organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5E)-5-(4-Meth­­oxy­benzyl­­idene)-2-(piperidin-1-yl)-1,3-thia­zol-4(5H)-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Mangalore University, Karnataka, India
*Correspondence e-mail: hkfun@usm.my

(Received 27 June 2011; accepted 29 June 2011; online 6 July 2011)

In the title compound, C16H18N2O2S, the piperidine ring adopts a chair conformation. The central 4-thia­zolidinone ring makes dihedral angles of 12.01 (7) and 51.42 (9)°, respectively, with the benzene ring and the least-squares plane of the piperidine ring. An intra­molecular C—H⋯S hydrogen bond stabilizes the mol­ecular structure and generates an S(6) ring motif. In the crystal, mol­ecules are linked into a tape along the c axis by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background to the title compound, see: Lesyk & Zimenkovsky (2004[Lesyk, R. & Zimenkovsky, B. (2004). Curr. Org. Chem. 8, 1547-1577.]); Lesyk et al. (2007[Lesyk, R., Vladzimirska, O., Holota, S., Zaprutko, L. & Gzella, A. (2007). Eur. J. Med. Chem. 42, 641-648.]); Havrylyuk et al. (2009[Havrylyuk, D., Zimenkovsky, B., Vasylenko, O., Zaprutko, L., Gzella, A. & Lesyk, R. (2009). Eur. J. Med. Chem. 44, 1396-1404.]); Ahn et al. (2006[Ahn, J. H., Kim, S. J., Park, W. S., Cho, S. Y., Ha, J. D., Kim, S. S., Kang, S. K., Jeong, D. G., Jung, S. K., Lee, S. H., Kim, H. M., Park, S. K., Lee, K. H., Lee, C. W., Ryu, S. E. & Choi, J. K. (2006). Bioorg. Med. Chem. Lett. 16, 2996-2999.]); Park et al. (2008[Park, H., Jung, S. K., Jeong, D. G., Ryu, S. E. & Kim, S. J. (2008). Bioorg. Med. Chem. Lett. 18, 2250-2255.]); Geronikaki et al. (2008[Geronikaki, A., Eleftheriou, P., Vicini, P., Alam, I., Dixit, A. & Saxena, A. K. (2008). J. Med. Chem. 51, 5221-5228.]); Zimenkovsky et al. (2005[Zimenkovsky, B., Kazmirchuk, G., Zaprutko, L., Paraskiewicz, A., Melzer, E. & Lesyk, R. (2005). Ann. Polish Chem. Soc. 1, 69-72.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18N2O2S

  • Mr = 302.38

  • Monoclinic, P 21 /c

  • a = 8.5811 (3) Å

  • b = 16.5165 (6) Å

  • c = 12.4930 (4) Å

  • β = 121.518 (2)°

  • V = 1509.42 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 297 K

  • 0.61 × 0.26 × 0.23 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.877, Tmax = 0.950

  • 20021 measured reflections

  • 5432 independent reflections

  • 4148 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.119

  • S = 1.02

  • 5432 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1i 0.93 2.48 3.3048 (16) 147
C5—H5A⋯S1 0.93 2.58 3.2809 (15) 132
C16—H16A⋯O1ii 0.96 2.48 3.421 (3) 167
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4-Thiazolidinone ring system is a core structure in various synthetic compounds which display a broad spectrum of biological activities (Lesyk & Zimenkovsky, 2004) including an anticancer effect (Lesyk et al., 2007; Havrylyuk et al., 2009). Mechanisms of 4-thiazolidinones and related heterocycles antitumor activity may be associated with the affinity to anticancer bio-targets, such as phosphatase of a regenerating liver (PRL-3) (Ahn et al., 2006; Park et al., 2008) and non-membrane protein tyrosine phosphatase (SHP-2) (Geronikaki et al., 2008). 5-Arylidene derivatives were previously shown as the most active group of compounds with the anticancer activity among a large pool of 4-azolidone derivatives and analogs (Zimenkovsky et al., 2005). This prompted us to synthesize title compound (I).

The central 4-thiazolidinone ring makes dihedral angles of 12.01 (7) and 51.42 (9)°, respectively, with the benzene ring and the least-squares plane of piperidine ring. The piperidine ring adopts a chair conformation. An intramolecular C5—H5A···S1 hydrogen bond (Table 1) stabilizes the molecular structure and generates an S(6) ring motif (Fig. 1; Bernstein et al., 1995). In the crystal structure, the molecules are linked into a tape along the c axis by intermolecular C16—H16A···O1 and C2—H2A···O1 hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For general background to the title compound, see: Lesyk & Zimenkovsky (2004); Lesyk et al. (2007); Havrylyuk et al. (2009); Ahn et al. (2006); Park et al. (2008); Geronikaki et al. (2008); Zimenkovsky et al. (2005). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

An equimolar mixture of 2-(piperidin-1-yl)-1,3-thiazol-4(5H)-one, anisaldehyde and sodium acetate in acetic acid was refluxed for 2 hrs. The product formed was filtered, washed, dried and re-crystallized from ethanol.

Refinement top

All hydrogen atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating-group model were applied for methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability ellipsoids for non-H atoms. Hydrogen bonds (dashed lines) are shown.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the molecules linked along the c axis. Hydrogen bonds (dashed lines) are shown.
(5E)-5-(4-Methoxybenzylidene)-2-(piperidin-1-yl)-1,3-thiazol- 4(5H)-one top
Crystal data top
C16H18N2O2SF(000) = 640
Mr = 302.38Dx = 1.331 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6389 reflections
a = 8.5811 (3) Åθ = 2.8–32.3°
b = 16.5165 (6) ŵ = 0.22 mm1
c = 12.4930 (4) ÅT = 297 K
β = 121.518 (2)°Block, brown
V = 1509.42 (9) Å30.61 × 0.26 × 0.23 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5432 independent reflections
Radiation source: fine-focus sealed tube4148 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 32.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.877, Tmax = 0.950k = 2525
20021 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.2092P]
where P = (Fo2 + 2Fc2)/3
5432 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C16H18N2O2SV = 1509.42 (9) Å3
Mr = 302.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5811 (3) ŵ = 0.22 mm1
b = 16.5165 (6) ÅT = 297 K
c = 12.4930 (4) Å0.61 × 0.26 × 0.23 mm
β = 121.518 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5432 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4148 reflections with I > 2σ(I)
Tmin = 0.877, Tmax = 0.950Rint = 0.023
20021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.02Δρmax = 0.31 e Å3
5432 reflectionsΔρmin = 0.17 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20003 (4)0.555618 (16)0.50684 (2)0.03982 (9)
O10.39228 (18)0.38959 (6)0.75694 (9)0.0638 (3)
O20.27412 (16)0.35919 (6)0.04461 (9)0.0561 (2)
N10.28424 (15)0.51913 (6)0.73753 (9)0.0425 (2)
N20.16266 (16)0.64775 (6)0.66938 (10)0.0455 (2)
C10.32029 (16)0.31624 (6)0.34274 (10)0.0382 (2)
H1A0.34360.27110.39350.046*
C20.30857 (17)0.30703 (7)0.22911 (11)0.0418 (2)
H2A0.32160.25600.20340.050*
C30.27723 (16)0.37401 (7)0.15287 (11)0.0409 (2)
C40.2523 (2)0.44940 (7)0.19023 (12)0.0479 (3)
H4A0.22920.49440.13920.057*
C50.2618 (2)0.45754 (6)0.30353 (12)0.0457 (3)
H5A0.24340.50840.32710.055*
C60.29786 (15)0.39221 (6)0.38362 (10)0.0349 (2)
C70.31827 (16)0.39806 (6)0.50618 (10)0.0374 (2)
H7A0.36010.35090.55360.045*
C80.28758 (16)0.45928 (6)0.56330 (10)0.0366 (2)
C90.32720 (18)0.45128 (7)0.69525 (11)0.0422 (2)
C100.21678 (16)0.57634 (6)0.65225 (10)0.0375 (2)
C110.1834 (2)0.66894 (8)0.79030 (12)0.0500 (3)
H11A0.24540.62550.85010.060*
H11B0.06400.67640.77980.060*
C120.2935 (2)0.74644 (8)0.83907 (13)0.0562 (3)
H12A0.29800.76310.91510.067*
H12B0.41780.73640.86010.067*
C130.2120 (2)0.81400 (9)0.74341 (16)0.0675 (4)
H13A0.29080.86110.77530.081*
H13B0.09380.82890.73010.081*
C140.1894 (2)0.78837 (8)0.61928 (15)0.0576 (3)
H14A0.12710.83070.55740.069*
H14B0.30880.78040.63000.069*
C150.08081 (19)0.71084 (7)0.57317 (12)0.0489 (3)
H15A0.04370.72080.55170.059*
H15B0.07700.69270.49800.059*
C160.2685 (3)0.42727 (11)0.02815 (15)0.0677 (4)
H16A0.28860.40930.09310.102*
H16B0.36210.46520.02520.102*
H16C0.15110.45300.06540.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.05518 (18)0.03126 (13)0.03620 (14)0.00014 (10)0.02609 (12)0.00056 (9)
O10.1086 (9)0.0433 (5)0.0527 (5)0.0192 (5)0.0513 (6)0.0128 (4)
O20.0807 (7)0.0558 (5)0.0460 (5)0.0013 (5)0.0430 (5)0.0033 (4)
N10.0585 (6)0.0364 (4)0.0369 (4)0.0010 (4)0.0280 (4)0.0027 (3)
N20.0620 (6)0.0336 (4)0.0418 (5)0.0007 (4)0.0276 (5)0.0061 (4)
C10.0459 (6)0.0306 (4)0.0402 (5)0.0027 (4)0.0241 (5)0.0004 (4)
C20.0517 (6)0.0348 (5)0.0436 (5)0.0021 (4)0.0282 (5)0.0047 (4)
C30.0470 (6)0.0423 (5)0.0392 (5)0.0020 (4)0.0267 (5)0.0038 (4)
C40.0711 (8)0.0361 (5)0.0474 (6)0.0014 (5)0.0386 (6)0.0040 (4)
C50.0724 (8)0.0282 (4)0.0497 (6)0.0004 (5)0.0411 (6)0.0009 (4)
C60.0410 (5)0.0307 (4)0.0364 (5)0.0024 (4)0.0226 (4)0.0028 (3)
C70.0474 (6)0.0308 (4)0.0376 (5)0.0014 (4)0.0248 (4)0.0004 (4)
C80.0461 (5)0.0312 (4)0.0357 (5)0.0037 (4)0.0235 (4)0.0020 (4)
C90.0594 (7)0.0352 (5)0.0380 (5)0.0000 (4)0.0297 (5)0.0006 (4)
C100.0447 (5)0.0320 (4)0.0364 (5)0.0058 (4)0.0217 (4)0.0065 (4)
C110.0590 (7)0.0486 (6)0.0479 (6)0.0020 (5)0.0319 (6)0.0128 (5)
C120.0565 (7)0.0517 (7)0.0551 (7)0.0024 (6)0.0254 (6)0.0216 (6)
C130.0740 (10)0.0401 (6)0.0770 (10)0.0010 (6)0.0316 (8)0.0188 (6)
C140.0613 (8)0.0362 (5)0.0704 (9)0.0002 (5)0.0311 (7)0.0004 (6)
C150.0561 (7)0.0361 (5)0.0490 (6)0.0042 (5)0.0236 (6)0.0020 (5)
C160.0943 (12)0.0728 (10)0.0530 (8)0.0026 (9)0.0503 (8)0.0041 (7)
Geometric parameters (Å, º) top
S1—C81.7435 (11)C7—C81.3407 (15)
S1—C101.7790 (11)C7—H7A0.9300
O1—C91.2225 (14)C8—C91.5047 (15)
O2—C31.3609 (14)C11—C121.5166 (19)
O2—C161.4309 (19)C11—H11A0.9700
N1—C101.3108 (14)C11—H11B0.9700
N1—C91.3691 (15)C12—C131.513 (2)
N2—C101.3252 (14)C12—H12A0.9700
N2—C151.4634 (16)C12—H12B0.9700
N2—C111.4680 (16)C13—C141.519 (2)
C1—C21.3781 (16)C13—H13A0.9700
C1—C61.4053 (14)C13—H13B0.9700
C1—H1A0.9300C14—C151.5096 (18)
C2—C31.3912 (16)C14—H14A0.9700
C2—H2A0.9300C14—H14B0.9700
C3—C41.3852 (16)C15—H15A0.9700
C4—C51.3811 (17)C15—H15B0.9700
C4—H4A0.9300C16—H16A0.9600
C5—C61.3919 (15)C16—H16B0.9600
C5—H5A0.9300C16—H16C0.9600
C6—C71.4506 (15)
C8—S1—C1088.56 (5)N2—C11—C12109.25 (12)
C3—O2—C16117.82 (11)N2—C11—H11A109.8
C10—N1—C9111.72 (9)C12—C11—H11A109.8
C10—N2—C15124.01 (10)N2—C11—H11B109.8
C10—N2—C11120.94 (10)C12—C11—H11B109.8
C15—N2—C11115.05 (10)H11A—C11—H11B108.3
C2—C1—C6121.52 (10)C13—C12—C11111.81 (12)
C2—C1—H1A119.2C13—C12—H12A109.3
C6—C1—H1A119.2C11—C12—H12A109.3
C1—C2—C3120.09 (10)C13—C12—H12B109.3
C1—C2—H2A120.0C11—C12—H12B109.3
C3—C2—H2A120.0H12A—C12—H12B107.9
O2—C3—C4124.79 (11)C12—C13—C14111.12 (11)
O2—C3—C2115.70 (10)C12—C13—H13A109.4
C4—C3—C2119.52 (10)C14—C13—H13A109.4
C5—C4—C3119.75 (11)C12—C13—H13B109.4
C5—C4—H4A120.1C14—C13—H13B109.4
C3—C4—H4A120.1H13A—C13—H13B108.0
C4—C5—C6122.21 (10)C15—C14—C13110.46 (13)
C4—C5—H5A118.9C15—C14—H14A109.6
C6—C5—H5A118.9C13—C14—H14A109.6
C5—C6—C1116.88 (10)C15—C14—H14B109.6
C5—C6—C7124.46 (9)C13—C14—H14B109.6
C1—C6—C7118.64 (9)H14A—C14—H14B108.1
C8—C7—C6131.54 (10)N2—C15—C14110.80 (11)
C8—C7—H7A114.2N2—C15—H15A109.5
C6—C7—H7A114.2C14—C15—H15A109.5
C7—C8—C9121.47 (10)N2—C15—H15B109.5
C7—C8—S1129.49 (9)C14—C15—H15B109.5
C9—C8—S1109.03 (7)H15A—C15—H15B108.1
O1—C9—N1124.43 (11)O2—C16—H16A109.5
O1—C9—C8122.07 (10)O2—C16—H16B109.5
N1—C9—C8113.49 (9)H16A—C16—H16B109.5
N1—C10—N2123.60 (10)O2—C16—H16C109.5
N1—C10—S1117.18 (8)H16A—C16—H16C109.5
N2—C10—S1119.22 (9)H16B—C16—H16C109.5
C6—C1—C2—C31.20 (18)C7—C8—C9—O11.5 (2)
C16—O2—C3—C48.6 (2)S1—C8—C9—O1178.96 (12)
C16—O2—C3—C2171.27 (13)C7—C8—C9—N1178.78 (11)
C1—C2—C3—O2177.84 (11)S1—C8—C9—N10.74 (13)
C1—C2—C3—C42.01 (19)C9—N1—C10—N2179.29 (12)
O2—C3—C4—C5178.76 (13)C9—N1—C10—S11.17 (14)
C2—C3—C4—C51.1 (2)C15—N2—C10—N1177.59 (12)
C3—C4—C5—C60.7 (2)C11—N2—C10—N12.90 (19)
C4—C5—C6—C11.5 (2)C15—N2—C10—S12.88 (17)
C4—C5—C6—C7176.81 (12)C11—N2—C10—S1176.63 (9)
C2—C1—C6—C50.53 (17)C8—S1—C10—N11.37 (10)
C2—C1—C6—C7177.87 (11)C8—S1—C10—N2179.07 (10)
C5—C6—C7—C89.2 (2)C10—N2—C11—C12123.69 (13)
C1—C6—C7—C8172.51 (12)C15—N2—C11—C1255.87 (15)
C6—C7—C8—C9177.40 (11)N2—C11—C12—C1353.89 (16)
C6—C7—C8—S13.2 (2)C11—C12—C13—C1454.80 (18)
C10—S1—C8—C7178.38 (12)C12—C13—C14—C1554.15 (17)
C10—S1—C8—C91.08 (9)C10—N2—C15—C14122.75 (14)
C10—N1—C9—O1179.94 (14)C11—N2—C15—C1456.79 (16)
C10—N1—C9—C80.25 (15)C13—C14—C15—N254.03 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.932.483.3048 (16)147
C5—H5A···S10.932.583.2809 (15)132
C16—H16A···O1ii0.962.483.421 (3)167
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC16H18N2O2S
Mr302.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)8.5811 (3), 16.5165 (6), 12.4930 (4)
β (°) 121.518 (2)
V3)1509.42 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.61 × 0.26 × 0.23
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.877, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
20021, 5432, 4148
Rint0.023
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.119, 1.02
No. of reflections5432
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.17

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.932.483.3048 (16)147
C5—H5A···S10.932.583.2809 (15)132
C16—H16A···O1ii0.962.483.421 (3)167
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5523-2009.

Acknowledgements

HKF and CSY thank Universiti Sains Malaysia for the Research University Grant 1001/PFIZIK/811160.

References

First citationAhn, J. H., Kim, S. J., Park, W. S., Cho, S. Y., Ha, J. D., Kim, S. S., Kang, S. K., Jeong, D. G., Jung, S. K., Lee, S. H., Kim, H. M., Park, S. K., Lee, K. H., Lee, C. W., Ryu, S. E. & Choi, J. K. (2006). Bioorg. Med. Chem. Lett. 16, 2996–2999.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGeronikaki, A., Eleftheriou, P., Vicini, P., Alam, I., Dixit, A. & Saxena, A. K. (2008). J. Med. Chem. 51, 5221–5228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHavrylyuk, D., Zimenkovsky, B., Vasylenko, O., Zaprutko, L., Gzella, A. & Lesyk, R. (2009). Eur. J. Med. Chem. 44, 1396–1404.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLesyk, R., Vladzimirska, O., Holota, S., Zaprutko, L. & Gzella, A. (2007). Eur. J. Med. Chem. 42, 641–648.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLesyk, R. & Zimenkovsky, B. (2004). Curr. Org. Chem. 8, 1547–1577.  Web of Science CrossRef CAS Google Scholar
First citationPark, H., Jung, S. K., Jeong, D. G., Ryu, S. E. & Kim, S. J. (2008). Bioorg. Med. Chem. Lett. 18, 2250–2255.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZimenkovsky, B., Kazmirchuk, G., Zaprutko, L., Paraskiewicz, A., Melzer, E. & Lesyk, R. (2005). Ann. Polish Chem. Soc. 1, 69–72.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds