metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[tris­(2,4,6-tri­methyl­anilinium) [(tetra­chloridocadmium)-μ-chlorido]]

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: rongtao198806@163.com

(Received 14 July 2011; accepted 17 July 2011; online 23 July 2011)

The asymmetric unit of the title compound, {(C9H14N)3[CdCl5]}n, comprises three 2,4,6-trimethyl­aniline dications and one half of the [Cd2Cl10]6− anion. The Cd atoms are each coordinated by six Cl atoms, with octa­hedra linked by bridging, apical Cl atoms, forming linear chains running parallel to the a axis. The trimethylanilinium cations form stacks between the chains of CdCl6 octa­hedra.

Related literature

The title compound was studied as part of our work to obtain potential ferroelectric phase-change materials. For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009[Fu, D. W., Ge, J. Z., Dai, J., Ye, H. Y. & Qu, Z. R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Ye et al. (2006[Ye, Q., Song, Y. M., Wang, G. X., Chen, K. & Fu, D. W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R. G. & Huang, S. P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2010[Zhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z. & Xiong, R. G. (2010). J. Am. Chem. Soc. 132, 7300-7302.]).

[Scheme 1]

Experimental

Crystal data
  • (C9H14N)3[CdCl5]

  • Mr = 698.29

  • Orthorhombic, P 21 21 21

  • a = 10.729 (2) Å

  • b = 16.430 (3) Å

  • c = 17.996 (4) Å

  • V = 3172.2 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.798, Tmax = 0.798

  • 33173 measured reflections

  • 7271 independent reflections

  • 6752 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.068

  • S = 1.07

  • 7271 reflections

  • 337 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯Cl3 0.89 2.26 3.129 (3) 166
N3—H3B⋯Cl3 0.89 2.70 3.283 (3) 124
N3—H3B⋯Cl5 0.89 2.62 3.158 (3) 119
N2—H2A⋯Cl6i 0.89 2.40 3.250 (3) 160
N3—H3A⋯Cl2ii 0.89 2.41 3.264 (3) 160
N1—H1A⋯Cl4iii 0.89 2.43 3.278 (3) 160
N1—H1B⋯Cl3iv 0.89 2.61 3.285 (3) 134
N1—H1C⋯Cl2iv 0.89 2.43 3.306 (3) 169
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) x, y+1, z-1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The study of ferroelectric materials has received much attention. Some materials have predominantly dielectric-ferroelectric performance. The title compound was studied as part of our work to obtain potential ferroelectric phase-change materials Fu et al.(2009); Ye et al. (2006); Zhang et al. (2008, 2010).

As one part of our continuing studies on dielectric-ferroelectric materials, we synthesized the title compound (C9H14N)3.CdCl5. Unfortunately, the study carried out on the title compound indicated that the permittivity is temperature-independent, suggesting that there may be no dielectric disuniformity between 80 K to 350 K.

Theasymmetric unit of the title compound contains three [C9H47N]+ basic ion and half of the [Cd2Cl10]6- complex ionwhich is situated on an inversion centre. The intermolecular hydrogen bonds (N1—H···Cl2, N1—H···Cl3, N1—H···Cl4, N2—H···Cl3, N2—H···Cl6, N3—H···Cl2, N3—H···Cl3 and N3—H···Cl5 link the molecules into a one-dimensional linear structure and stabilize the structure.

Related literature top

The title compound was studied as part of our work to obtain potential ferroelectric phase-change materials. For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010).

Experimental top

A solution of chlorhydric acid (10 mmol) was added to a solution of half equimolar amount of 2,4,6-Trimethylaniline inethanol (20 mL), then cadmium chloride(5 mmol) in water (10 mL) was added.Crystals suitable for structure determination were grown by slow evaporation of the mixture at room temperature.

Refinement top

Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C) for the methyl group. The other H bonded to N atoms were calculated geometrically and were allowed to ride on the N atoms with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.[The suffix A denotes the symmetry code: -1/2 + x 0.5 - y 2 - z]
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the a axis. Dashed lines indicate hydrogen bonds.
catena-Poly[tris(2,4,6-trimethylanilinium) [(tetrachloridocadmium)-µ-chlorido]] top
Crystal data top
(C9H14N)3[CdCl5]F(000) = 1432
Mr = 698.29Dx = 1.462 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7271 reflections
a = 10.729 (2) Åθ = 3.1–27.5°
b = 16.430 (3) ŵ = 1.13 mm1
c = 17.996 (4) ÅT = 293 K
V = 3172.2 (11) Å3Prism, colourless
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
7271 independent reflections
Radiation source: fine-focus sealed tube6752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD_Profile_fitting scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2121
Tmin = 0.798, Tmax = 0.798l = 2323
33173 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0235P)2 + 1.6716P]
where P = (Fo2 + 2Fc2)/3
7271 reflections(Δ/σ)max = 0.006
337 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
(C9H14N)3[CdCl5]V = 3172.2 (11) Å3
Mr = 698.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.729 (2) ŵ = 1.13 mm1
b = 16.430 (3) ÅT = 293 K
c = 17.996 (4) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
7271 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
6752 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.798Rint = 0.046
33173 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.07Δρmax = 0.30 e Å3
7271 reflectionsΔρmin = 0.53 e Å3
337 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.612594 (19)0.264994 (14)1.010000 (11)0.03061 (6)
Cl20.57453 (8)0.19719 (5)1.13969 (4)0.0422 (2)
Cl30.59250 (7)0.12522 (5)0.93873 (4)0.03403 (17)
Cl40.63550 (8)0.33959 (5)0.88122 (5)0.03973 (19)
Cl50.86375 (6)0.22240 (5)1.00838 (4)0.04127 (19)
Cl60.67019 (9)0.39688 (6)1.07986 (6)0.0501 (2)
N20.3915 (3)0.19586 (18)0.83050 (14)0.0433 (7)
H2A0.31850.17650.84600.065*
H2B0.39520.24910.83940.065*
H2C0.45290.17080.85460.065*
C150.4047 (3)0.1812 (2)0.74953 (17)0.0328 (7)
N30.8225 (3)0.19469 (18)0.83647 (15)0.0407 (7)
H3A0.89950.21480.83550.061*
H3B0.81350.16310.87630.061*
H3C0.76780.23540.83850.061*
C60.3959 (3)0.97807 (18)0.08418 (17)0.0336 (7)
C100.3967 (3)0.24689 (18)0.70168 (17)0.0360 (7)
C50.3917 (3)0.96051 (19)0.15963 (16)0.0346 (7)
N10.3849 (3)1.06423 (16)0.06078 (16)0.0449 (7)
H1A0.30751.08160.06900.067*
H1B0.40241.06840.01260.067*
H1C0.43821.09450.08670.067*
C10.4063 (3)0.9183 (2)0.03014 (17)0.0360 (7)
C160.3799 (4)0.3324 (2)0.7294 (2)0.0506 (9)
H16A0.30390.33600.75740.076*
H16B0.37610.36910.68790.076*
H16C0.44900.34690.76070.076*
C230.7664 (3)0.1862 (2)0.7048 (2)0.0393 (8)
C270.7503 (4)0.2771 (3)0.7006 (2)0.0553 (11)
H27A0.67820.29290.72860.083*
H27B0.73970.29310.64960.083*
H27C0.82280.30340.72070.083*
C40.4004 (3)0.8788 (2)0.18055 (18)0.0382 (7)
H40.39890.86570.23080.046*
C30.4112 (3)0.8174 (2)0.12931 (19)0.0378 (8)
C140.4213 (3)0.1022 (2)0.72525 (18)0.0344 (7)
C90.3765 (4)1.0260 (2)0.21723 (19)0.0460 (9)
H9A0.44471.06370.21370.069*
H9B0.37571.00190.26580.069*
H9C0.29951.05430.20900.069*
C110.4044 (3)0.2298 (2)0.62569 (18)0.0445 (8)
H110.40050.27260.59200.053*
C70.4097 (5)0.9373 (2)0.05204 (19)0.0522 (10)
H7A0.41540.88750.07980.078*
H7B0.48090.97070.06270.078*
H7C0.33510.96580.06580.078*
C20.4145 (3)0.8384 (2)0.05417 (19)0.0414 (8)
H20.42250.79720.01900.050*
C210.8163 (3)0.0623 (2)0.7733 (2)0.0409 (9)
C220.8005 (3)0.1463 (2)0.76894 (19)0.0344 (7)
C190.7601 (4)0.0551 (3)0.6430 (2)0.0533 (11)
C120.4174 (3)0.1513 (2)0.59900 (18)0.0447 (9)
C130.4265 (3)0.0884 (2)0.64915 (19)0.0406 (8)
H130.43630.03550.63170.049*
C200.7946 (3)0.0186 (2)0.7084 (2)0.0497 (10)
H200.80380.03760.70930.060*
C260.8547 (4)0.0203 (3)0.8438 (2)0.0601 (12)
H26A0.79110.02750.88080.090*
H26B0.93150.04320.86140.090*
H26C0.86610.03680.83440.090*
C170.4321 (4)0.0315 (2)0.7783 (2)0.0498 (10)
H17A0.51170.03340.80260.075*
H17B0.42460.01860.75120.075*
H17C0.36700.03480.81470.075*
C240.7476 (3)0.1390 (3)0.6415 (2)0.0498 (10)
H240.72620.16450.59710.060*
C80.4193 (4)0.7297 (2)0.1520 (2)0.0523 (9)
H8A0.40910.72540.20480.078*
H8B0.49920.70820.13800.078*
H8C0.35480.69930.12760.078*
C250.7373 (5)0.0056 (4)0.5723 (3)0.0867 (18)
H25A0.74780.05130.58290.130*
H25B0.79570.02180.53470.130*
H25C0.65400.01510.55490.130*
C180.4226 (4)0.1344 (3)0.5161 (2)0.0678 (12)
H18A0.50700.13920.49900.102*
H18B0.37110.17290.49030.102*
H18C0.39280.08030.50650.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02973 (10)0.03547 (11)0.02664 (10)0.00434 (10)0.00074 (9)0.00228 (9)
Cl20.0450 (5)0.0514 (5)0.0302 (4)0.0034 (4)0.0016 (3)0.0044 (4)
Cl30.0329 (4)0.0339 (4)0.0354 (4)0.0027 (3)0.0002 (3)0.0018 (3)
Cl40.0413 (5)0.0397 (4)0.0381 (4)0.0007 (4)0.0021 (4)0.0066 (3)
Cl50.0268 (3)0.0618 (5)0.0352 (4)0.0017 (3)0.0009 (3)0.0086 (4)
Cl60.0518 (5)0.0427 (5)0.0559 (6)0.0007 (4)0.0048 (4)0.0157 (4)
N20.0499 (18)0.0493 (17)0.0309 (14)0.0036 (17)0.0053 (15)0.0059 (12)
C150.0273 (17)0.0417 (18)0.0293 (16)0.0013 (15)0.0032 (14)0.0004 (13)
N30.0399 (17)0.0464 (17)0.0359 (16)0.0066 (14)0.0037 (13)0.0087 (13)
C60.0281 (16)0.0309 (16)0.0418 (18)0.0012 (15)0.0027 (15)0.0076 (13)
C100.0297 (15)0.039 (2)0.0395 (16)0.0038 (16)0.0022 (13)0.0020 (13)
C50.0260 (15)0.0423 (18)0.0354 (17)0.0028 (16)0.0003 (15)0.0017 (13)
N10.0512 (17)0.0363 (15)0.0472 (16)0.0002 (16)0.0082 (17)0.0031 (12)
C10.0361 (18)0.0374 (17)0.0344 (17)0.0040 (15)0.0038 (14)0.0061 (13)
C160.057 (2)0.039 (2)0.056 (2)0.001 (2)0.008 (2)0.0017 (16)
C230.0343 (19)0.046 (2)0.038 (2)0.0010 (16)0.0051 (15)0.0101 (17)
C270.067 (3)0.053 (3)0.046 (2)0.004 (2)0.0077 (19)0.000 (2)
C40.0294 (17)0.0496 (19)0.0357 (17)0.0032 (17)0.0004 (15)0.0112 (14)
C30.0311 (18)0.0413 (18)0.0409 (18)0.0002 (15)0.0032 (15)0.0119 (15)
C140.0295 (17)0.0386 (18)0.0352 (17)0.0010 (14)0.0016 (13)0.0002 (14)
C90.048 (2)0.051 (2)0.0391 (19)0.003 (2)0.0048 (18)0.0005 (16)
C110.0442 (19)0.0531 (19)0.0362 (17)0.006 (2)0.0026 (15)0.0109 (17)
C70.077 (3)0.041 (2)0.039 (2)0.002 (2)0.004 (2)0.0055 (15)
C20.049 (2)0.0358 (18)0.0394 (19)0.0017 (16)0.0068 (16)0.0021 (14)
C210.0284 (18)0.041 (2)0.053 (2)0.0032 (16)0.0099 (16)0.0100 (17)
C220.0280 (17)0.0413 (19)0.0338 (18)0.0056 (15)0.0045 (13)0.0151 (15)
C190.040 (2)0.063 (3)0.057 (3)0.0045 (19)0.0001 (18)0.031 (2)
C120.040 (2)0.064 (2)0.0304 (18)0.0109 (18)0.0049 (14)0.0071 (16)
C130.0375 (19)0.044 (2)0.040 (2)0.0009 (16)0.0019 (15)0.0092 (16)
C200.036 (2)0.039 (2)0.075 (3)0.0036 (17)0.0062 (19)0.0208 (19)
C260.060 (3)0.049 (2)0.071 (3)0.009 (2)0.005 (2)0.005 (2)
C170.060 (3)0.044 (2)0.046 (2)0.006 (2)0.0082 (18)0.0009 (17)
C240.042 (2)0.071 (3)0.037 (2)0.0054 (19)0.0033 (16)0.016 (2)
C80.060 (2)0.0436 (19)0.053 (2)0.009 (2)0.0059 (17)0.0121 (19)
C250.079 (4)0.101 (4)0.080 (4)0.014 (3)0.017 (3)0.060 (3)
C180.071 (3)0.096 (3)0.036 (2)0.015 (3)0.008 (2)0.008 (2)
Geometric parameters (Å, º) top
Cd1—Cl62.5803 (10)C3—C21.396 (4)
Cd1—Cl22.6182 (9)C3—C81.500 (5)
Cd1—Cl42.6331 (10)C14—C131.389 (5)
Cd1—Cl32.6393 (9)C14—C171.508 (5)
Cd1—Cl5i2.6981 (9)C9—H9A0.9600
Cd1—Cl52.7841 (9)C9—H9B0.9600
Cl5—Cd1ii2.6981 (9)C9—H9C0.9600
N2—C151.484 (4)C11—C121.383 (5)
N2—H2A0.8900C11—H110.9300
N2—H2B0.8900C7—H7A0.9600
N2—H2C0.8900C7—H7B0.9600
C15—C141.380 (5)C7—H7C0.9600
C15—C101.384 (4)C2—H20.9300
N3—C221.471 (4)C21—C201.391 (5)
N3—H3A0.8900C21—C221.393 (5)
N3—H3B0.8900C21—C261.503 (5)
N3—H3C0.8900C19—C201.370 (6)
C6—C11.387 (4)C19—C241.386 (6)
C6—C51.389 (4)C19—C251.530 (5)
C6—N11.482 (4)C12—C131.375 (5)
C10—C111.398 (4)C12—C181.519 (5)
C10—C161.502 (5)C13—H130.9300
C5—C41.397 (4)C20—H200.9300
C5—C91.503 (5)C26—H26A0.9600
N1—H1A0.8900C26—H26B0.9600
N1—H1B0.8900C26—H26C0.9600
N1—H1C0.8900C17—H17A0.9600
C1—C21.385 (4)C17—H17B0.9600
C1—C71.512 (4)C17—H17C0.9600
C16—H16A0.9600C24—H240.9300
C16—H16B0.9600C8—H8A0.9600
C16—H16C0.9600C8—H8B0.9600
C23—C221.376 (5)C8—H8C0.9600
C23—C241.393 (5)C25—H25A0.9600
C23—C271.506 (5)C25—H25B0.9600
C27—H27A0.9600C25—H25C0.9600
C27—H27B0.9600C18—H18A0.9600
C27—H27C0.9600C18—H18B0.9600
C4—C31.372 (5)C18—H18C0.9600
C4—H40.9300
Cl6—Cd1—Cl287.73 (3)C15—C14—C17122.2 (3)
Cl6—Cd1—Cl490.89 (3)C13—C14—C17119.7 (3)
Cl2—Cd1—Cl4175.69 (3)C5—C9—H9A109.5
Cl6—Cd1—Cl3170.78 (3)C5—C9—H9B109.5
Cl2—Cd1—Cl392.88 (3)H9A—C9—H9B109.5
Cl4—Cd1—Cl389.14 (3)C5—C9—H9C109.5
Cl6—Cd1—Cl5i103.43 (3)H9A—C9—H9C109.5
Cl2—Cd1—Cl5i89.29 (3)H9B—C9—H9C109.5
Cl4—Cd1—Cl5i87.06 (3)C12—C11—C10122.2 (3)
Cl3—Cd1—Cl5i85.78 (3)C12—C11—H11118.9
Cl6—Cd1—Cl589.11 (3)C10—C11—H11118.9
Cl2—Cd1—Cl593.06 (3)C1—C7—H7A109.5
Cl4—Cd1—Cl591.00 (3)C1—C7—H7B109.5
Cl3—Cd1—Cl581.68 (3)H7A—C7—H7B109.5
Cl5i—Cd1—Cl5167.335 (9)C1—C7—H7C109.5
Cd1ii—Cl5—Cd1159.99 (4)H7A—C7—H7C109.5
C15—N2—H2A109.5H7B—C7—H7C109.5
C15—N2—H2B109.5C1—C2—C3122.4 (3)
H2A—N2—H2B109.5C1—C2—H2118.8
C15—N2—H2C109.5C3—C2—H2118.8
H2A—N2—H2C109.5C20—C21—C22116.4 (4)
H2B—N2—H2C109.5C20—C21—C26121.2 (3)
C14—C15—C10123.0 (3)C22—C21—C26122.4 (3)
C14—C15—N2118.4 (3)C23—C22—C21123.4 (3)
C10—C15—N2118.6 (3)C23—C22—N3118.6 (3)
C22—N3—H3A109.5C21—C22—N3118.0 (3)
C22—N3—H3B109.5C20—C19—C24118.6 (4)
H3A—N3—H3B109.5C20—C19—C25121.6 (4)
C22—N3—H3C109.5C24—C19—C25119.8 (5)
H3A—N3—H3C109.5C13—C12—C11118.7 (3)
H3B—N3—H3C109.5C13—C12—C18120.3 (4)
C1—C6—C5122.8 (3)C11—C12—C18121.0 (4)
C1—C6—N1118.9 (3)C12—C13—C14121.4 (3)
C5—C6—N1118.3 (3)C12—C13—H13119.3
C15—C10—C11116.6 (3)C14—C13—H13119.3
C15—C10—C16122.0 (3)C19—C20—C21122.7 (4)
C11—C10—C16121.3 (3)C19—C20—H20118.7
C6—C5—C4117.4 (3)C21—C20—H20118.7
C6—C5—C9121.9 (3)C21—C26—H26A109.5
C4—C5—C9120.6 (3)C21—C26—H26B109.5
C6—N1—H1A109.5H26A—C26—H26B109.5
C6—N1—H1B109.5C21—C26—H26C109.5
H1A—N1—H1B109.5H26A—C26—H26C109.5
C6—N1—H1C109.5H26B—C26—H26C109.5
H1A—N1—H1C109.5C14—C17—H17A109.5
H1B—N1—H1C109.5C14—C17—H17B109.5
C2—C1—C6117.2 (3)H17A—C17—H17B109.5
C2—C1—C7120.0 (3)C14—C17—H17C109.5
C6—C1—C7122.8 (3)H17A—C17—H17C109.5
C10—C16—H16A109.5H17B—C17—H17C109.5
C10—C16—H16B109.5C19—C24—C23121.5 (4)
H16A—C16—H16B109.5C19—C24—H24119.2
C10—C16—H16C109.5C23—C24—H24119.2
H16A—C16—H16C109.5C3—C8—H8A109.5
H16B—C16—H16C109.5C3—C8—H8B109.5
C22—C23—C24117.4 (4)H8A—C8—H8B109.5
C22—C23—C27123.1 (3)C3—C8—H8C109.5
C24—C23—C27119.6 (4)H8A—C8—H8C109.5
C23—C27—H27A109.5H8B—C8—H8C109.5
C23—C27—H27B109.5C19—C25—H25A109.5
H27A—C27—H27B109.5C19—C25—H25B109.5
C23—C27—H27C109.5H25A—C25—H25B109.5
H27A—C27—H27C109.5C19—C25—H25C109.5
H27B—C27—H27C109.5H25A—C25—H25C109.5
C3—C4—C5122.1 (3)H25B—C25—H25C109.5
C3—C4—H4118.9C12—C18—H18A109.5
C5—C4—H4118.9C12—C18—H18B109.5
C4—C3—C2118.1 (3)H18A—C18—H18B109.5
C4—C3—C8121.9 (3)C12—C18—H18C109.5
C2—C3—C8120.0 (3)H18A—C18—H18C109.5
C15—C14—C13118.1 (3)H18B—C18—H18C109.5
Symmetry codes: (i) x1/2, y+1/2, z+2; (ii) x+1/2, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···Cl30.892.263.129 (3)166
N3—H3B···Cl30.892.703.283 (3)124
N3—H3B···Cl50.892.623.158 (3)119
N2—H2A···Cl6i0.892.403.250 (3)160
N3—H3A···Cl2ii0.892.413.264 (3)160
N1—H1A···Cl4iii0.892.433.278 (3)160
N1—H1B···Cl3iv0.892.613.285 (3)134
N1—H1C···Cl2iv0.892.433.306 (3)169
Symmetry codes: (i) x1/2, y+1/2, z+2; (ii) x+1/2, y+1/2, z+2; (iii) x1/2, y+3/2, z+1; (iv) x, y+1, z1.

Experimental details

Crystal data
Chemical formula(C9H14N)3[CdCl5]
Mr698.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)10.729 (2), 16.430 (3), 17.996 (4)
V3)3172.2 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.798, 0.798
No. of measured, independent and
observed [I > 2σ(I)] reflections
33173, 7271, 6752
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.068, 1.07
No. of reflections7271
No. of parameters337
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.53

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···Cl30.892.263.129 (3)166.4
N3—H3B···Cl30.892.703.283 (3)124.4
N3—H3B···Cl50.892.623.158 (3)119.4
N2—H2A···Cl6i0.892.403.250 (3)159.5
N3—H3A···Cl2ii0.892.413.264 (3)160.4
N1—H1A···Cl4iii0.892.433.278 (3)160.3
N1—H1B···Cl3iv0.892.613.285 (3)133.6
N1—H1C···Cl2iv0.892.433.306 (3)168.8
Symmetry codes: (i) x1/2, y+1/2, z+2; (ii) x+1/2, y+1/2, z+2; (iii) x1/2, y+3/2, z+1; (iv) x, y+1, z1.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFu, D. W., Ge, J. Z., Dai, J., Ye, H. Y. & Qu, Z. R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Song, Y. M., Wang, G. X., Chen, K. & Fu, D. W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R. G. & Huang, S. P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z. & Xiong, R. G. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds