

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Benzyl-5-benzylidene-2-sulfanylidene-1,3-thiazolidin-4-one

Durre Shahwar,^a Muhammad Asam Raza,^a* Saherish Aslam,^a Sumbal Mehmood,^a Sidra Tariq^a and Abdullah M. Asiri^b

^aDepartment of Chemistry, Government Collge University, Lahore 54000, Pakistan, and ^bThe Center of Excellence for Advanced Materials Research, King Abdul Aziz University, Jeddah, PO Box 80203, Saudi Arabia Correspondence e-mail: asamgcu@yahoo.com

Received 4 July 2011; accepted 8 July 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.101; data-to-parameter ratio = 18.9.

In the title molecule, $C_{17}H_{13}NOS_2$, the essentially planar thiazole ring (r.m.s deviation 0.005 Å) forms dihedral angles of 16.85 (8)° and 75.02 (8)° with the phenyl rings. The dihedral angle between the two phenyl rings is 61.95 (9)°.

Related literature

For the synthesis and related structures, see: Shahwar *et al.* (2009, 2011).

Experimental

Crystal data

$C_{17}H_{13}NOS_2$ $M_r = 311.40$ Triclinic, $P\overline{1}$ $a = 6.3152$ (2) Å $b = 10.8168$ (3) Å $c = 11.4545$ (3) Å $\alpha = 84.1150$ (9)°	$\gamma = 76.1770 (9)^{\circ}$ $V = 740.99 (4) \text{ Å}^3$ Z = 2 Mo K α radiation $\mu = 0.36 \text{ mm}^{-1}$ T = 296 K $0.35 \times 0.31 \times 0.15 \text{ mm}$
$\beta = 77.6000 (9)^{\circ}$	
Data collection	

Bruker Kappa APEX II CCD
diffractometer13205 measured reflections
3583 independent reflections
2930 reflections with $I > 2\sigma(I)$
 $R_{int} = 0.028$ $T_{min} = 0.886, T_{max} = 0.949$ $R_{int} = 0.028$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.101$ S = 1.033583 reflections 190 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.26 \text{ e} \text{ Å}^{-3}$

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

DS acknowledges Government College University, Lahore, for providing funds under the GCU-funded Research Projects Programme.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5281).

References

- Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Shahwar, D., Tahir, M. N., Raza, M. A., Ahmad, N. & Aslam, S. (2011). Acta Cryst. E67, 0133.
- Shahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009). Acta Cryst. E65, 02917.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o2083 [doi:10.1107/S1600536811027450]

3-Benzyl-5-benzylidene-2-sulfanylidene-1,3-thiazolidin-4-one

Durre Shahwar, Muhammad Asam Raza, Saherish Aslam, Sumbal Mehmood, Sidra Tariq and Abdullah M. Asiri

S1. Comment

The crystal structure determination of the title compound (I) is a countinuation of our work on thiazolidinone derivatives (Shahwar *et al.*, 2009, 2011).

The molecular structure of the title compound is shown in Fig. 1. The essentially planar thiazole ring [r.m.s deviation 0.005 Å] forms dihedral angles of 16.85 (8)° and 75.02 (8)° with the C5-C10 and C12-C17 phenyl rings, respectively. The dihedral angle between the two phenyl rings is 61.95 (9)°.

S2. Experimental

The title compound was prepared following a previously published method (Shahwar *et al.*, 2009). X-ray quality crystals were grown from a solution of the title compound in n-hexane:ethylacetate:methanol (6:3:1).

S3. Refinement

All H atoms were positioned with idealized geometry with C—H = 0.93 - 0.97 Å and were refined using a riding model with $U_{iso}(H) = 1.2 U_{eq}(C)$. Four reflections 1 1 0, 0 0 1, 2 2 0 & 0 1 0 were omitted in the final refinemnt as they were obscured by the beamstop.

Figure 1

The molecular structure of (I) with thermal ellipsoids drawn at the 50% probability level.

3-Benzyl-5-benzylidene-2-sulfanylidene-1,3-thiazolidin-4-one

Crystal data

C₁₇H₁₃NOS₂ $M_r = 311.40$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 6.3152 (2) Å b = 10.8168 (3) Å c = 11.4545 (3) Å a = 84.1150 (9)° $\beta = 77.6000$ (9)° $\gamma = 76.1770$ (9)° V = 740.99 (4) Å³

Data collection

Bruker KAPPA APEX II CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*;Bruker, 2007) $T_{\min} = 0.886$, $T_{\max} = 0.949$

Refinement

Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.101$	neighbouring sites
<i>S</i> = 1.03	H-atom parameters constrained
3583 reflections	$w = 1/[\sigma^2(F_o^2) + (0.048P)^2 + 0.1921P]$
190 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.28 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Z = 2

F(000) = 324

 $\theta = 2.6 - 28.3^{\circ}$

 $\mu = 0.36 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.028$

 $h = -8 \rightarrow 8$

 $k = -14 \rightarrow 14$

 $l = -15 \rightarrow 15$

 $D_{\rm x} = 1.396 {\rm Mg} {\rm m}^{-3}$

Needle, pale yellow

 $0.35 \times 0.31 \times 0.15 \text{ mm}$

13205 measured reflections

 $\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 3.4^{\circ}$

3583 independent reflections

2930 reflections with $I > 2\sigma(I)$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 6403 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.36101 (6)	0.34929 (4)	0.98088 (4)	0.04416 (12)
S2	0.24747 (8)	0.57799 (4)	0.82368 (4)	0.05631 (14)
01	-0.0562 (2)	0.18668 (12)	0.89696 (10)	0.0518 (3)

N1	0.06938 (19)	0.37139 (12)	0.85045 (10)	0.0382 (3)
C3	0.2282 (2)	0.22259 (14)	0.99118 (13)	0.0374 (3)
C4	0.2515 (2)	0.11550 (14)	1.06168 (13)	0.0401 (3)
H4	0.1636	0.0602	1.0540	0.048*
C12	0.0019 (3)	0.36707 (14)	0.64596 (13)	0.0414 (3)
C5	0.3954 (2)	0.07342 (14)	1.14880 (13)	0.0401 (3)
C1	0.2109 (2)	0.43656 (15)	0.87728 (13)	0.0395 (3)
C2	0.0659 (2)	0.25206 (14)	0.91071 (12)	0.0384 (3)
C11	-0.0820(2)	0.42216 (15)	0.76689 (13)	0.0430 (3)
H11A	-0.1013	0.5141	0.7575	0.052*
H11B	-0.2263	0.4036	0.8007	0.052*
C6	0.5720 (3)	0.12723 (16)	1.15454 (15)	0.0481 (4)
H6	0.6061	0.1920	1.0989	0.058*
C10	0.3525 (3)	-0.02573 (16)	1.23169 (16)	0.0529 (4)
H10	0.2383	-0.0650	1.2282	0.063*
C7	0.6974 (3)	0.08547 (18)	1.24193 (17)	0.0554 (4)
H7	0.8146	0.1226	1.2448	0.066*
C13	-0.1276 (3)	0.30505 (19)	0.60087 (17)	0.0594 (5)
H13	-0.2644	0.2959	0.6464	0.071*
C17	0.2039 (3)	0.38009 (18)	0.57709 (15)	0.0541 (4)
H17	0.2924	0.4226	0.6058	0.065*
C8	0.6501 (3)	-0.01051 (19)	1.32454 (18)	0.0611 (5)
H8	0.7336	-0.0378	1.3838	0.073*
C9	0.4783 (3)	-0.06585 (19)	1.31873 (19)	0.0651 (5)
Н9	0.4466	-0.1312	1.3742	0.078*
C16	0.2752 (4)	0.3298 (2)	0.46494 (17)	0.0692 (6)
H16	0.4123	0.3378	0.4190	0.083*
C14	-0.0563 (5)	0.2564 (2)	0.4888 (2)	0.0784 (6)
H14	-0.1455	0.2152	0.4591	0.094*
C15	0.1443 (4)	0.2685 (2)	0.42184 (18)	0.0751 (7)
H15	0.1925	0.2351	0.3466	0.090*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0472 (2)	0.0448 (2)	0.0463 (2)	-0.01693 (16)	-0.01683 (16)	0.00314 (16)
S2	0.0700 (3)	0.0434 (2)	0.0624 (3)	-0.0228 (2)	-0.0220 (2)	0.00817 (19)
01	0.0605 (7)	0.0539 (7)	0.0511 (7)	-0.0274 (5)	-0.0180 (5)	0.0010 (5)
N1	0.0415 (6)	0.0407 (7)	0.0344 (6)	-0.0112 (5)	-0.0093 (5)	-0.0016 (5)
C3	0.0404 (7)	0.0390 (7)	0.0334 (7)	-0.0110 (6)	-0.0054 (5)	-0.0041 (6)
C4	0.0456 (7)	0.0387 (7)	0.0369 (7)	-0.0114 (6)	-0.0061 (6)	-0.0053 (6)
C12	0.0501 (8)	0.0369 (7)	0.0364 (7)	-0.0052 (6)	-0.0152 (6)	0.0044 (6)
C5	0.0463 (7)	0.0344 (7)	0.0368 (7)	-0.0052 (6)	-0.0057 (6)	-0.0042 (6)
C1	0.0400 (7)	0.0418 (8)	0.0370 (7)	-0.0104 (6)	-0.0062 (6)	-0.0030 (6)
C2	0.0422 (7)	0.0427 (8)	0.0315 (7)	-0.0130 (6)	-0.0048 (5)	-0.0041 (6)
C11	0.0418 (7)	0.0464 (8)	0.0405 (8)	-0.0062 (6)	-0.0122 (6)	-0.0012 (6)
C6	0.0473 (8)	0.0483 (9)	0.0473 (9)	-0.0127 (7)	-0.0089 (7)	0.0082 (7)
C10	0.0631 (10)	0.0402 (8)	0.0598 (11)	-0.0171 (7)	-0.0197 (8)	0.0070 (7)

supporting information

C7	0.0489 (9)	0.0575 (10)	0.0623 (11)	-0.0131 (7)	-0.0194 (8)	0.0050 (8)
C13	0.0733 (12)	0.0610 (11)	0.0518 (10)	-0.0236 (9)	-0.0208 (9)	-0.0012 (8)
C17	0.0549 (9)	0.0590 (11)	0.0459 (9)	-0.0099 (8)	-0.0092 (7)	0.0005 (8)
C8	0.0641 (11)	0.0582 (11)	0.0634 (11)	-0.0091 (8)	-0.0294 (9)	0.0113 (9)
C9	0.0786 (13)	0.0512 (10)	0.0684 (12)	-0.0191 (9)	-0.0279 (10)	0.0232 (9)
C16	0.0730 (12)	0.0707 (13)	0.0467 (10)	0.0048 (10)	-0.0005 (9)	0.0020 (9)
C14	0.1163 (19)	0.0720 (14)	0.0588 (13)	-0.0261 (13)	-0.0332 (13)	-0.0124 (10)
C15	0.1135 (19)	0.0592 (12)	0.0438 (10)	0.0038 (12)	-0.0195 (11)	-0.0085 (9)
C9 C16 C14 C15	0.0786 (13) 0.0730 (12) 0.1163 (19) 0.1135 (19)	0.0512 (10) 0.0707 (13) 0.0720 (14) 0.0592 (12)	0.0684 (12) 0.0467 (10) 0.0588 (13) 0.0438 (10)	-0.0191 (9) 0.0048 (10) -0.0261 (13) 0.0038 (12)	-0.0279 (10) -0.0005 (9) -0.0332 (13) -0.0195 (11)	0.0232 (9) 0.0020 (9) -0.0124 (10) -0.0085 (9)

Geometric parameters (Å, °)

S1 C1	1 7300 (15)	C6 C7	1.382(2)
S1_C3	1.7590 (15)	С6—Ц6	0.0300
S1C3 S2C1	1.7317 (15)	C_{10}	1 379 (2)
01-02	1.0009 (10)	C10—H10	0.9300
N1_C1	1.2000 (18)	C7 - C8	1.374(3)
N1 C2	1.3014(19) 1.4026(19)	C7C8	0.9300
N1-C11	1.4020(19) 1.4715(18)	C_{13}	1 380 (3)
$C_3 C_4$	1.4713(10) 1.339(2)	C13 H13	0.9300
$C_3 C_2$	1.339(2) 1.480(2)	C13 $C15$ $C16$	1 388 (3)
C_{3}	1.460(2) 1.450(2)	C17 - C10	0.0300
C4 - C3	1.439 (2)	$C_1/-H_1/$	1.374(3)
$C4 - \Pi 4$	0.9300	C_{0}	1.374 (3)
C12— $C13$	1.378(2)		0.9300
C12-C17	1.379(2)	C9—H9	0.9300
	1.505 (2)		1.308 (3)
C_{5}	1.392 (2)	C16—H16	0.9300
C5C10	1.395 (2)		1.361 (3)
CII—HIIA	0.9700	C14—H14	0.9300
CII—HIIB	0.9700	С15—Н15	0.9300
C1 01 C2	02 01 (7)		110.6
CI = SI = C3	92.81 (/)	C/-C6-H6	119.6
CI - NI - C2	116.64 (12)	C5—C6—H6	119.6
CI—NI—CII	123.42 (13)	C9—C10—C5	120.40 (16)
C2—N1—C11	119.89 (12)	C9—C10—H10	119.8
C4—C3—C2	121.65 (13)	C5—C10—H10	119.8
C4—C3—S1	128.94 (12)	C8—C7—C6	120.44 (17)
C2—C3—S1	109.35 (10)	С8—С7—Н7	119.8
C3—C4—C5	129.10 (14)	С6—С7—Н7	119.8
C3—C4—H4	115.5	C12—C13—C14	120.65 (19)
C5—C4—H4	115.5	C12—C13—H13	119.7
C13—C12—C17	118.90 (16)	C14—C13—H13	119.7
C13—C12—C11	119.66 (15)	C12—C17—C16	120.04 (18)
C17—C12—C11	121.41 (15)	C12—C17—H17	120.0
C6—C5—C10	118.12 (14)	C16—C17—H17	120.0
C6—C5—C4	123.75 (14)	C7—C8—C9	119.40 (16)
C10-C5-C4	118.12 (14)	С7—С8—Н8	120.3
N1—C1—S2	127.66 (12)	С9—С8—Н8	120.3
N1-C1-S1	111.06 (11)	C8—C9—C10	120.86 (17)

S2—C1—S1	121.28 (9)	С8—С9—Н9	119.6
O1—C2—N1	122.92 (13)	С10—С9—Н9	119.6
O1—C2—C3	126.97 (14)	C15—C16—C17	120.2 (2)
N1—C2—C3	110.11 (12)	C15—C16—H16	119.9
N1-C11-C12	112.72 (12)	C17—C16—H16	119.9
N1—C11—H11A	109.0	C15—C14—C13	120.1 (2)
C12—C11—H11A	109.0	C15—C14—H14	119.9
N1-C11-H11B	109.0	C13—C14—H14	119.9
C12—C11—H11B	109.0	C14—C15—C16	120.13 (19)
H11A—C11—H11B	107.8	C14—C15—H15	119.9
C7—C6—C5	120.75 (15)	C16—C15—H15	119.9
C1—S1—C3—C4	-176.86 (14)	C1—N1—C11—C12	101.92 (16)
C1—S1—C3—C2	0.27 (11)	C2—N1—C11—C12	-80.68 (17)
C2—C3—C4—C5	-177.53 (14)	C13—C12—C11—N1	122.62 (16)
S1—C3—C4—C5	-0.7 (2)	C17—C12—C11—N1	-59.2 (2)
C3—C4—C5—C6	-14.8 (2)	C10—C5—C6—C7	-1.6 (2)
C3-C4-C5-C10	164.69 (16)	C4—C5—C6—C7	177.88 (15)
C2—N1—C1—S2	-178.75 (11)	C6-C5-C10-C9	1.9 (3)
C11—N1—C1—S2	-1.3 (2)	C4—C5—C10—C9	-177.57 (16)
C2-N1-C1-S1	1.48 (16)	C5—C6—C7—C8	0.3 (3)
C11—N1—C1—S1	178.95 (10)	C17—C12—C13—C14	0.2 (3)
C3—S1—C1—N1	-0.97 (11)	C11—C12—C13—C14	178.45 (17)
C3—S1—C1—S2	179.24 (10)	C13—C12—C17—C16	-0.8 (3)
C1—N1—C2—O1	178.07 (14)	C11—C12—C17—C16	-179.01 (15)
C11—N1—C2—O1	0.5 (2)	C6—C7—C8—C9	0.8 (3)
C1—N1—C2—C3	-1.27 (17)	C7—C8—C9—C10	-0.4 (3)
C11—N1—C2—C3	-178.83 (12)	C5—C10—C9—C8	-1.0 (3)
C4—C3—C2—O1	-1.5 (2)	C12—C17—C16—C15	0.8 (3)
S1—C3—C2—O1	-178.84 (13)	C12—C13—C14—C15	0.4 (3)
C4—C3—C2—N1	177.84 (13)	C13—C14—C15—C16	-0.5 (3)
S1—C3—C2—N1	0.46 (14)	C17—C16—C15—C14	-0.1 (3)