—Mn—O and N—Mn—O bond angles are comparable to those found in the other crystallographically characterized Mn(II) complexes (Wang, 2011). The water molecules are involved in O—H···N and O—H···O hydrogen bonds with the triazole N atoms and carboxylate O atoms (Table 1), yielding a three-dimensional supramolecular network (Fig. 2). ππ interactions between the benzene rings [centroid–centroid distance = 3.836 (9) Å] are observed.

Related literature top

For general background to the applications of coordination polymers, see: Guo et al. (2009); Wang et al. (2009); Zang et al. (2006). For a related structure, see: Wang (2011).

Experimental top

The synthesis was performed under hydrothermal conditions. A mixture of Mn(CH3COO)2.4H2O (0.2 mmol, 0.049 g), 4-(1,2,4-triazol-4-yl)benzoic acid (0.4 mmol, 0.075 g), NaOH (0.4 mmol, 0.016 g) and H2O (15 ml) in a 25 ml stainless steel reactor with a Teflon liner was heated from 293 to 443 K in 2 h and a constant temperature was maintained at 443 K for 72 h. After the mixture was cooled to 298 K, purple crystals of the title compound were obtained from the reaction.

Refinement top

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). H atoms of water molecules were located in a difference Fourier map and refined with an O—H distance restraint of 0.85 (2) Å and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x, y, 3/2-z.]
[Figure 2] Fig. 2. View of the three-dimensional network of the title compound, built by hydrogen bonds (dashed lines).
Tetraaquabis[4-(4H-1,2,4-triazol-4-yl)benzoato- κN1]manganese(II) decahydrate top
Crystal data top
[Mn(C9H6N3O2)2(H2O)4]·10H2OF(000) = 1436
Mr = 683.50Dx = 1.410 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3198 reflections
a = 25.9966 (13) Åθ = 1.0–26.1°
b = 7.9393 (4) ŵ = 0.49 mm1
c = 16.8495 (9) ÅT = 76 K
β = 112.214 (1)°Block, purple
V = 3219.5 (3) Å30.28 × 0.23 × 0.20 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
3189 independent reflections
Radiation source: fine-focus sealed tube2760 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 26.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1932
Tmin = 0.85, Tmax = 0.91k = 89
8592 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.036P)2 + 1.9266P]
where P = (Fo2 + 2Fc2)/3
3189 reflections(Δ/σ)max = 0.008
238 parametersΔρmax = 0.27 e Å3
14 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Mn(C9H6N3O2)2(H2O)4]·10H2OV = 3219.5 (3) Å3
Mr = 683.50Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.9966 (13) ŵ = 0.49 mm1
b = 7.9393 (4) ÅT = 76 K
c = 16.8495 (9) Å0.28 × 0.23 × 0.20 mm
β = 112.214 (1)°
Data collection top
Bruker APEX CCD
diffractometer
3189 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2760 reflections with I > 2σ(I)
Tmin = 0.85, Tmax = 0.91Rint = 0.023
8592 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02914 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.27 e Å3
3189 reflectionsΔρmin = 0.22 e Å3
238 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12836 (6)0.4382 (2)0.87216 (9)0.0226 (3)
H10.13680.46740.82370.027*
C20.13557 (6)0.3880 (2)1.00119 (10)0.0263 (4)
H20.15040.37521.06170.032*
C30.22362 (6)0.48018 (19)0.98458 (9)0.0195 (3)
C40.24336 (6)0.5736 (2)0.93267 (9)0.0229 (3)
H40.21900.60710.87700.027*
C50.29901 (6)0.6175 (2)0.96291 (10)0.0232 (3)
H50.31290.68010.92720.028*
C60.33496 (6)0.57157 (18)1.04481 (9)0.0200 (3)
C70.31413 (6)0.47742 (19)1.09554 (9)0.0229 (3)
H70.33830.44511.15150.027*
C80.25869 (6)0.42984 (19)1.06575 (10)0.0231 (3)
H80.24500.36381.10050.028*
C90.39483 (6)0.62809 (19)1.07889 (10)0.0210 (3)
N10.07926 (5)0.39357 (16)0.86873 (8)0.0218 (3)
N20.08381 (5)0.36106 (18)0.95205 (8)0.0266 (3)
N30.16569 (5)0.43720 (16)0.95412 (8)0.0203 (3)
O10.42246 (4)0.60776 (13)1.15861 (7)0.0245 (2)
O20.41384 (4)0.69525 (16)1.02887 (7)0.0324 (3)
Mn10.00000.39602 (4)0.75000.01689 (10)
O1W0.05118 (5)0.41965 (15)0.67562 (7)0.0284 (3)
H1A0.0417 (8)0.493 (2)0.6382 (11)0.043*
H1B0.0664 (8)0.341 (2)0.6578 (12)0.043*
O2W0.00000.6681 (2)0.75000.0256 (3)
H2A0.0229 (7)0.732 (2)0.7865 (11)0.038*
O3W0.00000.1260 (2)0.75000.0381 (4)
H3A0.0248 (8)0.065 (3)0.7856 (12)0.057*
O4W0.02208 (5)0.69006 (15)0.56446 (7)0.0278 (3)
H4A0.0110 (6)0.724 (2)0.5514 (12)0.042*
H4B0.0298 (8)0.688 (3)0.5212 (11)0.042*
O5W0.10937 (5)0.17426 (16)0.63970 (8)0.0301 (3)
H5A0.1048 (8)0.174 (3)0.5870 (10)0.045*
H5B0.1054 (9)0.075 (2)0.6528 (13)0.045*
O6W0.29468 (5)0.16683 (18)1.25059 (9)0.0427 (3)
H6A0.2976 (10)0.062 (2)1.2643 (15)0.064*
H6B0.3218 (8)0.217 (3)1.2862 (13)0.064*
O7W0.19555 (5)0.32849 (17)1.21048 (8)0.0363 (3)
H7A0.2252 (7)0.272 (3)1.2263 (14)0.054*
H7B0.1697 (8)0.268 (3)1.2113 (14)0.054*
O8W0.39715 (5)0.64318 (16)1.30252 (8)0.0318 (3)
H8A0.4037 (8)0.640 (3)1.2571 (11)0.048*
H8B0.4240 (7)0.696 (3)1.3407 (12)0.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0166 (7)0.0320 (8)0.0177 (7)0.0016 (6)0.0046 (6)0.0000 (6)
C20.0190 (8)0.0397 (9)0.0194 (8)0.0045 (7)0.0061 (6)0.0039 (7)
C30.0131 (7)0.0232 (8)0.0205 (7)0.0022 (6)0.0043 (6)0.0030 (6)
C40.0179 (7)0.0326 (9)0.0153 (7)0.0009 (6)0.0030 (6)0.0011 (6)
C50.0192 (8)0.0307 (9)0.0202 (8)0.0038 (6)0.0081 (6)0.0007 (6)
C60.0163 (7)0.0214 (8)0.0213 (7)0.0010 (6)0.0059 (6)0.0036 (6)
C70.0181 (7)0.0271 (8)0.0187 (7)0.0005 (6)0.0015 (6)0.0020 (6)
C80.0197 (8)0.0272 (8)0.0208 (8)0.0035 (6)0.0059 (6)0.0049 (6)
C90.0171 (7)0.0219 (8)0.0232 (8)0.0008 (6)0.0065 (6)0.0032 (6)
N10.0169 (6)0.0286 (7)0.0188 (6)0.0017 (5)0.0055 (5)0.0004 (5)
N20.0180 (6)0.0403 (8)0.0199 (7)0.0037 (6)0.0054 (5)0.0032 (6)
N30.0145 (6)0.0272 (7)0.0174 (6)0.0024 (5)0.0040 (5)0.0001 (5)
O10.0164 (5)0.0294 (6)0.0218 (6)0.0021 (4)0.0005 (4)0.0002 (5)
O20.0201 (6)0.0497 (8)0.0257 (6)0.0113 (5)0.0070 (5)0.0001 (5)
Mn10.01246 (16)0.01903 (17)0.01757 (17)0.0000.00386 (12)0.000
O1W0.0300 (6)0.0310 (7)0.0296 (6)0.0080 (5)0.0173 (5)0.0054 (5)
O2W0.0204 (8)0.0201 (8)0.0269 (9)0.0000.0017 (7)0.000
O3W0.0310 (10)0.0205 (9)0.0420 (11)0.0000.0100 (8)0.000
O4W0.0209 (6)0.0408 (7)0.0226 (6)0.0057 (5)0.0092 (5)0.0024 (5)
O5W0.0345 (7)0.0308 (6)0.0286 (6)0.0019 (5)0.0161 (5)0.0011 (5)
O6W0.0335 (7)0.0381 (8)0.0489 (9)0.0018 (6)0.0070 (6)0.0009 (7)
O7W0.0291 (7)0.0362 (7)0.0402 (7)0.0020 (6)0.0092 (6)0.0045 (6)
O8W0.0277 (7)0.0374 (7)0.0319 (7)0.0053 (5)0.0131 (5)0.0047 (6)
Geometric parameters (Å, º) top
C1—N11.3049 (19)N1—N21.3877 (17)
C1—N31.3549 (19)Mn1—N12.2652 (12)
C1—H10.9500Mn1—O3W2.1438 (17)
C2—N21.304 (2)Mn1—O1W2.1534 (11)
C2—N31.365 (2)Mn1—O2W2.1598 (16)
C2—H20.9500O1W—H1A0.82 (2)
C3—C41.385 (2)O1W—H1B0.85 (2)
C3—C81.385 (2)O2W—H2A0.84 (1)
C3—N31.4363 (18)O3W—H3A0.85 (2)
C4—C51.384 (2)O4W—H4A0.85 (2)
C4—H40.9500O4W—H4B0.82 (2)
C5—C61.391 (2)O5W—H5A0.85 (2)
C5—H50.9500O5W—H5B0.83 (2)
C6—C71.390 (2)O6W—H6A0.86 (2)
C6—C91.509 (2)O6W—H6B0.83 (2)
C7—C81.387 (2)O7W—H7A0.84 (2)
C7—H70.9500O7W—H7B0.83 (2)
C8—H80.9500O8W—H8A0.84 (2)
C9—O21.2466 (18)O8W—H8B0.86 (2)
C9—O11.2715 (18)
N1—C1—N3110.81 (13)C2—N2—N1106.54 (12)
N1—C1—H1124.6C1—N3—C2104.28 (12)
N3—C1—H1124.6C1—N3—C3127.81 (12)
N2—C2—N3111.04 (14)C2—N3—C3127.91 (13)
N2—C2—H2124.5O3W—Mn1—O1W95.00 (3)
N3—C2—H2124.5O3W—Mn1—O1Wi95.00 (3)
C4—C3—C8121.02 (13)O1W—Mn1—O1Wi170.01 (7)
C4—C3—N3119.36 (13)O3W—Mn1—O2W180.000 (1)
C8—C3—N3119.61 (13)O1W—Mn1—O2W85.00 (3)
C5—C4—C3119.19 (14)O1Wi—Mn1—O2W85.00 (3)
C5—C4—H4120.4O3W—Mn1—N189.51 (3)
C3—C4—H4120.4O1W—Mn1—N187.64 (4)
C4—C5—C6121.04 (14)O1Wi—Mn1—N192.44 (4)
C4—C5—H5119.5O2W—Mn1—N190.49 (3)
C6—C5—H5119.5O3W—Mn1—N1i89.51 (3)
C7—C6—C5118.62 (13)O1W—Mn1—N1i92.44 (4)
C7—C6—C9120.75 (13)O1Wi—Mn1—N1i87.64 (4)
C5—C6—C9120.59 (13)O2W—Mn1—N1i90.49 (3)
C8—C7—C6121.12 (14)N1—Mn1—N1i179.02 (7)
C8—C7—H7119.4Mn1—O1W—H1A115.8 (14)
C6—C7—H7119.4Mn1—O1W—H1B127.7 (14)
C3—C8—C7118.98 (14)H1A—O1W—H1B107.0 (19)
C3—C8—H8120.5Mn1—O2W—H2A127.0 (13)
C7—C8—H8120.5Mn1—O3W—H3A125.0 (15)
O2—C9—O1123.96 (14)H4A—O4W—H4B109.8 (19)
O2—C9—C6119.03 (13)H5A—O5W—H5B107 (2)
O1—C9—C6116.98 (13)H6A—O6W—H6B108 (2)
C1—N1—N2107.33 (12)H7A—O7W—H7B110 (2)
C1—N1—Mn1125.78 (10)H8A—O8W—H8B108 (2)
N2—N1—Mn1126.61 (9)
C8—C3—C4—C50.3 (2)Mn1—N1—N2—C2174.12 (11)
N3—C3—C4—C5178.76 (14)N1—C1—N3—C20.07 (18)
C3—C4—C5—C61.0 (2)N1—C1—N3—C3179.24 (14)
C4—C5—C6—C71.2 (2)N2—C2—N3—C10.05 (18)
C4—C5—C6—C9176.69 (14)N2—C2—N3—C3179.26 (14)
C5—C6—C7—C80.1 (2)C4—C3—N3—C118.3 (2)
C9—C6—C7—C8177.78 (14)C8—C3—N3—C1162.65 (15)
C4—C3—C8—C71.3 (2)C4—C3—N3—C2160.86 (16)
N3—C3—C8—C7177.70 (14)C8—C3—N3—C218.2 (2)
C6—C7—C8—C31.2 (2)C1—N1—Mn1—O3W109.92 (13)
C7—C6—C9—O2171.81 (15)N2—N1—Mn1—O3W76.98 (12)
C5—C6—C9—O210.4 (2)C1—N1—Mn1—O1W14.90 (13)
C7—C6—C9—O110.1 (2)N2—N1—Mn1—O1W172.00 (12)
C5—C6—C9—O1167.71 (14)C1—N1—Mn1—O1Wi155.10 (13)
N3—C1—N1—N20.06 (18)N2—N1—Mn1—O1Wi18.00 (12)
N3—C1—N1—Mn1174.15 (10)C1—N1—Mn1—O2W70.08 (13)
N3—C2—N2—N10.02 (19)N2—N1—Mn1—O2W103.02 (12)
C1—N1—N2—C20.02 (17)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O4W0.82 (2)1.94 (2)2.7602 (17)171 (2)
O1W—H1B···O5W0.85 (2)1.83 (2)2.6724 (16)169 (2)
O2W—H2A···O1ii0.84 (1)1.87 (1)2.6936 (15)164 (2)
O3W—H3A···O1iii0.85 (2)1.91 (2)2.7445 (15)166 (2)
O4W—H4A···O2iv0.85 (2)1.95 (2)2.7985 (15)176 (2)
O4W—H4B···N2v0.82 (2)2.17 (2)2.9369 (17)154 (2)
O5W—H5A···O2vi0.85 (2)1.83 (2)2.6765 (16)171 (2)
O5W—H5B···O8Wiii0.83 (2)1.90 (2)2.7299 (18)172 (2)
O6W—H6A···O7Wvii0.86 (2)1.89 (2)2.754 (2)177 (2)
O6W—H6B···O5Wiii0.83 (2)1.95 (2)2.7828 (18)173 (2)
O7W—H7A···O6W0.84 (2)1.89 (2)2.7256 (19)171 (2)
O7W—H7B···O8Wvii0.83 (2)1.94 (2)2.7605 (18)171 (2)
O8W—H8A···O10.84 (2)1.92 (2)2.7564 (16)173 (2)
O8W—H8B···O4Wii0.86 (2)1.91 (2)2.7616 (17)172 (2)
Symmetry codes: (ii) x+1/2, y+3/2, z+2; (iii) x+1/2, y+1/2, z+2; (iv) x1/2, y+3/2, z1/2; (v) x, y+1, z1/2; (vi) x+1/2, y1/2, z+3/2; (vii) x+1/2, y1/2, z+5/2.

Experimental details

Crystal data
Chemical formula[Mn(C9H6N3O2)2(H2O)4]·10H2O
Mr683.50
Crystal system, space groupMonoclinic, C2/c
Temperature (K)76
a, b, c (Å)25.9966 (13), 7.9393 (4), 16.8495 (9)
β (°) 112.214 (1)
V3)3219.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.28 × 0.23 × 0.20
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.85, 0.91
No. of measured, independent and
observed [I > 2σ(I)] reflections
8592, 3189, 2760
Rint0.023
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 0.99
No. of reflections3189
No. of parameters238
No. of restraints14
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O4W0.82 (2)1.94 (2)2.7602 (17)171 (2)
O1W—H1B···O5W0.85 (2)1.83 (2)2.6724 (16)169 (2)
O2W—H2A···O1i0.84 (1)1.87 (1)2.6936 (15)164 (2)
O3W—H3A···O1ii0.85 (2)1.91 (2)2.7445 (15)166 (2)
O4W—H4A···O2iii0.85 (2)1.95 (2)2.7985 (15)176 (2)
O4W—H4B···N2iv0.82 (2)2.17 (2)2.9369 (17)154 (2)
O5W—H5A···O2v0.85 (2)1.83 (2)2.6765 (16)171 (2)
O5W—H5B···O8Wii0.83 (2)1.90 (2)2.7299 (18)172 (2)
O6W—H6A···O7Wvi0.86 (2)1.89 (2)2.754 (2)177 (2)
O6W—H6B···O5Wii0.83 (2)1.95 (2)2.7828 (18)173 (2)
O7W—H7A···O6W0.84 (2)1.89 (2)2.7256 (19)171 (2)
O7W—H7B···O8Wvi0.83 (2)1.94 (2)2.7605 (18)171 (2)
O8W—H8A···O10.84 (2)1.92 (2)2.7564 (16)173 (2)
O8W—H8B···O4Wi0.86 (2)1.91 (2)2.7616 (17)172 (2)
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x+1/2, y+1/2, z+2; (iii) x1/2, y+3/2, z1/2; (iv) x, y+1, z1/2; (v) x+1/2, y1/2, z+3/2; (vi) x+1/2, y1/2, z+5/2.
 

Acknowledgements

The authors thank Yanbian University for supporting this work.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, H.-D., Guo, X.-M., Batten, S. R., Song, J.-F., Song, S.-Y., Dang, S., Zheng, G.-L., Tang, J.-K. & Zhang, H.-J. (2009). Cryst. Growth Des. 9, 2098–2109.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-H. (2011). Acta Cryst. E67, m423–m424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. E65, m1568–m1569.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZang, S.-Q., Su, Y., Li, Y.-Z., Ni, Z.-P. & Meng, Q.-J. (2006). Inorg. Chem. 44, 7122–7129.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds