organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2145-o2146

(Z)-Ethyl 2-cyano-2-{2-[5,6-di­methyl-4-(thio­phen-2-yl)-1H-pyrazolo­[3,4-b]pyridin-3-yl]hydrazinyl­idene}acetate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: hkfun@usm.my

(Received 12 July 2011; accepted 18 July 2011; online 30 July 2011)

In the title compound, C17H16N6O2S, an intra­molecular N—H⋯O inter­action generates an S(6) ring. The pyridine ring makes a dihedral angle of 71.38 (11)° with the thio­phene ring. In the crystal, mol­ecules are linked by a pair of N—H⋯N hydrogen bonds, forming an inversion dimer. The dimers are stacked in columns along the b axis through weak inter­molecular C—H⋯N hydrogen bonds.

Related literature

For applications of pyrazole derivatives, see: Casas et al. (2007[Casas, J. S., Garclá-Tasende, M. S., Sanchez, A., Sordo, J. & Touceda, A. (2007). Coord. Chem. Rev. 251, 1561-1589.]); Habeeb et al. (2001[Habeeb, A. G., Rao, P. N. P. & Knaus, E. E. (2001). J. Med. Chem. 44, 3039-3042.]); Hashimoto et al. (2002[Hashimoto, H., Imamura, K., Haruta, J. I. & Wakitani, K. (2002). J. Med. Chem. 45, 1511-1517.]); Ranatunge et al. (2004[Ranatunge, R. R., Earl, R. A., Garvey, D. S., Janero, D. R., Letts, L. G., Martino, A. M., Murty, M. G., Richardson, S. K., Schwalb, D. J., Young, D. V. & Zemtseva, I. S. (2004). Bioorg. Med. Chem. 14, 6049-6052.]); Singh et al. (2005[Singh, S. K., Saibaba, V., Rao, V., Reddy, P. G., Daga, P. R., Rajjak, S. A., Misra, P. & Rao, Y. K. (2005). Eur. J. Med. Chem. 40, 977-990.]); Elzein et al. (2006[Elzein, E., Kalla, R., Li, X., Perry, T., Parkhill, E., Palle, V., Varkhedkar, V., Gimbel, A., Zeng, D., Lustig, D., Leung, D. & Zablocki, J. (2006). Bioorg. Med. Chem. Lett. 16, 302-306.]). For previous reports on the diazotization of heterocyclic amines, see: Abdel-Aziz et al. (2008[Abdel-Aziz, H. A., Hamdy, N. A., Farag, A. M. & Fakhr, I. M. I. (2008). J. Heterocycl. Chem., 45, 1-5.]); Hamdy et al. (2007[Hamdy, N. A., Abdel-Aziz, H. A., Farag, A. M. & Fakhr, I. M. I. (2007). Monatsh. Chem., 138, 1001-1010.]); Dawood et al. (2005[Dawood, K. M., Farag, A. M. & Abdel-Aziz, H. A. (2005). J. Chem. Res., pp. 378-381.]); Farag et al. (2004[Farag, A. M., Dawood, K. M. & Abdel-Aziz, H. A. (2004). J. Chem. Res., pp. 808-810.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16N6O2S

  • Mr = 368.42

  • Monoclinic, P 21 /n

  • a = 8.0672 (5) Å

  • b = 10.6460 (7) Å

  • c = 20.5892 (13) Å

  • β = 90.332 (1)°

  • V = 1768.24 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.47 × 0.22 × 0.13 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.908, Tmax = 0.974

  • 33610 measured reflections

  • 4782 independent reflections

  • 3518 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.219

  • S = 1.06

  • 4782 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯N1i 0.89 2.07 2.941 (3) 165
N4—H1N4⋯O1 0.85 1.99 2.642 (3) 133
C13—H13A⋯N5ii 0.93 2.62 3.463 (3) 151
Symmetry codes: (i) -x, -y, -z; (ii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazolones form a very important class of heterocycles due to their properties and applications (Casas et al., 2007). The pyrazole unit is one of the core structures in a number of natural products and has attracted attention in the field of biological sciences (Habeeb et al., 2001; Hashimoto et al., 2002). Extensive studies have been devoted to arylpyrazole derivatives such as celecoxib, a well-known cyclooxygenase-2 inhibitor (Ranatunge et al., 2004; Singh et al., 2005). Recently, pyrazole derivatives have been reported as high affinity and selective A2B adenosine receptor antagonist (Elzein et al., 2006). In continuation of our studies on pyrazolone schiff bases, we herein report the crystal structure of the title pyrazole compound.

The molecular structure of the title compound is shown in Fig. 1. The pyridine ring (N1/C1–C5) is essentially planar [maximum deivation of 0.010 (2) Å for atom C5] and makes dihedral angles of 71.38 (11)° and 1.92 (12)° with the thiophene (S1/C12–C15) and pyrazole (N2/N3/C1/C5/C6) rings.

The crystal structure, (Fig. 2), is stabilized by weak intermolecular N2—H1N2···N1 and C13—H13A···N5 (Table 1) hydrogen bonds. There is an intramolecular N4–H1N4···O1 interaction generating an S(6) ring (Bernstein et al., 1995).

Related literature top

For applications of pyrazole derivatives, see: Casas et al. (2007); Habeeb et al. (2001); Hashimoto et al. (2002); Ranatunge et al. (2004); Singh et al. (2005); Elzein et al. (2006). For the previous reports on the diazotization of heterocyclic amines, see: Abdel-Aziz et al. (2008); Hamdy et al. (2007); Dawood et al. (2005); Farag et al. (2004). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a stirred solution of ethyl cyanoacetate (1.3 g, 10 mmol) in ethanol (50 ml), sodium acetate trihydrate (1.3 g, 10 mmol) was added. After stirring for 15 min, the mixture was chilled at 5°C and treated with a cold solution of 5,6-dimethyl-4-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-3-amine dizonium chloride with stirring for 2 h at 0–5 °C. The mixture was then left for 8h in a refrigerator (4 °C). The resulting solid was collected by filtration, washed thoroughly with water and dried. The crude product was crystallized from ethanol to give the title hydrazone.

Preparation of 5,6-dimethyl-4-(thiophen-2-yl)-1H-pyrazolo[3,4-b] pyridin-3-amine dizonium chloride.

A suspension of 5,6-dimethyl-4-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-3-amine (2.44 g, 10 mmol) in glacial acetic acid (10 ml) was heated to produce a clear solution and then cooled to 5 °C. 15 ml of hydrochloric acid was then added. A solution of sodium nitrite (0.7 g, 10 mmol) in water (10 ml) was then gradually added with stirring.

Refinement top

All hydrogen atoms were positioned geometrically (N—H = 0.8475–0.8953 Å; C—H = 0.93–0.97 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The intramolecular hydrogen bond is shown by a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound. Dashed lines represent hydrogen bonding.
2-cyano-2-{2-[5,6-dimethyl-4-(thiophen-2-yl)-1H-pyrazolo[3,4- b]pyridin-3-yl]hydrazinylidene}acetate top
Crystal data top
C17H16N6O2SF(000) = 768
Mr = 368.42Dx = 1.384 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8773 reflections
a = 8.0672 (5) Åθ = 2.7–28.9°
b = 10.6460 (7) ŵ = 0.21 mm1
c = 20.5892 (13) ÅT = 296 K
β = 90.332 (1)°Block, yellow
V = 1768.24 (19) Å30.47 × 0.22 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4782 independent reflections
Radiation source: fine-focus sealed tube3518 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 29.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.908, Tmax = 0.974k = 1414
33610 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.219H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1182P)2 + 0.809P]
where P = (Fo2 + 2Fc2)/3
4782 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
C17H16N6O2SV = 1768.24 (19) Å3
Mr = 368.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0672 (5) ŵ = 0.21 mm1
b = 10.6460 (7) ÅT = 296 K
c = 20.5892 (13) Å0.47 × 0.22 × 0.13 mm
β = 90.332 (1)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4782 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3518 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.974Rint = 0.029
33610 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.219H-atom parameters constrained
S = 1.06Δρmax = 0.61 e Å3
4782 reflectionsΔρmin = 0.68 e Å3
238 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3443 (3)0.6604 (2)0.08593 (9)0.0832 (7)
O20.4554 (3)0.80464 (18)0.01904 (9)0.0674 (5)
N10.0513 (2)0.07181 (16)0.08467 (9)0.0443 (4)
N20.0682 (3)0.16420 (17)0.01066 (9)0.0527 (5)
H1N20.07090.10090.03920.063*
N30.1472 (3)0.27295 (17)0.02803 (9)0.0514 (5)
N40.2184 (2)0.46227 (16)0.02614 (8)0.0447 (4)
H1N40.22990.50140.06170.054*
N50.2772 (2)0.51079 (17)0.02755 (8)0.0441 (4)
N60.4563 (4)0.7030 (3)0.13610 (14)0.0921 (9)
C10.0215 (3)0.16591 (18)0.05219 (9)0.0413 (4)
C20.0843 (3)0.09562 (19)0.14668 (10)0.0418 (4)
C30.0472 (2)0.21163 (18)0.17806 (10)0.0407 (4)
C40.0297 (2)0.30706 (17)0.14358 (9)0.0370 (4)
C50.0674 (2)0.28297 (17)0.07806 (9)0.0375 (4)
C60.1458 (3)0.34311 (19)0.02462 (9)0.0419 (4)
C70.3502 (3)0.6208 (2)0.02605 (10)0.0465 (5)
C80.4084 (3)0.6659 (3)0.08754 (13)0.0588 (6)
C90.3807 (3)0.6957 (2)0.03246 (12)0.0554 (6)
C100.4980 (4)0.8842 (3)0.07369 (16)0.0752 (8)
H10A0.59390.93500.06310.090*
H10B0.52580.83260.11100.090*
C110.3568 (6)0.9662 (4)0.0894 (2)0.1057 (13)
H11A0.38781.02240.12380.158*
H11B0.26460.91580.10290.158*
H11C0.32611.01400.05160.158*
C120.0656 (2)0.43206 (17)0.17233 (9)0.0385 (4)
S10.21437 (12)0.45313 (7)0.23040 (5)0.0874 (4)
C130.0232 (3)0.54559 (17)0.16053 (11)0.0471 (5)
H13A0.11180.55520.13190.056*
C140.0476 (3)0.6427 (2)0.20046 (14)0.0605 (7)
H14A0.01100.72550.19890.073*
C150.1673 (4)0.6062 (3)0.23924 (14)0.0674 (7)
H15A0.22070.65910.26860.081*
C160.1660 (4)0.0089 (2)0.18327 (13)0.0591 (6)
H16A0.17190.08230.15630.089*
H16B0.27590.01610.19540.089*
H16C0.10240.02750.22170.089*
C170.1005 (4)0.2290 (2)0.24741 (12)0.0590 (6)
H17A0.07520.31300.26120.089*
H17B0.04260.17020.27460.089*
H17C0.21770.21490.25060.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1284 (19)0.0709 (13)0.0503 (10)0.0409 (13)0.0105 (11)0.0096 (9)
O20.0854 (13)0.0548 (10)0.0619 (11)0.0234 (9)0.0050 (9)0.0013 (8)
N10.0605 (10)0.0309 (8)0.0415 (9)0.0040 (7)0.0020 (7)0.0093 (6)
N20.0854 (14)0.0356 (9)0.0372 (9)0.0096 (9)0.0032 (9)0.0098 (7)
N30.0774 (13)0.0385 (9)0.0384 (9)0.0054 (9)0.0012 (8)0.0044 (7)
N40.0599 (11)0.0372 (8)0.0371 (8)0.0072 (7)0.0009 (7)0.0031 (6)
N50.0515 (10)0.0407 (9)0.0401 (9)0.0024 (7)0.0033 (7)0.0010 (7)
N60.120 (2)0.094 (2)0.0626 (15)0.0126 (17)0.0142 (15)0.0220 (14)
C10.0559 (11)0.0300 (9)0.0381 (9)0.0006 (8)0.0031 (8)0.0071 (7)
C20.0488 (10)0.0325 (9)0.0441 (10)0.0020 (8)0.0013 (8)0.0064 (7)
C30.0467 (10)0.0355 (9)0.0400 (9)0.0001 (8)0.0033 (8)0.0090 (7)
C40.0420 (9)0.0296 (8)0.0394 (9)0.0022 (7)0.0028 (7)0.0094 (7)
C50.0460 (10)0.0285 (8)0.0379 (9)0.0012 (7)0.0033 (7)0.0060 (7)
C60.0539 (11)0.0341 (9)0.0375 (9)0.0010 (8)0.0024 (8)0.0036 (7)
C70.0519 (11)0.0434 (11)0.0443 (11)0.0040 (9)0.0033 (9)0.0029 (8)
C80.0656 (15)0.0572 (14)0.0536 (13)0.0080 (12)0.0014 (11)0.0084 (11)
C90.0665 (14)0.0486 (12)0.0512 (12)0.0124 (11)0.0006 (10)0.0013 (10)
C100.088 (2)0.0700 (18)0.0674 (17)0.0241 (16)0.0069 (15)0.0054 (14)
C110.123 (3)0.104 (3)0.090 (3)0.005 (3)0.022 (2)0.018 (2)
C120.0471 (10)0.0322 (9)0.0362 (9)0.0007 (7)0.0024 (7)0.0092 (7)
S10.1022 (6)0.0517 (4)0.1075 (7)0.0073 (4)0.0565 (5)0.0211 (4)
C130.0628 (13)0.0254 (8)0.0529 (12)0.0027 (8)0.0138 (10)0.0069 (8)
C140.0720 (16)0.0301 (10)0.0795 (17)0.0007 (10)0.0077 (13)0.0153 (10)
C150.0914 (19)0.0490 (13)0.0617 (15)0.0171 (13)0.0097 (14)0.0215 (11)
C160.0800 (16)0.0428 (11)0.0544 (13)0.0172 (11)0.0066 (12)0.0038 (10)
C170.0762 (16)0.0506 (13)0.0504 (12)0.0084 (12)0.0185 (11)0.0156 (10)
Geometric parameters (Å, º) top
O1—C91.202 (3)C7—C81.436 (3)
O2—C91.337 (3)C7—C91.464 (3)
O2—C101.448 (3)C10—C111.472 (5)
N1—C21.330 (3)C10—H10A0.9700
N1—C11.342 (3)C10—H10B0.9700
N2—C11.350 (3)C11—H11A0.9600
N2—N31.370 (3)C11—H11B0.9600
N2—H1N20.8953C11—H11C0.9600
N3—C61.317 (3)C12—C131.425 (3)
N4—N51.312 (2)C12—S11.704 (2)
N4—C61.398 (3)S1—C151.683 (3)
N4—H1N40.8475C13—C141.438 (3)
N5—C71.311 (3)C13—H13A0.9300
N6—C81.144 (3)C14—C151.309 (4)
C1—C51.404 (2)C14—H14A0.9300
C2—C31.425 (3)C15—H15A0.9300
C2—C161.498 (3)C16—H16A0.9600
C3—C41.388 (3)C16—H16B0.9600
C3—C171.505 (3)C16—H16C0.9600
C4—C51.408 (3)C17—H17A0.9600
C4—C121.484 (2)C17—H17B0.9600
C5—C61.424 (3)C17—H17C0.9600
C9—O2—C10116.9 (2)O2—C10—H10A109.7
C2—N1—C1115.27 (17)C11—C10—H10A109.7
C1—N2—N3111.82 (16)O2—C10—H10B109.7
C1—N2—H1N2130.4C11—C10—H10B109.7
N3—N2—H1N2116.9H10A—C10—H10B108.2
C6—N3—N2104.96 (17)C10—C11—H11A109.5
N5—N4—C6119.50 (17)C10—C11—H11B109.5
N5—N4—H1N4119.8H11A—C11—H11B109.5
C6—N4—H1N4120.6C10—C11—H11C109.5
C7—N5—N4119.77 (18)H11A—C11—H11C109.5
N1—C1—N2126.38 (17)H11B—C11—H11C109.5
N1—C1—C5126.08 (18)C13—C12—C4126.55 (17)
N2—C1—C5107.51 (18)C13—C12—S1111.06 (14)
N1—C2—C3123.90 (19)C4—C12—S1122.20 (15)
N1—C2—C16115.61 (18)C15—S1—C1292.58 (12)
C3—C2—C16120.49 (19)C12—C13—C14108.4 (2)
C4—C3—C2119.73 (18)C12—C13—H13A125.8
C4—C3—C17121.76 (18)C14—C13—H13A125.8
C2—C3—C17118.46 (19)C15—C14—C13115.1 (2)
C3—C4—C5117.16 (16)C15—C14—H14A122.5
C3—C4—C12122.62 (17)C13—C14—H14A122.5
C5—C4—C12120.17 (17)C14—C15—S1112.84 (18)
C1—C5—C4117.84 (18)C14—C15—H15A123.6
C1—C5—C6102.90 (16)S1—C15—H15A123.6
C4—C5—C6139.26 (18)C2—C16—H16A109.5
N3—C6—N4121.85 (19)C2—C16—H16B109.5
N3—C6—C5112.78 (18)H16A—C16—H16B109.5
N4—C6—C5125.35 (17)C2—C16—H16C109.5
N5—C7—C8115.3 (2)H16A—C16—H16C109.5
N5—C7—C9125.4 (2)H16B—C16—H16C109.5
C8—C7—C9119.3 (2)C3—C17—H17A109.5
N6—C8—C7179.0 (3)C3—C17—H17B109.5
O1—C9—O2125.0 (2)H17A—C17—H17B109.5
O1—C9—C7122.8 (2)C3—C17—H17C109.5
O2—C9—C7112.1 (2)H17A—C17—H17C109.5
O2—C10—C11109.7 (3)H17B—C17—H17C109.5
C1—N2—N3—C61.2 (3)N5—N4—C6—N36.0 (3)
C6—N4—N5—C7177.88 (19)N5—N4—C6—C5175.59 (19)
C2—N1—C1—N2179.4 (2)C1—C5—C6—N30.5 (2)
C2—N1—C1—C51.5 (3)C4—C5—C6—N3179.5 (2)
N3—N2—C1—N1176.7 (2)C1—C5—C6—N4178.0 (2)
N3—N2—C1—C51.6 (3)C4—C5—C6—N41.0 (4)
C1—N1—C2—C30.1 (3)N4—N5—C7—C8179.3 (2)
C1—N1—C2—C16179.9 (2)N4—N5—C7—C93.1 (4)
N1—C2—C3—C40.8 (3)C10—O2—C9—O11.3 (4)
C16—C2—C3—C4179.4 (2)C10—O2—C9—C7177.5 (2)
N1—C2—C3—C17176.4 (2)N5—C7—C9—O12.0 (4)
C16—C2—C3—C173.4 (3)C8—C7—C9—O1175.5 (3)
C2—C3—C4—C50.0 (3)N5—C7—C9—O2179.2 (2)
C17—C3—C4—C5177.1 (2)C8—C7—C9—O23.3 (3)
C2—C3—C4—C12177.37 (18)C9—O2—C10—C1187.7 (3)
C17—C3—C4—C120.3 (3)C3—C4—C12—C13103.8 (3)
N1—C1—C5—C42.2 (3)C5—C4—C12—C1373.5 (3)
N2—C1—C5—C4179.51 (18)C3—C4—C12—S170.8 (2)
N1—C1—C5—C6177.1 (2)C5—C4—C12—S1111.9 (2)
N2—C1—C5—C61.2 (2)C13—C12—S1—C150.9 (2)
C3—C4—C5—C11.3 (3)C4—C12—S1—C15176.20 (19)
C12—C4—C5—C1176.08 (18)C4—C12—C13—C14177.2 (2)
C3—C4—C5—C6177.6 (2)S1—C12—C13—C142.2 (3)
C12—C4—C5—C65.0 (4)C12—C13—C14—C152.9 (3)
N2—N3—C6—N4178.99 (19)C13—C14—C15—S12.3 (4)
N2—N3—C6—C50.4 (3)C12—S1—C15—C140.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···N1i0.892.072.941 (3)165
N4—H1N4···O10.851.992.642 (3)133
C13—H13A···N5ii0.932.623.463 (3)151
Symmetry codes: (i) x, y, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H16N6O2S
Mr368.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.0672 (5), 10.6460 (7), 20.5892 (13)
β (°) 90.332 (1)
V3)1768.24 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.47 × 0.22 × 0.13
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.908, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
33610, 4782, 3518
Rint0.029
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.219, 1.06
No. of reflections4782
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.68

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···N1i0.892.072.941 (3)165
N4—H1N4···O10.851.992.642 (3)133
C13—H13A···N5ii0.932.623.463 (3)151
Symmetry codes: (i) x, y, z; (ii) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HAA and TA supplied the crystal for this study.

References

First citationAbdel-Aziz, H. A., Hamdy, N. A., Farag, A. M. & Fakhr, I. M. I. (2008). J. Heterocycl. Chem., 45, 1–5.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J. S., Garclá-Tasende, M. S., Sanchez, A., Sordo, J. & Touceda, A. (2007). Coord. Chem. Rev. 251, 1561–1589.  CrossRef CAS Google Scholar
First citationDawood, K. M., Farag, A. M. & Abdel-Aziz, H. A. (2005). J. Chem. Res., pp. 378–381.  Google Scholar
First citationElzein, E., Kalla, R., Li, X., Perry, T., Parkhill, E., Palle, V., Varkhedkar, V., Gimbel, A., Zeng, D., Lustig, D., Leung, D. & Zablocki, J. (2006). Bioorg. Med. Chem. Lett. 16, 302–306.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarag, A. M., Dawood, K. M. & Abdel-Aziz, H. A. (2004). J. Chem. Res., pp. 808–810.  Google Scholar
First citationHabeeb, A. G., Rao, P. N. P. & Knaus, E. E. (2001). J. Med. Chem. 44, 3039–3042.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHamdy, N. A., Abdel-Aziz, H. A., Farag, A. M. & Fakhr, I. M. I. (2007). Monatsh. Chem., 138, 1001–1010.  Web of Science CrossRef CAS Google Scholar
First citationHashimoto, H., Imamura, K., Haruta, J. I. & Wakitani, K. (2002). J. Med. Chem. 45, 1511–1517.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRanatunge, R. R., Earl, R. A., Garvey, D. S., Janero, D. R., Letts, L. G., Martino, A. M., Murty, M. G., Richardson, S. K., Schwalb, D. J., Young, D. V. & Zemtseva, I. S. (2004). Bioorg. Med. Chem. 14, 6049–6052.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, S. K., Saibaba, V., Rao, V., Reddy, P. G., Daga, P. R., Rajjak, S. A., Misra, P. & Rao, Y. K. (2005). Eur. J. Med. Chem. 40, 977–990.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2145-o2146
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds