organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2141-o2142

5-Chloro-6-hy­dr­oxy-7,8-di­methyl­chroman-2-one

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

(Received 15 July 2011; accepted 20 July 2011; online 30 July 2011)

In the title mol­ecule, C11H11ClO3, the fused pyran ring adopts a half-chair conformation. In the crystal, inter­molecular O—H⋯O hydrogen bonds link mol­ecules into chains along [100]. These chains are inter­connected by weak inter­molecular C—H⋯O contacts which generate R22(8) ring motifs, forming sheets parallel to (001). Tetra­gonal symmetry generates an equivalent motif along b. Furthermore, the sheets are linked along the c axis by offset ππ stacking inter­actions involving the benzene rings of adjacent mol­ecules [with centroid–centroid distances of 3.839 (2) Å], together with an additional weak C—H⋯O hydrogen bond, resulting in an overall three-dimensional network.

Related literature

For the synthesis of the starting materials, see: Fieser & Ardao (1956[Fieser, L. F. & Ardao, M. I. (1956). J. Am. Chem. Soc. 78, 774-781.]); Bishop et al. (1963[Bishop, C. A., Porter, R. F. & Tong, L. K. J. (1963). J. Am. Chem. Soc. 85, 3991-3998.]). For related structures, see: Budzianowski & Katrusiak (2002[Budzianowski, A. & Katrusiak, A. (2002). Acta Cryst. B58, 125-133.]); Goswami et al. (2011[Goswami, S. K., Hanton, L. R., McAdam, C. J., Moratti, S. C. & Simpson, J. (2011). Acta Cryst. E67, o1566-o1567.]). For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11ClO3

  • Mr = 226.65

  • Tetragonal, [P \overline 42_1 c ]

  • a = 16.1375 (6) Å

  • c = 7.5887 (6) Å

  • V = 1976.24 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 89 K

  • 0.40 × 0.07 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.792, Tmax = 1.00

  • 22360 measured reflections

  • 2030 independent reflections

  • 1618 reflections with I > 2σ(I)

  • Rint = 0.095

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.143

  • S = 1.07

  • 2030 reflections

  • 141 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 859 Friedel pairs

  • Flack parameter: −0.04 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O9i 0.99 2.55 3.463 (5) 154
C7—H7B⋯O1ii 0.99 2.64 3.588 (5) 160
C7—H7B⋯O9ii 0.99 2.68 3.357 (5) 126
O4—H4O⋯O9iii 0.78 (4) 2.12 (5) 2.748 (4) 137 (4)
C8—H8B⋯O4iv 0.99 2.39 3.328 (5) 158
Symmetry codes: (i) -x+1, -y+1, z; (ii) -y+1, x, -z+2; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-y+{\script{1\over 2}}, -x+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (I) was isolated as an intermediate during the synthesis of redox-active quinone monomers currently of interest to us in our electro-mechanical actuator programme.

Compound (I), Fig 1, consists of a chromanone unit with an OH substituent at C4, a chloro substituent at C5 and methyl substituents on C2 and C3. The fused C1/C6-C9/O1 ring is in a half-chair conformation. Bond distances (Allen et al., 1987) and angles are normal and similar to those in closely related structures (Budzianowski & Katrusiak, 2002; Goswami et al., 2011).

Classical O4—H4O···O9iii hydrogen bonds link molecules into chains along a. These chains are interconnected by weak C8—H8A···O9i contacts which generate R22(8) ring motifs (Bernstein et al., 1995) forming sheets in (0 0 1), Fig 2. Tetragonal symmetry generates an equivalent motif along b. These sheets are stacked along c by offset ππ stacking interactions involving the benzene rings of adjacent molecules with centroid to centroid distances of 3.839 (2) Å together with an additional C8–H8B···O4iv hydrogen bond, Fig 3, resulting in a three dimensional network structure, Fig 4.

Related literature top

For the synthesis of the starting materials, see: Fieser & Ardao (1956); Bishop et al. (1963). For related structures, see: Budzianowski & Katrusiak (2002); Goswami et al. (2011). For standard bond lengths, see Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized in three steps. In the first step trimethyl-p-hydroquinone (Fieser & Ardao, 1956) (15.2 g, 100 mmol) was oxidized using sodium dichromate (10.8 g, 41 mmol) in acetic acid (50 ml). The product was characterized using NMR spectroscopy and the data were consistent with reported data of trimethyl-p-benzoquinone. The second step (chlorination) is an alternative to the existing literature (Bishop et al., 1963). Trimethyl-p-benzoquinone (10 g, 67 mmol) was added to conc. hydrochloric acid (100 ml) with vigorous stirring. The resulting suspension was heated to reflux for 3 hr. After dilution with water the solid was filtered out and re-dissolved in aqueous acetic acid. Aqueous sodium dichromate (10 g, 38 mmol) was added in portions. After the mixture had stood for 15 min, a yellow solid was precipitated by dilution with water. Crystallization from ethanol-water solution gave a yellow material, m.p. 337-338K; (lit. m.p. 337-338K). In the final step, a solution of methyl malonate (5.7 g, 43 mmol) in dry MeOH (25 ml) was refluxed for one hour with finely powdered MgOMe (3.85 g, 70 mmol). A solution of chlorotrimethyl-p-quinone (4 g, 21 mmol) in dry MeOH (25 ml) was added dropwise to the refluxing solution and reflux continued for 13 hr. The solid was removed from the cooled mixture, washed with ether and carefully mixed with HCl (10%, 50 ml) and stirred at 283K to remove impurities. The yellow solid product (3 g) was filtered out and dissolved in acetone and stirred with dil. hydrochloric acid (100 ml). The resulting white suspension was then refluxed for 5 hr. The solution was cooled and extracted with ether (3 × 30 mL) and the combined organic extracts washed with brine, dried (MgSO4) and evaporated. To the crude residue in toluene (60 ml), 4-methylbenzenesulfonic acid (0.47 g, 27 mmol) was added with stirring, and the mixture then refluxed. After 12 hr, the nearly colourless solution was cooled to room temp. and extracted with EtOAc (3 × 30 ml). The organic extract was washed with sat. aqueous NaHCO3 and the aqueous layer back-extracted once with EtOAc (30 ml). The combined organic extracts were washed with brine and dried over MgSO4. X-ray quality crystals of the title compound, 5-chloro-6-hydroxy-7,8-dimethylchroman-2-one were obtained from EtOAc/hexane (1.76 g, 80%): m.p. 139–41°C; FT—IR cm-1 1777 (O—C=O); 1H-NMR (400 MHz, CDCl3): δ 2.20 (s, 3H), 2.33 (s, 3H), 2.74 (t, J = 8 Hz, 2H), 3.02 (t, J = 8 Hz, 2H), 5.5 (s, 1H); 13C-NMR (100 MHz, CDCl3): δ 12.0, 12.6, 22.0, 28.6,115.1, 117.8, 123.8, 125.0, 143.8, 145.9, 165.3.

Refinement top

The OH hydrogen atom was located in a difference Fourier map and refined freely with Uiso = 1.2Ueq (O). Methyl and methylene H-atoms were refined using a riding model with d(C—H) = 0.98 Å, Uiso=1.5Ueq (C) for methyl and 0.99 Å, Uiso=1.2Ueq (C) for methylene.

Computing details top

Data collection: APEX2 (Bruker 2009); cell refinement: SAINT (Bruker 2009); data reduction: SAINT (Bruker 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The (0 0 1) layer of (I). Dashed lines show O–H···O hydrogen bonds and C–H···O interactions.
[Figure 3] Fig. 3. The π..π stacking interactions in the structure of (I) with C–H···O interactions drawn as dashed lines.
[Figure 4] Fig. 4. Crystal packing of (I) viewed along the c axis showing the three- dimensional network.
5-Chloro-6-hydroxy-7,8-dimethylchroman-2-one top
Crystal data top
C11H11ClO3Dx = 1.524 Mg m3
Mr = 226.65Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 1966 reflections
Hall symbol: P -4 2nθ = 2.5–20.6°
a = 16.1375 (6) ŵ = 0.37 mm1
c = 7.5887 (6) ÅT = 89 K
V = 1976.24 (19) Å3Needle, colourless
Z = 80.40 × 0.07 × 0.05 mm
F(000) = 944
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2030 independent reflections
Radiation source: fine-focus sealed tube1618 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
ω scansθmax = 26.4°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Bruker 2009)
h = 2020
Tmin = 0.792, Tmax = 1.00k = 2019
22360 measured reflectionsl = 98
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0781P)2 + 0.6384P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2030 reflectionsΔρmax = 0.33 e Å3
141 parametersΔρmin = 0.39 e Å3
0 restraintsAbsolute structure: Flack (1983), 859 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (12)
Crystal data top
C11H11ClO3Z = 8
Mr = 226.65Mo Kα radiation
Tetragonal, P421cµ = 0.37 mm1
a = 16.1375 (6) ÅT = 89 K
c = 7.5887 (6) Å0.40 × 0.07 × 0.05 mm
V = 1976.24 (19) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2030 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2009)
1618 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 1.00Rint = 0.095
22360 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.143Δρmax = 0.33 e Å3
S = 1.07Δρmin = 0.39 e Å3
2030 reflectionsAbsolute structure: Flack (1983), 859 Friedel pairs
141 parametersAbsolute structure parameter: 0.04 (12)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29181 (15)0.46995 (15)0.9081 (4)0.0286 (6)
C10.2457 (2)0.3970 (2)0.8839 (5)0.0246 (8)
C20.1624 (2)0.4026 (2)0.9338 (5)0.0246 (8)
C210.1277 (2)0.4829 (2)1.0015 (6)0.0295 (9)
H2A0.17090.51321.06550.044*
H2B0.08120.47151.08100.044*
H2C0.10830.51650.90210.044*
C30.1126 (2)0.3318 (2)0.9168 (5)0.0243 (8)
C310.02056 (19)0.3310 (2)0.9744 (4)0.0166 (7)
H3A0.01320.35870.88470.025*
H3B0.01480.36021.08700.025*
H3C0.00190.27360.98790.025*
C40.1472 (2)0.2595 (2)0.8461 (5)0.0239 (8)
O40.09528 (17)0.19372 (16)0.8261 (4)0.0308 (7)
H4O0.121 (3)0.162 (3)0.769 (6)0.037*
C50.2308 (2)0.2574 (2)0.8003 (5)0.0256 (8)
Cl50.27140 (6)0.16405 (6)0.72670 (15)0.0370 (3)
C60.2815 (2)0.3256 (2)0.8168 (5)0.0253 (8)
C70.3714 (2)0.3268 (2)0.7691 (6)0.0294 (9)
H7A0.38120.28820.66990.035*
H7B0.40450.30740.87090.035*
C80.3994 (2)0.4131 (3)0.7170 (6)0.0347 (9)
H8A0.46070.41490.71940.042*
H8B0.38150.42390.59430.042*
C90.3668 (2)0.4805 (2)0.8318 (6)0.0279 (9)
O90.40023 (17)0.54650 (16)0.8556 (4)0.0348 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0223 (13)0.0216 (13)0.0419 (16)0.0005 (11)0.0013 (11)0.0028 (11)
C10.0241 (19)0.0182 (17)0.032 (2)0.0010 (15)0.0035 (15)0.0018 (16)
C20.0260 (19)0.0201 (18)0.0278 (19)0.0045 (16)0.0020 (16)0.0018 (15)
C210.027 (2)0.0183 (19)0.043 (2)0.0007 (16)0.0001 (18)0.0065 (17)
C30.0210 (19)0.0255 (18)0.0263 (18)0.0006 (15)0.0035 (15)0.0032 (16)
C310.0134 (16)0.0129 (16)0.0235 (18)0.0005 (13)0.0005 (13)0.0001 (14)
C40.0262 (19)0.0184 (17)0.0270 (18)0.0008 (14)0.0024 (15)0.0024 (15)
O40.0281 (15)0.0227 (14)0.0418 (17)0.0042 (12)0.0004 (13)0.0031 (12)
C50.0287 (19)0.0177 (17)0.031 (2)0.0034 (15)0.0003 (17)0.0001 (15)
Cl50.0364 (6)0.0255 (5)0.0492 (6)0.0042 (4)0.0028 (5)0.0048 (5)
C60.0259 (19)0.0222 (19)0.0279 (19)0.0049 (15)0.0044 (15)0.0016 (15)
C70.0213 (17)0.0247 (18)0.042 (2)0.0044 (14)0.0024 (17)0.0012 (18)
C80.0212 (19)0.042 (2)0.041 (2)0.0005 (16)0.0001 (17)0.002 (2)
C90.0193 (18)0.025 (2)0.039 (2)0.0000 (15)0.0036 (16)0.0061 (17)
O90.0273 (14)0.0227 (14)0.0543 (19)0.0014 (12)0.0046 (14)0.0067 (13)
Geometric parameters (Å, º) top
O1—C91.353 (4)C4—O41.361 (4)
O1—C11.404 (4)C4—C51.394 (5)
C1—C61.386 (5)O4—H4O0.78 (4)
C1—C21.399 (5)C5—C61.377 (5)
C2—C31.402 (5)C5—Cl51.735 (3)
C2—C211.503 (5)C6—C71.495 (5)
C21—H2A0.9800C7—C81.517 (5)
C21—H2B0.9800C7—H7A0.9900
C21—H2C0.9800C7—H7B0.9900
C3—C41.401 (5)C8—C91.489 (6)
C3—C311.549 (5)C8—H8A0.9900
C31—H3A0.9800C8—H8B0.9900
C31—H3B0.9800C9—O91.207 (4)
C31—H3C0.9800
C9—O1—C1121.6 (3)C5—C4—C3120.1 (3)
C6—C1—C2123.6 (3)C4—O4—H4O104 (3)
C6—C1—O1121.6 (3)C6—C5—C4122.2 (3)
C2—C1—O1114.8 (3)C6—C5—Cl5120.0 (3)
C1—C2—C3118.2 (3)C4—C5—Cl5117.8 (3)
C1—C2—C21120.4 (3)C5—C6—C1116.8 (3)
C3—C2—C21121.3 (3)C5—C6—C7124.3 (3)
C2—C21—H2A109.5C1—C6—C7118.9 (3)
C2—C21—H2B109.5C6—C7—C8111.3 (3)
H2A—C21—H2B109.5C6—C7—H7A109.4
C2—C21—H2C109.5C8—C7—H7A109.4
H2A—C21—H2C109.5C6—C7—H7B109.4
H2B—C21—H2C109.5C8—C7—H7B109.4
C4—C3—C2119.1 (3)H7A—C7—H7B108.0
C4—C3—C31118.9 (3)C9—C8—C7114.4 (3)
C2—C3—C31122.1 (3)C9—C8—H8A108.7
C3—C31—H3A109.5C7—C8—H8A108.7
C3—C31—H3B109.5C9—C8—H8B108.7
H3A—C31—H3B109.5C7—C8—H8B108.7
C3—C31—H3C109.5H8A—C8—H8B107.6
H3A—C31—H3C109.5O9—C9—O1116.5 (4)
H3B—C31—H3C109.5O9—C9—C8125.1 (4)
O4—C4—C5123.3 (3)O1—C9—C8118.3 (3)
O4—C4—C3116.6 (3)
C9—O1—C1—C615.2 (5)C3—C4—C5—Cl5176.0 (3)
C9—O1—C1—C2165.2 (3)C4—C5—C6—C10.8 (6)
C6—C1—C2—C30.7 (6)Cl5—C5—C6—C1177.1 (3)
O1—C1—C2—C3178.9 (3)C4—C5—C6—C7179.8 (4)
C6—C1—C2—C21178.5 (4)Cl5—C5—C6—C72.2 (5)
O1—C1—C2—C211.9 (5)C2—C1—C6—C50.2 (6)
C1—C2—C3—C41.8 (5)O1—C1—C6—C5179.3 (3)
C21—C2—C3—C4177.4 (3)C2—C1—C6—C7179.6 (4)
C1—C2—C3—C31177.9 (3)O1—C1—C6—C70.0 (6)
C21—C2—C3—C312.9 (6)C5—C6—C7—C8152.5 (4)
C2—C3—C4—O4177.5 (3)C1—C6—C7—C828.2 (5)
C31—C3—C4—O42.8 (5)C6—C7—C8—C942.6 (5)
C2—C3—C4—C52.5 (6)C1—O1—C9—O9177.5 (4)
C31—C3—C4—C5177.2 (3)C1—O1—C9—C81.3 (5)
O4—C4—C5—C6177.9 (4)C7—C8—C9—O9153.5 (4)
C3—C4—C5—C62.0 (6)C7—C8—C9—O130.7 (5)
O4—C4—C5—Cl54.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O9i0.992.553.463 (5)154
C7—H7B···O1ii0.992.643.588 (5)160
C7—H7B···O9ii0.992.683.357 (5)126
O4—H4O···O9iii0.78 (4)2.12 (5)2.748 (4)137 (4)
C8—H8B···O4iv0.992.393.328 (5)158
Symmetry codes: (i) x+1, y+1, z; (ii) y+1, x, z+2; (iii) x+1/2, y1/2, z+3/2; (iv) y+1/2, x+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H11ClO3
Mr226.65
Crystal system, space groupTetragonal, P421c
Temperature (K)89
a, c (Å)16.1375 (6), 7.5887 (6)
V3)1976.24 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.40 × 0.07 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2009)
Tmin, Tmax0.792, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
22360, 2030, 1618
Rint0.095
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.143, 1.07
No. of reflections2030
No. of parameters141
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.39
Absolute structureFlack (1983), 859 Friedel pairs
Absolute structure parameter0.04 (12)

Computer programs: APEX2 (Bruker 2009), SAINT (Bruker 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O9i0.992.553.463 (5)153.5
C7—H7B···O1ii0.992.643.588 (5)160.0
C7—H7B···O9ii0.992.683.357 (5)126.0
O4—H4O···O9iii0.78 (4)2.12 (5)2.748 (4)137 (4)
C8—H8B···O4iv0.992.393.328 (5)157.8
Symmetry codes: (i) x+1, y+1, z; (ii) y+1, x, z+2; (iii) x+1/2, y1/2, z+3/2; (iv) y+1/2, x+1/2, z1/2.
 

Acknowledgements

We thank the New Economy Research Fund (grant No. UOO-X0808) for support of this work and the University of Otago for the purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBishop, C. A., Porter, R. F. & Tong, L. K. J. (1963). J. Am. Chem. Soc. 85, 3991–3998.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBudzianowski, A. & Katrusiak, A. (2002). Acta Cryst. B58, 125–133.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFieser, L. F. & Ardao, M. I. (1956). J. Am. Chem. Soc. 78, 774–781.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoswami, S. K., Hanton, L. R., McAdam, C. J., Moratti, S. C. & Simpson, J. (2011). Acta Cryst. E67, o1566–o1567.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2141-o2142
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds