organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2152-o2153

(R)-Methyl {[(2-carb­­oxy­bi­cyclo­[2.2.2]octan-1-yl)­ammonio]­methyl}­phos­phon­ate di­chloro­methane 0.25-solvate

aDepartment of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski blvd, Sofia 1756, Bulgaria, bInstitut des Biomolecules Max Mousseron (IBMM) UMR 5247, CNRS-Universite Montpellier 1 et 2, Universite Montpellier 2, Place E. Bataillon, 34095 Montpellier Cedex 5, France, and cInstitute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 107, 1113 Sofia, Bulgaria
*Correspondence e-mail: rosica.pn@clmc.bas.bg

(Received 11 July 2011; accepted 21 July 2011; online 30 July 2011)

The carb­oxy­lic acid mol­ecule of the title compound, C11H20NO5P·0.25CH2Cl2, exists as a zwitterion with the H atom of the phospho­nate group being transferred to the imine N atom. In the asymmetric unit, there are two crystallographically independent acid mol­ecules adopting the same absolute configuration and differing slightly in their geometrical parameters. In each mol­ecule, the imino and carboxyl groups are connected via an intra­molecular N—H⋯O hydrogen bond. Inter­molecular O—H⋯O and N—H⋯O hydrogen bonds induce the formation of layers parallel to the ab plane. The dichloro­methane solvent mol­ecule, with a site occupancy of 0.5, is located between the layers.

Related literature

For general background of the use of amino­phospho­nic acid derivatives in organic synthesis and as biologically active compounds, see: Kafarski & Lejczak (2001[Kafarski, P. & Lejczak, B. (2001). Curr. Med. Chem. 1, 301-312.]); Orsini et al. (2010[Orsini, F., Sello, G. & Sisti, M. (2010). Curr. Med. Chem. 17, 264-289.]); Troev (2006[Troev, K. D. (2006). In Chemistry and Application of H-Phosphonates. Amsterdam: Elsevier.]); Naydenova et al. (2008[Naydenova, E. D., Todorov, P. T., Topashka-Ancheva, M. N., Momekov, G. Ts., Yordanova, T. Z., Konstantinov, S. M. & Troev, K. D. (2008). Eur. J. Med. Chem. 43, 1199-1205.], 2010[Naydenova, E. D., Todorov, P. T. & Troev, K. D. (2010). Amino Acids, 38, 23-30.]).

[Scheme 1]

Experimental

Crystal data
  • C11H20NO5P·0.25CH2Cl2

  • Mr = 298.48

  • Orthorhombic, P 21 21 21

  • a = 9.3520 (2) Å

  • b = 12.7553 (3) Å

  • c = 24.1148 (8) Å

  • V = 2876.60 (13) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.70 mm−1

  • T = 290 K

  • 0.32 × 0.24 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.151, Tmax = 0.582

  • 11759 measured reflections

  • 4532 independent reflections

  • 3305 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.205

  • S = 1.02

  • 4532 reflections

  • 356 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1914 Friedel paris

  • Flack parameter: 0.04 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O24i 0.90 1.79 2.673 (6) 168
N1—H1B⋯O1 0.90 1.93 2.683 (6) 140
N21—H21A⋯O22 0.90 2.04 2.750 (7) 135
N21—H21B⋯O5ii 0.90 1.79 2.690 (6) 173
O2—H2⋯O4ii 0.82 1.66 2.474 (6) 172
O22—H22⋯O25iii 0.82 1.86 2.596 (6) 149
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Comment top

α-Aminophosphonic acids occupy an important place amongst the various compounds containing a P—C bond and an amino group, because they are analogues of natural α-amino acids, the building blocks of peptides and proteins. Since stereochemistry at the α-carbon atom plays an important role in the biological activity of the molecule, the synthesis of chiral α-aminophosphonates and α-aminophosphonic acids has been a focus of considerable attention in synthetic organic chemistry as well as in modern pharmaceutical chemistry. This is underlined by an increasing number of industrial applications in the field of the synthesis of enantio enriched α-aminophosphonic acid derivatives (Kafarski & Lejczak, 2001; Troev, 2006; Naydenova et al., 2010). This, together with their low mammalian toxicity makes the α-aminophosphonic acids an important class of antimetabolites and a potential source of medicinal lead compounds (Naydenova et al., 2008; Orsini et al., 2010).

The title compound has been obtained in an enantiopure form. Herein, we synthesized and characterized a new α-aminophosphonate containing bicyclo[2.2.2]octane-moiety by Kabachnik-Fields reaction. This reaction is performed without epimerization. The optically active (R)-1-(N-(methoxyphosphonomethyl)aminobicyclo [2.2.2]octane-2-carboxylic acid was purified by column chromatography on silica gel using a mixture of dichloromethane/methanol (9.5/0.5) with 0.1% acetic acid as eluent to give the title compound.

The studied compound C11H10NPO5 crystallizes as a dichloromethane 0.5 solvate with two crystallographically nonequivalent molecules (molecules A and B in Fig. 1). NMR analyses (1H, 13C and 31P) has been applied for compositional and geometrical characterization of the organic molecule. The 1H-NMR data were not indicative for the presence of NH2 or P—OH groups. From the other hand the difference Fourier analyses around imine N and PO3 group show presence of two hydrogen atoms around the nitrogen. More over the P—O distances of 1.491 (4), 1.494 (4) Å and 1.459 (5), 1.481 (4) Å for molecules A and B, respectively, suppose charge distribution between the phosphonate O atoms. This suggests that both molecules exist as zwitterions with H atom of the phosphonate group being transferred to the imine N atom. The absolute configuration of the independent C11H10NPO5 molecules is identical as deduced by the Flack parameter. The rotation of the bicyclo[2.2.2]octane-2-carboxylic fragment along axis described by N1,C6, C3 and N21, C26, C23 atoms for A and B molecules respectively differ by less than 10° [57.6 (2)° for A and 64.7 (1) ° for B molecule].

The imino and carboxylic groups are involved in intramolecular hydrogen bond in both of the molecules. The O—H···O and N—H···O intermolecular interactions induce the formation of layers parallel to the crystallographic ab plane. The dichloromethane moieties are located in the cavities near by the zigzag layer.

Related literature top

For general background of the use of aminophosphonic acid derivatives in organic synthesis and as biologically active compounds, see: Kafarski & Lejczak (2001); Orsini et al. (2010); Troev (2006); Naydenova et al. (2008, 2010).

Experimental top

Paraformaldehyde (1.827 mmol), methanol (5 ml), and triethylamine (190 υl) were put into a three-necked flask equipped with a condenser, magnetic stirrer, thermometer and dropping funnel and argon inert. The reaction mixture was heated to reflux temperature and held there for 45 min, after which it became a clear solution. (R)-1-Aminobicyclo[2.2.2]octane-2-carboxylic acid (1.175 mmol) and triethylamine (0.24 ml) were added to this solution. The suspension was heated at 65 - 70 °C and after 3.5 h it became a clear solution. Dimethyl hydrogen phosphonate 122 µl (146.5 mg, 1.331 mmol) was added to this solution for approximately 10 min. This reaction mixture was heated at 65–70 °C and after maintaining this temperature for 5.5 h, it was cooled to room temperature and concentrated under reduced pressure. The crude compound was dissolved in methanol and the non-reacting (R)-1-aminobicyclo[2.2.2]octane-2-carboxylic acid was removed by precipitation with diethyl ether and collected by filtration. The filtrate was evaporated to give a residue which was purified by flash column chromatography on silica gel using a mixture of dichloromethane/methanol (9.5/0.5) with 0.1% acetic acid as eluent to yield the 1-(N-methoxyphosphonomethyl)aminobicyclo[2.2.2]octane- 2-carboxylic acid.

1H NMR (400 MHz, CDCl3), δ = 1.19–1.75 (m, 9 H, 4-H, 5-H, 6-H, 8-H, 3-H, 6-H), 2.34 (br.d, J = 12.9 Hz, 1H, 7-H), 2.48 (br.d, J = 10.9 Hz, 1H, 2-H), 2.92 (AB part of ABX system, 2H, 2JP—H = 15.0 Hz, P—CH2), 3.85 (d, 6H, 3JP—H = 10.9 Hz, O—CH3), 7.45 (br.s, 1H, COOH).

13C NMR (100 MHz, CD3OD), δ = 25.25 (C-4), 26.41, 26.79, 26.87, 28.90 and 30.09 (CH2), 43.10 (C-2), 57.29 (C-1), 35.10 (d, 21JP—C = 156.0 Hz, P—CH2), 54.14 (d, 2JP—C = 10.6 Hz, O—CH3), 179.66 (C=O).

31P NMR (161.97 MHz, CDCl3),δ = 25.19.

For NMR numbering see Fig.3

Refinement top

All H atoms bonded to C, N and O were placed in idealized positions (C—Hmethyl = 0.96 Å, C—Hmethylene = 0.97 Å, C—Hmethyne = 0.98 Å, N—H = 0.86 Å and O—H = 0.82 Å) and were constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C or N) or 1.5Ueq(O or Cmethyl).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of title compound with the atom numbering scheme showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The packing arrangement of the molecules in the unit cell, showing the hydrogen-bonding interactions as dashed lines. [symmetry codes: (i) 1 - x, y - 1/2, 1/2 - z; (ii) 1/2 - x, 1 - y, 1/2 + z; (iii) 1/2 + x, 1/2 - y, 1 - z; (iv) 1/2 + x, 1.5 - y, 1 - z;
[Figure 3] Fig. 3. NMR numbering scheme.
(R)-Methyl {[(2-carboxybicyclo[2.2.2]octan-1-yl)ammonio]methyl}phosphonate dichloromethane 0.25-solvate top
Crystal data top
C11H20NO5P·0.25CH2Cl2F(000) = 1268
Mr = 298.48Dx = 1.378 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2ac 2abCell parameters from 5494 reflections
a = 9.3520 (2) Åθ = 3.5–62.6°
b = 12.7553 (3) ŵ = 2.70 mm1
c = 24.1148 (8) ÅT = 290 K
V = 2876.60 (13) Å3Prism, colorless
Z = 80.32 × 0.24 × 0.20 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4532 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3305 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.088
Detector resolution: 10.3974 pixels mm-1θmax = 62.6°, θmin = 3.7°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1414
Tmin = 0.151, Tmax = 0.582l = 2726
11759 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.205 w = 1/[σ2(Fo2) + (0.1029P)2 + 1.5603P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4532 reflectionsΔρmax = 0.36 e Å3
356 parametersΔρmin = 0.34 e Å3
0 restraintsAbsolute structure: Flack (1983), 1914 Friedel paris
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (4)
Crystal data top
C11H20NO5P·0.25CH2Cl2V = 2876.60 (13) Å3
Mr = 298.48Z = 8
Orthorhombic, P212121Cu Kα radiation
a = 9.3520 (2) ŵ = 2.70 mm1
b = 12.7553 (3) ÅT = 290 K
c = 24.1148 (8) Å0.32 × 0.24 × 0.20 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4532 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3305 reflections with I > 2σ(I)
Tmin = 0.151, Tmax = 0.582Rint = 0.088
11759 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.205Δρmax = 0.36 e Å3
S = 1.02Δρmin = 0.34 e Å3
4532 reflectionsAbsolute structure: Flack (1983), 1914 Friedel paris
356 parametersAbsolute structure parameter: 0.04 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1337 (7)0.3754 (5)0.3764 (3)0.0544 (16)
H10.23140.36090.36390.065*
C20.1299 (10)0.3581 (7)0.4400 (3)0.088 (3)
H2A0.10110.42250.45820.106*
H2B0.22470.33970.45310.106*
C30.0267 (9)0.2721 (6)0.4544 (3)0.078 (2)
H30.02150.26200.49460.094*
C40.1183 (8)0.3043 (10)0.4311 (4)0.104 (3)
H4A0.19030.25490.44360.124*
H4B0.14350.37290.44550.124*
C50.1193 (6)0.3083 (5)0.3675 (3)0.0546 (15)
H5A0.15670.37510.35490.066*
H5B0.17910.25280.35280.066*
C60.0345 (6)0.2944 (4)0.3481 (2)0.0427 (12)
C70.0851 (7)0.1847 (5)0.3641 (3)0.0623 (18)
H7A0.18410.17540.35310.075*
H7B0.02790.13240.34510.075*
C80.0712 (12)0.1713 (6)0.4255 (4)0.102 (3)
H8A0.00080.11730.43310.123*
H8B0.16200.14800.44050.123*
C90.0977 (7)0.4880 (5)0.3593 (3)0.0566 (16)
C100.0450 (6)0.2480 (5)0.2480 (2)0.0478 (14)
H10A0.01970.17430.24990.057*
H10B0.14380.25510.25960.057*
C110.2109 (7)0.4460 (6)0.1910 (4)0.093 (3)
H11A0.21190.51140.21070.139*
H11B0.25740.45460.15580.139*
H11C0.26040.39380.21230.139*
C120.098 (2)0.3952 (18)0.5960 (10)0.134 (9)0.50
H12A0.08400.35870.63090.161*0.50
H12B0.12570.34320.56880.161*0.50
C210.5079 (6)0.5691 (5)0.4133 (3)0.0538 (16)
H210.59520.59490.39540.065*
C220.5372 (7)0.5643 (7)0.4775 (3)0.072 (2)
H22A0.54650.49180.48910.086*
H22B0.62610.60010.48590.086*
C230.4134 (8)0.6165 (6)0.5092 (3)0.0646 (18)
H230.42190.60290.54900.078*
C240.2722 (7)0.5731 (6)0.4870 (3)0.0608 (17)
H24A0.27340.49710.48880.073*
H24B0.19370.59810.50970.073*
C250.2507 (6)0.6079 (5)0.4276 (3)0.0523 (16)
H25A0.17640.66080.42600.063*
H25B0.22050.54870.40520.063*
C260.3902 (5)0.6526 (4)0.4044 (2)0.0422 (13)
C270.4266 (8)0.7527 (5)0.4352 (3)0.0643 (18)
H27A0.36020.80780.42490.077*
H27B0.52240.77540.42550.077*
C280.4176 (10)0.7321 (6)0.4980 (3)0.082 (2)
H28A0.49990.76280.51630.098*
H28B0.33220.76490.51280.098*
C290.4765 (7)0.4605 (5)0.3898 (3)0.0581 (16)
C300.4830 (6)0.7393 (5)0.3151 (2)0.0523 (15)
H30A0.57620.71410.32680.063*
H30B0.47480.81200.32650.063*
C310.6373 (13)0.5596 (10)0.2371 (8)0.196 (8)
H31A0.65460.51120.20730.293*
H31B0.64150.52310.27190.293*
H31C0.70870.61360.23650.293*
N10.0493 (5)0.3092 (4)0.28655 (19)0.0476 (11)
H1A0.14060.29460.27750.057*
H1B0.03530.37770.27930.057*
N210.3695 (4)0.6765 (4)0.3434 (2)0.0475 (12)
H21A0.36090.61510.32530.057*
H21B0.28600.71080.33960.057*
O10.0342 (6)0.5114 (3)0.3167 (2)0.0776 (15)
O20.1409 (5)0.5589 (3)0.3936 (2)0.0646 (13)
H20.13490.61680.37900.097*
O30.0658 (5)0.4134 (3)0.1823 (2)0.0641 (13)
O40.1387 (5)0.2392 (3)0.14410 (18)0.0602 (12)
O50.1266 (4)0.2891 (4)0.16076 (19)0.0639 (12)
O210.4858 (7)0.3804 (4)0.4138 (3)0.100 (2)
O220.4354 (6)0.4666 (4)0.3379 (2)0.0729 (14)
H220.46000.41350.32130.109*
O230.4943 (7)0.6072 (5)0.2303 (2)0.107 (2)
O240.3242 (5)0.7561 (7)0.2252 (2)0.128 (3)
O250.5913 (4)0.7934 (4)0.21767 (19)0.0665 (13)
P10.02660 (16)0.29346 (12)0.17764 (7)0.0495 (4)
P210.47115 (16)0.73176 (16)0.24091 (7)0.0615 (5)
Cl10.2400 (7)0.4823 (5)0.6043 (3)0.139 (2)0.50
Cl20.0552 (7)0.4434 (7)0.5772 (3)0.159 (3)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.049 (4)0.055 (4)0.059 (4)0.001 (3)0.004 (3)0.002 (3)
C20.110 (7)0.090 (6)0.065 (6)0.019 (5)0.022 (5)0.010 (4)
C30.097 (6)0.087 (5)0.050 (4)0.016 (5)0.004 (4)0.016 (4)
C40.062 (5)0.172 (10)0.077 (6)0.024 (6)0.017 (4)0.001 (6)
C50.044 (3)0.062 (4)0.058 (4)0.004 (3)0.012 (3)0.005 (3)
C60.042 (3)0.042 (3)0.044 (3)0.002 (3)0.004 (2)0.004 (2)
C70.058 (4)0.046 (3)0.083 (5)0.014 (3)0.006 (3)0.007 (3)
C80.164 (9)0.064 (5)0.080 (6)0.025 (6)0.006 (6)0.021 (4)
C90.058 (4)0.052 (4)0.059 (4)0.002 (3)0.008 (3)0.002 (3)
C100.038 (3)0.055 (3)0.051 (4)0.006 (3)0.001 (2)0.007 (3)
C110.044 (4)0.065 (4)0.170 (9)0.025 (4)0.034 (5)0.014 (5)
C120.131 (18)0.131 (18)0.14 (2)0.060 (16)0.064 (15)0.039 (15)
C210.030 (3)0.076 (4)0.055 (4)0.013 (3)0.004 (3)0.005 (3)
C220.047 (4)0.106 (6)0.063 (5)0.012 (4)0.007 (3)0.013 (4)
C230.074 (5)0.078 (4)0.042 (4)0.000 (4)0.008 (3)0.001 (3)
C240.048 (4)0.073 (4)0.062 (5)0.002 (3)0.004 (3)0.006 (4)
C250.036 (3)0.065 (4)0.055 (4)0.002 (3)0.007 (3)0.001 (3)
C260.029 (3)0.051 (3)0.047 (4)0.002 (2)0.000 (2)0.006 (3)
C270.071 (4)0.056 (4)0.066 (5)0.011 (3)0.014 (3)0.008 (3)
C280.101 (6)0.079 (5)0.066 (5)0.010 (4)0.000 (4)0.017 (4)
C290.052 (3)0.072 (4)0.051 (4)0.009 (3)0.004 (3)0.004 (3)
C300.034 (3)0.064 (4)0.059 (4)0.012 (3)0.003 (3)0.020 (3)
C310.118 (10)0.106 (8)0.36 (2)0.020 (8)0.138 (13)0.024 (11)
N10.035 (2)0.049 (3)0.059 (3)0.000 (2)0.013 (2)0.004 (2)
N210.023 (2)0.069 (3)0.051 (3)0.001 (2)0.0021 (19)0.007 (2)
O10.113 (4)0.047 (2)0.073 (3)0.015 (3)0.032 (3)0.001 (2)
O20.066 (3)0.053 (2)0.076 (3)0.004 (2)0.024 (2)0.005 (2)
O30.054 (3)0.036 (2)0.102 (4)0.0116 (18)0.023 (2)0.013 (2)
O40.061 (3)0.062 (2)0.058 (3)0.009 (2)0.017 (2)0.003 (2)
O50.044 (2)0.081 (3)0.067 (3)0.018 (2)0.019 (2)0.008 (2)
O210.142 (6)0.057 (3)0.102 (4)0.026 (3)0.012 (4)0.014 (3)
O220.080 (3)0.059 (3)0.080 (4)0.005 (3)0.008 (3)0.008 (2)
O230.115 (5)0.105 (4)0.101 (5)0.058 (4)0.028 (4)0.022 (3)
O240.030 (2)0.279 (10)0.073 (4)0.000 (4)0.013 (2)0.060 (5)
O250.042 (2)0.086 (3)0.071 (3)0.007 (2)0.007 (2)0.030 (2)
P10.0394 (7)0.0521 (8)0.0569 (10)0.0083 (7)0.0040 (7)0.0004 (7)
P210.0294 (7)0.0956 (13)0.0596 (11)0.0111 (9)0.0006 (7)0.0131 (9)
Cl10.115 (4)0.117 (4)0.185 (7)0.017 (4)0.031 (4)0.044 (4)
Cl20.107 (4)0.199 (7)0.171 (6)0.050 (5)0.002 (4)0.003 (5)
Geometric parameters (Å, º) top
C1—C91.532 (9)C22—C231.539 (10)
C1—C61.546 (8)C22—H22A0.9700
C1—C21.550 (10)C22—H22B0.9700
C1—H10.9800C23—C281.500 (10)
C2—C31.502 (11)C23—C241.528 (9)
C2—H2A0.9700C23—H230.9800
C2—H2B0.9700C24—C251.515 (9)
C3—C81.521 (11)C24—H24A0.9700
C3—C41.524 (11)C24—H24B0.9700
C3—H30.9800C25—C261.529 (7)
C4—C51.533 (10)C25—H25A0.9700
C4—H4A0.9700C25—H25B0.9700
C4—H4B0.9700C26—N211.515 (7)
C5—C61.523 (7)C26—C271.516 (8)
C5—H5A0.9700C27—C281.537 (10)
C5—H5B0.9700C27—H27A0.9700
C6—N11.503 (7)C27—H27B0.9700
C6—C71.527 (8)C28—H28A0.9700
C7—C81.495 (10)C28—H28B0.9700
C7—H7A0.9700C29—O211.177 (8)
C7—H7B0.9700C29—O221.313 (7)
C8—H8A0.9700C30—N211.495 (7)
C8—H8B0.9700C30—P211.795 (6)
C9—O11.223 (7)C30—H30A0.9700
C9—O21.291 (7)C30—H30B0.9700
C10—N11.501 (7)C31—O231.478 (13)
C10—P11.802 (6)C31—H31A0.9600
C10—H10A0.9700C31—H31B0.9600
C10—H10B0.9700C31—H31C0.9600
C11—O31.434 (7)N1—H1A0.9000
C11—H11A0.9600N1—H1B0.9000
C11—H11B0.9600N21—H21A0.9000
C11—H11C0.9600N21—H21B0.9000
C12—Cl21.622 (19)O2—H20.8200
C12—Cl11.74 (2)O3—P11.578 (4)
C12—H12A0.9700O4—P11.494 (4)
C12—H12B0.9700O5—P11.491 (4)
C21—C291.525 (9)O22—H220.8200
C21—C261.547 (8)O23—P211.624 (7)
C21—C221.572 (9)O24—P211.459 (5)
C21—H210.9800O25—P211.481 (4)
C9—C1—C6112.1 (5)H22A—C22—H22B108.2
C9—C1—C2113.2 (6)C28—C23—C24108.5 (6)
C6—C1—C2109.1 (5)C28—C23—C22108.5 (7)
C9—C1—H1107.4C24—C23—C22108.6 (6)
C6—C1—H1107.4C28—C23—H23110.4
C2—C1—H1107.4C24—C23—H23110.4
C3—C2—C1110.3 (6)C22—C23—H23110.4
C3—C2—H2A109.6C25—C24—C23109.8 (5)
C1—C2—H2A109.6C25—C24—H24A109.7
C3—C2—H2B109.6C23—C24—H24A109.7
C1—C2—H2B109.6C25—C24—H24B109.7
H2A—C2—H2B108.1C23—C24—H24B109.7
C2—C3—C8109.6 (7)H24A—C24—H24B108.2
C2—C3—C4106.8 (7)C24—C25—C26110.0 (5)
C8—C3—C4107.6 (8)C24—C25—H25A109.7
C2—C3—H3110.9C26—C25—H25A109.7
C8—C3—H3110.9C24—C25—H25B109.7
C4—C3—H3110.9C26—C25—H25B109.7
C3—C4—C5112.5 (6)H25A—C25—H25B108.2
C3—C4—H4A109.1N21—C26—C27109.6 (5)
C5—C4—H4A109.1N21—C26—C25108.7 (4)
C3—C4—H4B109.1C27—C26—C25109.1 (5)
C5—C4—H4B109.1N21—C26—C21111.3 (5)
H4A—C4—H4B107.8C27—C26—C21110.6 (5)
C6—C5—C4107.4 (5)C25—C26—C21107.4 (5)
C6—C5—H5A110.2C26—C27—C28109.0 (6)
C4—C5—H5A110.2C26—C27—H27A109.9
C6—C5—H5B110.2C28—C27—H27A109.9
C4—C5—H5B110.2C26—C27—H27B109.9
H5A—C5—H5B108.5C28—C27—H27B109.9
N1—C6—C5112.1 (5)H27A—C27—H27B108.3
N1—C6—C7109.6 (5)C23—C28—C27110.3 (6)
C5—C6—C7108.8 (5)C23—C28—H28A109.6
N1—C6—C1107.2 (4)C27—C28—H28A109.6
C5—C6—C1110.7 (5)C23—C28—H28B109.6
C7—C6—C1108.3 (5)C27—C28—H28B109.6
C8—C7—C6109.1 (6)H28A—C28—H28B108.1
C8—C7—H7A109.9O21—C29—O22122.9 (7)
C6—C7—H7A109.9O21—C29—C21126.2 (6)
C8—C7—H7B109.9O22—C29—C21110.9 (5)
C6—C7—H7B109.9N21—C30—P21112.5 (4)
H7A—C7—H7B108.3N21—C30—H30A109.1
C7—C8—C3112.4 (6)P21—C30—H30A109.1
C7—C8—H8A109.1N21—C30—H30B109.1
C3—C8—H8A109.1P21—C30—H30B109.1
C7—C8—H8B109.1H30A—C30—H30B107.8
C3—C8—H8B109.1O23—C31—H31A109.5
H8A—C8—H8B107.9O23—C31—H31B109.5
O1—C9—O2121.3 (6)H31A—C31—H31B109.5
O1—C9—C1124.1 (6)O23—C31—H31C109.5
O2—C9—C1114.6 (6)H31A—C31—H31C109.5
N1—C10—P1111.1 (4)H31B—C31—H31C109.5
N1—C10—H10A109.4C10—N1—C6119.5 (4)
P1—C10—H10A109.4C10—N1—H1A107.5
N1—C10—H10B109.4C6—N1—H1A107.5
P1—C10—H10B109.4C10—N1—H1B107.5
H10A—C10—H10B108.0C6—N1—H1B107.5
O3—C11—H11A109.5H1A—N1—H1B107.0
O3—C11—H11B109.5C30—N21—C26117.4 (4)
H11A—C11—H11B109.5C30—N21—H21A107.9
O3—C11—H11C109.5C26—N21—H21A107.9
H11A—C11—H11C109.5C30—N21—H21B107.9
H11B—C11—H11C109.5C26—N21—H21B107.9
Cl2—C12—Cl1117.6 (14)H21A—N21—H21B107.2
Cl2—C12—H12A107.9C9—O2—H2109.5
Cl1—C12—H12A107.9C11—O3—P1120.8 (4)
Cl2—C12—H12B107.9C29—O22—H22109.5
Cl1—C12—H12B107.9C31—O23—P21120.3 (6)
H12A—C12—H12B107.2O5—P1—O4120.6 (3)
C29—C21—C26115.9 (5)O5—P1—O3106.2 (3)
C29—C21—C22111.3 (5)O4—P1—O3108.9 (3)
C26—C21—C22106.7 (5)O5—P1—C10109.7 (3)
C29—C21—H21107.5O4—P1—C10107.1 (3)
C26—C21—H21107.5O3—P1—C10102.9 (3)
C22—C21—H21107.5O24—P21—O25120.2 (3)
C23—C22—C21109.9 (5)O24—P21—O23107.0 (4)
C23—C22—H22A109.7O25—P21—O23111.0 (3)
C21—C22—H22A109.7O24—P21—C30107.8 (3)
C23—C22—H22B109.7O25—P21—C30107.6 (3)
C21—C22—H22B109.7O23—P21—C30101.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O24i0.901.792.673 (6)168
N1—H1B···O10.901.932.683 (6)140
N21—H21A···O220.902.042.750 (7)135
N21—H21B···O5ii0.901.792.690 (6)173
O2—H2···O4ii0.821.662.474 (6)172
O22—H22···O25iii0.821.862.596 (6)149
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H20NO5P·0.25CH2Cl2
Mr298.48
Crystal system, space groupOrthorhombic, P212121
Temperature (K)290
a, b, c (Å)9.3520 (2), 12.7553 (3), 24.1148 (8)
V3)2876.60 (13)
Z8
Radiation typeCu Kα
µ (mm1)2.70
Crystal size (mm)0.32 × 0.24 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.151, 0.582
No. of measured, independent and
observed [I > 2σ(I)] reflections
11759, 4532, 3305
Rint0.088
(sin θ/λ)max1)0.576
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.205, 1.02
No. of reflections4532
No. of parameters356
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.34
Absolute structureFlack (1983), 1914 Friedel paris
Absolute structure parameter0.04 (4)

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O24i0.901.792.673 (6)167.6
N1—H1B···O10.901.932.683 (6)140.2
N21—H21A···O220.902.042.750 (7)134.8
N21—H21B···O5ii0.901.792.690 (6)172.8
O2—H2···O4ii0.821.662.474 (6)172.2
O22—H22···O25iii0.821.862.596 (6)148.7
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge the Ministry of Education and Science (Bulgaria), grants DPOSTDOC 02/3 and DRNF 02/1, for financial support.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKafarski, P. & Lejczak, B. (2001). Curr. Med. Chem. 1, 301–312.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNaydenova, E. D., Todorov, P. T., Topashka-Ancheva, M. N., Momekov, G. Ts., Yordanova, T. Z., Konstantinov, S. M. & Troev, K. D. (2008). Eur. J. Med. Chem. 43, 1199–1205.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNaydenova, E. D., Todorov, P. T. & Troev, K. D. (2010). Amino Acids, 38, 23–30.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOrsini, F., Sello, G. & Sisti, M. (2010). Curr. Med. Chem. 17, 264–289.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTroev, K. D. (2006). In Chemistry and Application of H-Phosphonates. Amsterdam: Elsevier.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2152-o2153
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds