organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(E)-4-Chloro­benzyl­­idene]-2,4-di­methyl­aniline

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Mangalore University, Karnataka, India
*Correspondence e-mail: hkfun@usm.my

(Received 28 June 2011; accepted 1 July 2011; online 6 July 2011)

The title mol­ecule, C15H14ClN, exists in a trans configuration with respect to the C=N bond [1.2813 (16) Å]. The dihedral angle between the benzene rings is 52.91 (6)°. The crystal structure is stabilized by weak inter­molecular C—H⋯π inter­actions.

Related literature

For general background to and the pharmacological activity of Schiff base compounds, see: Ittel et al. (2000[Ittel, S. D., Johnson, L. K. & Brookhart, M. (2000). Chem. Rev. 100, 1169-1203.]); Shah et al. (1992[Shah, S., Vyas, R. & Mehta, R. H. (1992). J. Indian Chem. Soc. 69, 590-596.]); Cimerman et al. (2000[Cimerman, Z., Miljanic, S. & Galic, N. (2000). Croat. Chem. Acta, 73, 81-95.]); Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Eur. J. Pharm. Sci. 9, 25-31.]); More et al. (2001[More, P. G., Bhalvankar, R. B. & Patter, S. C. (2001). J. Indian Chem. Soc. 78, 474-475.]); Cimerman & Stefanac (2001[Cimerman, Z. & Stefanac, Z. (2001). Polyhedron, 4, 1755-1760.]); Galic et al. (1997[Galic, N., Cimerman, Z. & Tomisic, V. (1997). Anal. Chim. Acta, 343, 135-143.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14ClN

  • Mr = 243.72

  • Monoclinic, C c

  • a = 7.2852 (1) Å

  • b = 15.2715 (2) Å

  • c = 11.5382 (1) Å

  • β = 96.304 (1)°

  • V = 1275.93 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 K

  • 0.40 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.898, Tmax = 0.946

  • 14547 measured reflections

  • 3975 independent reflections

  • 3800 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.04

  • 3975 reflections

  • 156 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1919 Friedel pairs

  • Flack parameter: 0.04 (4)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12ACg1i 0.95 2.67 3.3885 (14) 132
C14—H14ACg1ii 0.98 2.86 3.4853 (14) 124
C2—H2ACg2iii 0.95 2.73 3.4371 (14) 132
C4—H4ACg2iv 0.95 2.80 3.5534 (15) 134
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The chemistry of the carbon-nitrogen double bond plays a vital role in the progress of science. Schiff-base compounds have been used as fine chemicals and medical substrates. Recently, multi-dentate complexes of iron and nickel showed high activities of ethylene oligomerization and polymerization (Ittel et al., 2000). Schiff bases have a wide variety of applications in many fields, e.g., biological, inorganic and analytical chemistry (Cimerman et al., 2000). They are known to exhibit potent antibacterial, anticonvulsant, anti-inflammatory activities (Shah et al., 1992). In addition, some Schiff bases show pharmacologically useful activities like anticancer (Pandeya et al., 1999), anti-hypertensive and hypnotic (More et al., 2001) properties. Unfortunately, most Schiff bases are chemically unstable and show a tendency to be involved in various equilibria, like tautomeric interconversions, hydrolysis or formation of ionized species (Cimerman & Stefanac, 2001; Galic et al., 1997). Therefore, successful application of Schiff bases requires a careful study of their characteristics.

The molecular structure of the title compound is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are within normal ranges. The title compound exists in trans configuration with respect to the C7N1 bond [C7N1 = 1.2813 (16) Å]. The benzene rings (C1-C6 and C8-C13) form a dihedral angle of 52.91 (6)°.

The crystal structure is stabilized by weak intermolecular C12–H12A···Cg1i, C14–H14A···Cg1ii, C2–H2A···Cg2iii and C4–H4A···Cg2iv interactions (see Table 1 for symmetry codes), where Cg1 and Cg2 are the centroid of C1-C6 and C8-C13 benzene rings, respectively. No significant classical intermolecular hydrogen bonds are observed.

Related literature top

For general background to and the pharmacological activity of Schiff base compounds, see: Ittel et al. (2000); Shah et al. (1992); Cimerman et al. (2000); Pandeya et al. (1999); More et al. (2001); Cimerman & Stefanac (2001); Galic et al. (1997). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987).

Experimental top

Equimolar amounts of of 4-chloro benzaldehyde and 2,4 dimethyl aniline were dissolved in a minimum amount of ethanol, followed by addition of 2 ml glacial acetic acid. The solution was refluxed for 8 h then cooled to room temperature and poured into ice cold water. The solid product was collected through filtration and then dried at 353 K. The product was dissolved in ethanol, recrystallized and then dried to give colourless crystals. Yield: 75%, m.p. 432-435 K.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.95 or 0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group. The highest residual electron density peak is located at 0.69 Å from C12 and the deepest hole is located at 0.15 Å from H15B.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
N-[(E)-4-Chlorobenzylidene]-2,4-dimethylaniline top
Crystal data top
C15H14ClNF(000) = 512
Mr = 243.72Dx = 1.269 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 9896 reflections
a = 7.2852 (1) Åθ = 2.7–31.0°
b = 15.2715 (2) ŵ = 0.28 mm1
c = 11.5382 (1) ÅT = 100 K
β = 96.304 (1)°Block, colourless
V = 1275.93 (3) Å30.40 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3975 independent reflections
Radiation source: fine-focus sealed tube3800 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 31.1°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.898, Tmax = 0.946k = 1722
14547 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.4511P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3975 reflectionsΔρmax = 0.32 e Å3
156 parametersΔρmin = 0.20 e Å3
2 restraintsAbsolute structure: Flack (1983), 1919 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (4)
Crystal data top
C15H14ClNV = 1275.93 (3) Å3
Mr = 243.72Z = 4
Monoclinic, CcMo Kα radiation
a = 7.2852 (1) ŵ = 0.28 mm1
b = 15.2715 (2) ÅT = 100 K
c = 11.5382 (1) Å0.40 × 0.24 × 0.20 mm
β = 96.304 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3975 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3800 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.946Rint = 0.020
14547 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.32 e Å3
S = 1.04Δρmin = 0.20 e Å3
3975 reflectionsAbsolute structure: Flack (1983), 1919 Friedel pairs
156 parametersAbsolute structure parameter: 0.04 (4)
2 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.00011 (4)0.620805 (19)0.24699 (3)0.02374 (8)
N10.98639 (15)0.21574 (7)0.00510 (9)0.0164 (2)
C11.10819 (17)0.36449 (8)0.25068 (11)0.0164 (2)
H1A1.16600.32260.30360.020*
C21.09740 (18)0.45134 (9)0.28532 (11)0.0174 (2)
H2A1.14690.46930.36120.021*
C31.01230 (18)0.51134 (8)0.20614 (11)0.0172 (2)
C40.93749 (17)0.48677 (9)0.09481 (11)0.0180 (2)
H4A0.87860.52880.04250.022*
C50.95032 (17)0.39987 (8)0.06141 (11)0.0166 (2)
H5A0.90110.38230.01470.020*
C61.03527 (17)0.33777 (8)0.13907 (11)0.0152 (2)
C71.04654 (18)0.24507 (8)0.10622 (11)0.0163 (2)
H7A1.10110.20490.16280.020*
C80.99097 (17)0.12365 (8)0.01051 (11)0.0153 (2)
C91.05963 (17)0.08957 (8)0.11026 (11)0.0151 (2)
C101.05936 (17)0.00135 (8)0.12576 (11)0.0164 (2)
H10A1.10840.02500.19200.020*
C110.98889 (18)0.05863 (8)0.04642 (11)0.0177 (2)
C120.91927 (18)0.02310 (9)0.05076 (11)0.0182 (2)
H12A0.87020.06080.10520.022*
C130.92063 (18)0.06723 (8)0.06920 (11)0.0172 (2)
H13A0.87350.09050.13630.021*
C141.1312 (2)0.14980 (9)0.19821 (12)0.0212 (3)
H14A1.17390.11510.26150.032*
H14B1.23420.18440.16030.032*
H14C1.03210.18920.23010.032*
C150.9863 (2)0.15650 (9)0.06663 (13)0.0244 (3)
H15A0.89980.18400.01830.037*
H15B1.11040.18030.04570.037*
H15C0.94690.16860.14900.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03157 (16)0.01487 (12)0.02478 (15)0.00105 (13)0.00319 (11)0.00480 (12)
N10.0188 (5)0.0143 (5)0.0163 (5)0.0001 (4)0.0033 (4)0.0014 (4)
C10.0181 (6)0.0165 (5)0.0144 (5)0.0008 (4)0.0007 (4)0.0001 (4)
C20.0194 (6)0.0181 (5)0.0144 (5)0.0012 (5)0.0011 (4)0.0029 (4)
C30.0189 (6)0.0133 (5)0.0198 (6)0.0009 (4)0.0045 (5)0.0034 (4)
C40.0188 (6)0.0163 (6)0.0187 (6)0.0012 (4)0.0010 (4)0.0005 (4)
C50.0187 (6)0.0161 (5)0.0149 (5)0.0001 (4)0.0015 (4)0.0014 (4)
C60.0159 (5)0.0141 (5)0.0157 (5)0.0004 (4)0.0025 (4)0.0017 (4)
C70.0168 (5)0.0145 (5)0.0178 (5)0.0002 (4)0.0024 (4)0.0004 (4)
C80.0162 (5)0.0134 (5)0.0160 (6)0.0001 (4)0.0009 (4)0.0009 (4)
C90.0164 (5)0.0149 (5)0.0138 (5)0.0010 (4)0.0011 (4)0.0012 (4)
C100.0178 (5)0.0160 (5)0.0155 (5)0.0003 (4)0.0016 (4)0.0025 (4)
C110.0185 (6)0.0146 (5)0.0191 (6)0.0012 (5)0.0019 (5)0.0005 (4)
C120.0198 (6)0.0168 (6)0.0180 (6)0.0029 (5)0.0011 (5)0.0026 (4)
C130.0204 (6)0.0173 (6)0.0141 (5)0.0008 (5)0.0024 (4)0.0005 (4)
C140.0272 (7)0.0173 (6)0.0205 (6)0.0027 (5)0.0088 (5)0.0008 (5)
C150.0305 (7)0.0135 (6)0.0284 (7)0.0016 (5)0.0005 (6)0.0020 (5)
Geometric parameters (Å, º) top
Cl1—C31.7418 (13)C8—C91.4043 (17)
N1—C71.2813 (16)C9—C101.3999 (17)
N1—C81.4187 (15)C9—C141.5045 (18)
C1—C21.3900 (17)C10—C111.4036 (18)
C1—C61.3988 (17)C10—H10A0.9500
C1—H1A0.9500C11—C121.3906 (19)
C2—C31.3908 (18)C11—C151.5125 (18)
C2—H2A0.9500C12—C131.3957 (18)
C3—C41.3906 (17)C12—H12A0.9500
C4—C51.3881 (18)C13—H13A0.9500
C4—H4A0.9500C14—H14A0.9800
C5—C61.4012 (17)C14—H14B0.9800
C5—H5A0.9500C14—H14C0.9800
C6—C71.4702 (17)C15—H15A0.9800
C7—H7A0.9500C15—H15B0.9800
C8—C131.3980 (18)C15—H15C0.9800
C7—N1—C8116.85 (11)C10—C9—C14121.06 (11)
C2—C1—C6121.02 (12)C8—C9—C14120.48 (11)
C2—C1—H1A119.5C9—C10—C11122.03 (12)
C6—C1—H1A119.5C9—C10—H10A119.0
C1—C2—C3118.36 (11)C11—C10—H10A119.0
C1—C2—H2A120.8C12—C11—C10118.34 (12)
C3—C2—H2A120.8C12—C11—C15120.68 (12)
C4—C3—C2122.02 (12)C10—C11—C15120.98 (12)
C4—C3—Cl1118.84 (10)C11—C12—C13120.76 (12)
C2—C3—Cl1119.13 (10)C11—C12—H12A119.6
C5—C4—C3118.88 (12)C13—C12—H12A119.6
C5—C4—H4A120.6C12—C13—C8120.39 (12)
C3—C4—H4A120.6C12—C13—H13A119.8
C4—C5—C6120.52 (11)C8—C13—H13A119.8
C4—C5—H5A119.7C9—C14—H14A109.5
C6—C5—H5A119.7C9—C14—H14B109.5
C1—C6—C5119.20 (11)H14A—C14—H14B109.5
C1—C6—C7119.47 (11)C9—C14—H14C109.5
C5—C6—C7121.33 (11)H14A—C14—H14C109.5
N1—C7—C6123.24 (12)H14B—C14—H14C109.5
N1—C7—H7A118.4C11—C15—H15A109.5
C6—C7—H7A118.4C11—C15—H15B109.5
C13—C8—C9120.00 (11)H15A—C15—H15B109.5
C13—C8—N1120.80 (12)C11—C15—H15C109.5
C9—C8—N1119.14 (11)H15A—C15—H15C109.5
C10—C9—C8118.47 (11)H15B—C15—H15C109.5
C6—C1—C2—C30.07 (19)C7—N1—C8—C9133.76 (13)
C1—C2—C3—C40.46 (19)C13—C8—C9—C101.42 (18)
C1—C2—C3—Cl1179.11 (10)N1—C8—C9—C10178.57 (11)
C2—C3—C4—C50.81 (19)C13—C8—C9—C14178.43 (12)
Cl1—C3—C4—C5178.77 (10)N1—C8—C9—C141.29 (18)
C3—C4—C5—C60.76 (19)C8—C9—C10—C111.54 (18)
C2—C1—C6—C50.04 (19)C14—C9—C10—C11178.31 (12)
C2—C1—C6—C7178.99 (12)C9—C10—C11—C120.63 (19)
C4—C5—C6—C10.39 (19)C9—C10—C11—C15178.60 (11)
C4—C5—C6—C7178.62 (12)C10—C11—C12—C130.40 (18)
C8—N1—C7—C6174.26 (12)C15—C11—C12—C13179.64 (13)
C1—C6—C7—N1178.57 (12)C11—C12—C13—C80.50 (19)
C5—C6—C7—N12.4 (2)C9—C8—C13—C120.44 (19)
C7—N1—C8—C1349.12 (17)N1—C8—C13—C12177.53 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12A···Cg1i0.952.673.3885 (14)132
C14—H14A···Cg1ii0.982.863.4853 (14)124
C2—H2A···Cg2iii0.952.733.4371 (14)132
C4—H4A···Cg2iv0.952.803.5534 (15)134
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z; (iii) x1/2, y1/2, z; (iv) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H14ClN
Mr243.72
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)7.2852 (1), 15.2715 (2), 11.5382 (1)
β (°) 96.304 (1)
V3)1275.93 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.40 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.898, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
14547, 3975, 3800
Rint0.020
(sin θ/λ)max1)0.727
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.04
No. of reflections3975
No. of parameters156
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.20
Absolute structureFlack (1983), 1919 Friedel pairs
Absolute structure parameter0.04 (4)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12A···Cg1i0.952.673.3885 (14)132
C14—H14A···Cg1ii0.982.863.4853 (14)124
C2—H2A···Cg2iii0.952.733.4371 (14)132
C4—H4A···Cg2iv0.952.803.5534 (15)134
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z; (iii) x1/2, y1/2, z; (iv) x+1/2, y+1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimerman, Z., Miljanic, S. & Galic, N. (2000). Croat. Chem. Acta, 73, 81–95.  CAS Google Scholar
First citationCimerman, Z. & Stefanac, Z. (2001). Polyhedron, 4, 1755–1760.  CrossRef Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGalic, N., Cimerman, Z. & Tomisic, V. (1997). Anal. Chim. Acta, 343, 135–143.  CrossRef CAS Web of Science Google Scholar
First citationIttel, S. D., Johnson, L. K. & Brookhart, M. (2000). Chem. Rev. 100, 1169–1203.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMore, P. G., Bhalvankar, R. B. & Patter, S. C. (2001). J. Indian Chem. Soc. 78, 474–475.  CAS Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Eur. J. Pharm. Sci. 9, 25–31.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShah, S., Vyas, R. & Mehta, R. H. (1992). J. Indian Chem. Soc. 69, 590–596.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds