metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1-(4-chloro­benz­yl)pyridinium] bis­­(1,2,5-thia­diazole-3,4-di­thiol­ato)nickelate(II)

aDepartment of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China, and bCollege of Biology and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, People's Republic of China
*Correspondence e-mail: wangzm168@126.com

(Received 8 July 2011; accepted 17 July 2011; online 23 July 2011)

The asymmetric unit of the salt, (C12H11ClN)2[Ni(C2N2S3)2], comprises one cation and a half of Ni(tdas)2 (tdas = 1,2,5-thia­diazole-3,4-dithiol­ate) anion. The NiII atom is located at a centre of inversion. The NiII atom has a square-planar coordination with Ni—S distances of 2.2052 (4) and 2.1970 (5) Å. In crystal, weak C—H⋯S and C—H⋯Ni contacts are observed between the anions and cations.

Related literature

For background to complexes containing the [Ni(mnt)2] anion, see: Robertson & Cronin (2002[Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93-127.]); Xie et al. (2002[Xie, J. L., Ren, X. M., Song, Y., Zhang, W. W., Liu, W. L., He, C. & Meng, Q. J. (2002). Chem. Commun. pp. 2346-2347.]); Ni et al. (2005[Ni, Z. P., Ren, X. M., Ma, J., Xie, J. L., Ni, C. L., Chen, Z. D. & Meng, Q. J. (2005). J. Am. Chem. Soc. 127, 14330-14338.]); Chen et al. (2010[Chen, X., Zou, H. L., Lin, J. H., Huang, Q., Zuo, H. R., Zhou, J. R., Ni, C. L. & Hu, X. L. (2010). J. Mol. Struct. 981, 139-145.]). For details of other square-planar [Ni(tdas)2] complexes, see: Awaga et al. (1994[Awaga, K., Okuno, T., Maruyama, Y., Kobayashi, A., Kobayashi, H., Schenk, S. & Underhill, A. E. (1994). Inorg. Chem. 33, 5598-5600.]); Yamochi et al. (2001[Yamochi, H., Sogoshi, N., Simizu, Y., Saito, G. & Matsumoto, K. (2001). J. Mater. Chem. 11, 2216-2220.]); Okuno et al. (2003[Okuno, T., Kuwamoto, K., Fujita, W., Awaga, K. & Nakanishi, W. (2003). Polyhedron, 22, 2311-2315.]); Ni et al. (2004[Ni, C. L., Dang, D. B., Ni, Z. P., Li, Y. Z., Xie, J. L., Meng, Q. J. & Yao, Y. G. (2004). J. Coord. Chem. 57, 1529-1536.]). For C—H⋯Ni contacts, see: Brookhart et al. (2007[Brookhart, M., Green, M. L. H. & Parkin, G. (2007). PNAS, 104, 6908-6914.]); Yang & Ni (2006[Yang, S.-B. & Ni, C.-L. (2006). Acta Cryst. E62, m483-m485.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H11ClN)2[Ni(C2N2S3)2]

  • Mr = 764.49

  • Monoclinic, P 21 /c

  • a = 11.3091 (10) Å

  • b = 12.6699 (12) Å

  • c = 12.2405 (11) Å

  • β = 116.005 (1)°

  • V = 1576.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 296 K

  • 0.22 × 0.17 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.788, Tmax = 0.872

  • 11011 measured reflections

  • 2771 independent reflections

  • 2583 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.062

  • S = 1.03

  • 2771 reflections

  • 196 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯S2i 0.93 2.86 3.765 (2) 163
C11—H11⋯S2ii 0.93 2.80 3.715 (2) 169
C9—H9B⋯Ni1iii 0.97 2.90 3.818 (3) 159
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Much effort has been devoted to the study of bis(1,2-ditholene) transition metal complexes because of their extensive applications in molecular materials showing magnetic, superconducting, and optical properties. Among these complexes, [M(tdas)2]n- (tdas is 1,2,5-thiadiazole-3,4-dithiolate, n is 1 or 2) complexes show interesting magnetic properties with unusual phase transition and electro-conductive properties in the solid state. As a continuation of our work in this field, we have obtained a new ion-pair complex, [4ClBzPy]2[Ni(tdas)2] (I), by introducing 1-(4'-chlorobenzyl)pyridinium as a counterion into the system containing the [Ni(tdas)2]2- anion.

There are one [4ClBzPy]+ and a half of [Ni(tdas)2]2- anion in an asymmetric unit of (I). The nickel(II) ion of Ni(tdas)2 anion is situated at a center of symmetry of a square planar complex (Fig. 1). The two [4ClBzPy]+ ions are related to each other by the symmetry centre. The Ni1—S1 and Ni1—S2 bond distances are 2.205 (1)Å and 2.197 (1) Å (Table 1), and the S1—Ni1—S2 bond angle within the five-membered ring is 93.42 (2)°, as that have been found for other [Ni(tdas)2]2- structures. The dihedral angles between the C8—C9—N3 reference plane and these aromatic rings are 87.2 (2)° for a phenyl ring and 5.4 (2)° for a pyridine ring, respectively. The dihedral angle between the phenyl ring and the pyridine ring is 92.1 (2)°. The anions and the cations are involved in C4—H4···S2, C11—H11···S2 and C9—H9···Ni weak contacts (Fig. 2, Table 2). The distances of C9···Ni and H···Ni are 3.819Å and 2.895 (2) Å, respectively, while the bond angle is 159.36 (2)° (Brookhart et al., 2007).

Related literature top

For background [to what?], see: Robertson & Cronin (2002); Xie et al. (2002); Ni et al. (2005); Chen et al. (2010). For details of other square-planar [Ni(tdas)2] complexes, see: Awaga et al. (1994); Yamochi et al. (2001); Okuno et al. (2003); Ni et al. (2004). For C—H···Ni contacts, see: Brookhart et al. (2007); Yang & Ni (2006).

Experimental top

The title complex was prepared by the direct reaction of 1:2:2 mol equiv. of NiCl2.6H2O, Na2tdas and 1-(4'-chlorobenzyl)pyridinium bromide in methanol. A brown product was given and purified through recrystallisation from the mixed solvent of methanol and water (yield 81%). The brown block single crystals suitable for X-ray analysis were obtained by slow evaporation of methanol solution of (I) at room temperature about 2 weeks.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic and 0.97 Å, Uiso = 1.2Ueq (C) for CH2 atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels of an asymmetric units and 30% probability displacement ellipsoids for non-H atoms. The complete is generated by the inversion symmetry operation: -x + 2, y + 1/2, -z + 2.
[Figure 2] Fig. 2. Crystal packing of (I) showing the C—H···S and C—H···Ni contacts between the anions and cations drawn as dashed lines.
Bis[1-(4-chlorobenzyl)pyridinium] bis(1,2,5-thiadiazole-3,4-dithiolato)nickelate(II) top
Crystal data top
(C12H11ClN)2[Ni(C2N2S3)2]F(000) = 780
Mr = 764.49Dx = 1.611 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8963 reflections
a = 11.3091 (10) Åθ = 2.5–27.6°
b = 12.6699 (12) ŵ = 1.21 mm1
c = 12.2405 (11) ÅT = 296 K
β = 116.005 (1)°Block, brown
V = 1576.3 (2) Å30.22 × 0.17 × 0.11 mm
Z = 2
Data collection top
Bruker Smart AAPEX CCD
diffractometer
2771 independent reflections
Radiation source: fine-focus sealed tube2583 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1113
Tmin = 0.788, Tmax = 0.872k = 1515
11011 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0288P)2 + 0.688P]
where P = (Fo2 + 2Fc2)/3
2771 reflections(Δ/σ)max = 0.001
196 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
(C12H11ClN)2[Ni(C2N2S3)2]V = 1576.3 (2) Å3
Mr = 764.49Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.3091 (10) ŵ = 1.21 mm1
b = 12.6699 (12) ÅT = 296 K
c = 12.2405 (11) Å0.22 × 0.17 × 0.11 mm
β = 116.005 (1)°
Data collection top
Bruker Smart AAPEX CCD
diffractometer
2771 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2583 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 0.872Rint = 0.023
11011 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.03Δρmax = 0.34 e Å3
2771 reflectionsΔρmin = 0.34 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.00001.00000.03315 (10)
S10.92227 (4)0.11624 (3)0.85099 (4)0.04375 (12)
S20.80993 (4)0.08083 (4)0.94044 (4)0.04587 (13)
S30.52625 (5)0.07090 (6)0.64534 (5)0.06730 (18)
Cl10.81302 (6)0.64372 (5)1.10601 (5)0.06886 (17)
N10.66806 (17)0.13162 (15)0.68113 (15)0.0560 (4)
N20.57869 (16)0.02144 (15)0.75207 (15)0.0570 (4)
N30.71207 (14)0.36476 (11)0.59981 (13)0.0386 (3)
C10.75730 (17)0.08146 (14)0.77589 (16)0.0414 (4)
C20.70635 (18)0.00619 (13)0.81645 (17)0.0419 (4)
C30.8199 (2)0.57027 (15)0.79196 (18)0.0511 (5)
H30.81550.60550.72360.061*
C40.8134 (2)0.62703 (16)0.88550 (19)0.0550 (5)
H40.80480.70010.88070.066*
C50.81978 (17)0.57358 (15)0.98640 (17)0.0470 (4)
C60.83425 (19)0.46580 (16)0.99634 (18)0.0507 (4)
H60.83900.43091.06500.061*
C70.84157 (19)0.41026 (15)0.90237 (18)0.0479 (4)
H70.85250.33740.90870.057*
C80.83301 (17)0.46093 (15)0.79884 (16)0.0420 (4)
C90.84261 (18)0.39821 (16)0.69918 (17)0.0464 (4)
H9A0.89500.33560.73430.056*
H9B0.88860.44010.66360.056*
C100.59709 (18)0.38027 (15)0.60462 (18)0.0471 (4)
H100.59510.41720.66950.057*
C110.48229 (19)0.34190 (18)0.51417 (19)0.0564 (5)
H110.40280.35310.51780.068*
C120.4847 (2)0.28709 (17)0.41842 (19)0.0560 (5)
H120.40750.26040.35720.067*
C130.6037 (2)0.27238 (17)0.41461 (18)0.0549 (5)
H130.60770.23580.35040.066*
C140.71548 (19)0.31201 (15)0.50599 (17)0.0485 (4)
H140.79570.30230.50330.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03566 (17)0.02727 (16)0.04445 (18)0.00239 (11)0.02487 (14)0.00392 (11)
S10.0409 (2)0.0400 (2)0.0576 (3)0.00339 (18)0.0282 (2)0.0144 (2)
S20.0434 (3)0.0386 (2)0.0568 (3)0.00545 (18)0.0230 (2)0.00919 (19)
S30.0467 (3)0.0940 (5)0.0522 (3)0.0000 (3)0.0134 (2)0.0145 (3)
Cl10.0629 (3)0.0786 (4)0.0630 (3)0.0043 (3)0.0258 (3)0.0204 (3)
N10.0504 (9)0.0693 (11)0.0502 (9)0.0087 (8)0.0237 (8)0.0178 (8)
N20.0454 (9)0.0700 (11)0.0526 (10)0.0095 (8)0.0188 (8)0.0016 (8)
N30.0401 (8)0.0377 (7)0.0441 (8)0.0038 (6)0.0240 (7)0.0060 (6)
C10.0431 (10)0.0454 (10)0.0435 (9)0.0059 (7)0.0262 (8)0.0043 (8)
C20.0422 (10)0.0437 (10)0.0450 (10)0.0019 (7)0.0238 (8)0.0020 (7)
C30.0558 (11)0.0458 (11)0.0493 (11)0.0039 (9)0.0208 (9)0.0107 (8)
C40.0566 (12)0.0397 (10)0.0609 (12)0.0055 (9)0.0185 (10)0.0014 (9)
C50.0345 (9)0.0545 (11)0.0487 (11)0.0003 (8)0.0152 (8)0.0068 (8)
C60.0530 (11)0.0528 (11)0.0511 (11)0.0024 (9)0.0274 (9)0.0048 (9)
C70.0536 (11)0.0390 (9)0.0566 (11)0.0019 (8)0.0292 (9)0.0053 (8)
C80.0354 (9)0.0437 (9)0.0477 (10)0.0011 (7)0.0190 (8)0.0034 (8)
C90.0388 (9)0.0537 (11)0.0513 (11)0.0012 (8)0.0239 (8)0.0035 (8)
C100.0431 (10)0.0535 (11)0.0518 (11)0.0087 (8)0.0274 (9)0.0012 (9)
C110.0392 (10)0.0688 (14)0.0630 (13)0.0102 (9)0.0240 (9)0.0005 (10)
C120.0478 (11)0.0634 (13)0.0510 (11)0.0030 (9)0.0164 (9)0.0025 (9)
C130.0597 (12)0.0629 (13)0.0484 (11)0.0013 (10)0.0294 (10)0.0047 (9)
C140.0500 (11)0.0541 (11)0.0549 (11)0.0028 (9)0.0354 (9)0.0002 (9)
Geometric parameters (Å, º) top
Ni1—S22.1970 (5)C4—H40.9300
Ni1—S2i2.1970 (5)C5—C61.374 (3)
Ni1—S12.2052 (4)C6—C71.382 (3)
Ni1—S1i2.2052 (4)C6—H60.9300
S1—C11.7367 (19)C7—C81.386 (3)
S2—C21.7351 (19)C7—H70.9300
S3—N11.6552 (18)C8—C91.499 (3)
S3—N21.6576 (19)C9—H9A0.9700
Cl1—C51.7428 (19)C9—H9B0.9700
N1—C11.320 (2)C10—C111.374 (3)
N2—C21.321 (2)C10—H100.9300
N3—C101.342 (2)C11—C121.373 (3)
N3—C141.344 (2)C11—H110.9300
N3—C91.505 (2)C12—C131.379 (3)
C1—C21.436 (2)C12—H120.9300
C3—C41.381 (3)C13—C141.364 (3)
C3—C81.392 (3)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—C51.382 (3)
S2—Ni1—S2i180.0C5—C6—H6120.6
S2—Ni1—S193.419 (17)C7—C6—H6120.6
S2i—Ni1—S186.581 (17)C6—C7—C8121.32 (18)
S2—Ni1—S1i86.581 (17)C6—C7—H7119.3
S2i—Ni1—S1i93.419 (17)C8—C7—H7119.3
S1—Ni1—S1i180.0C7—C8—C3118.64 (17)
C1—S1—Ni1102.38 (6)C7—C8—C9119.85 (17)
C2—S2—Ni1102.90 (6)C3—C8—C9121.48 (16)
N1—S3—N298.58 (8)C8—C9—N3114.31 (14)
C1—N1—S3106.72 (13)C8—C9—H9A108.7
C2—N2—S3106.67 (14)N3—C9—H9A108.7
C10—N3—C14120.12 (16)C8—C9—H9B108.7
C10—N3—C9123.34 (15)N3—C9—H9B108.7
C14—N3—C9116.44 (14)H9A—C9—H9B107.6
N1—C1—C2114.09 (17)N3—C10—C11120.30 (18)
N1—C1—S1124.97 (14)N3—C10—H10119.9
C2—C1—S1120.93 (14)C11—C10—H10119.9
N2—C2—C1113.95 (17)C12—C11—C10120.10 (18)
N2—C2—S2125.75 (14)C12—C11—H11119.9
C1—C2—S2120.30 (14)C10—C11—H11119.9
C4—C3—C8120.74 (18)C11—C12—C13118.82 (19)
C4—C3—H3119.6C11—C12—H12120.6
C8—C3—H3119.6C13—C12—H12120.6
C3—C4—C5118.99 (18)C14—C13—C12119.31 (19)
C3—C4—H4120.5C14—C13—H13120.3
C5—C4—H4120.5C12—C13—H13120.3
C6—C5—C4121.56 (18)N3—C14—C13121.34 (17)
C6—C5—Cl1118.66 (16)N3—C14—H14119.3
C4—C5—Cl1119.76 (15)C13—C14—H14119.3
C5—C6—C7118.73 (18)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···S2ii0.932.863.765 (2)163
C11—H11···S2iii0.932.803.715 (2)169
C9—H9B···Ni1iv0.972.903.818 (3)159
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y+1/2, z+3/2; (iv) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula(C12H11ClN)2[Ni(C2N2S3)2]
Mr764.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.3091 (10), 12.6699 (12), 12.2405 (11)
β (°) 116.005 (1)
V3)1576.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.22 × 0.17 × 0.11
Data collection
DiffractometerBruker Smart AAPEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.788, 0.872
No. of measured, independent and
observed [I > 2σ(I)] reflections
11011, 2771, 2583
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.062, 1.03
No. of reflections2771
No. of parameters196
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.34

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···S2i0.932.863.765 (2)163
C11—H11···S2ii0.932.803.715 (2)169
C9—H9B···Ni1iii0.972.903.818 (3)159
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+3/2; (iii) x+2, y+1/2, z+3/2.
 

Acknowledgements

This work was funded by the Zhejiang Natural Science Foundation (No. y4090430).

References

First citationAwaga, K., Okuno, T., Maruyama, Y., Kobayashi, A., Kobayashi, H., Schenk, S. & Underhill, A. E. (1994). Inorg. Chem. 33, 5598–5600.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrookhart, M., Green, M. L. H. & Parkin, G. (2007). PNAS, 104, 6908–6914.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X., Zou, H. L., Lin, J. H., Huang, Q., Zuo, H. R., Zhou, J. R., Ni, C. L. & Hu, X. L. (2010). J. Mol. Struct. 981, 139–145.  Web of Science CSD CrossRef CAS Google Scholar
First citationNi, C. L., Dang, D. B., Ni, Z. P., Li, Y. Z., Xie, J. L., Meng, Q. J. & Yao, Y. G. (2004). J. Coord. Chem. 57, 1529–1536.  Web of Science CSD CrossRef CAS Google Scholar
First citationNi, Z. P., Ren, X. M., Ma, J., Xie, J. L., Ni, C. L., Chen, Z. D. & Meng, Q. J. (2005). J. Am. Chem. Soc. 127, 14330–14338.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOkuno, T., Kuwamoto, K., Fujita, W., Awaga, K. & Nakanishi, W. (2003). Polyhedron, 22, 2311–2315.  Web of Science CSD CrossRef CAS Google Scholar
First citationRobertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93–127.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, J. L., Ren, X. M., Song, Y., Zhang, W. W., Liu, W. L., He, C. & Meng, Q. J. (2002). Chem. Commun. pp. 2346–2347.  Web of Science CSD CrossRef Google Scholar
First citationYamochi, H., Sogoshi, N., Simizu, Y., Saito, G. & Matsumoto, K. (2001). J. Mater. Chem. 11, 2216–2220.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, S.-B. & Ni, C.-L. (2006). Acta Cryst. E62, m483–m485.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds