organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-(3,4-di­methyl­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 5 July 2011; accepted 7 July 2011; online 13 July 2011)

In the title compound, C15H14ClNO, the conformation of the N—H bond is anti to the meta-methyl group in the aniline ring, while that of the C=O bond is anti to the ortho-chloro group in the benzoyl ring. The mean planes through the two benzene rings make a dihedral angle of 80.8 (2)°. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds, forming column-like chains along the b axis.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]). For our studies on the effects of substituents on the structures of N-(ar­yl)-amides, see: Bhat & Gowda (2000[Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279-284.]); Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975-o1976.]) and on N-(ar­yl)-benzamides, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2009). Acta Cryst. E65, o444.]); Gowda et al. (2010[Gowda, B. T., Tokarčík, M., Rodrigues, V. Z., Kožíšek, J. & Fuess, H. (2010). Acta Cryst. E66, o1897.]). For related structure, see: Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14ClNO

  • Mr = 259.72

  • Monoclinic, P 21 /c

  • a = 20.893 (2) Å

  • b = 7.259 (1) Å

  • c = 8.970 (1) Å

  • β = 91.95 (1)°

  • V = 1359.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.30 × 0.26 × 0.16 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.924, Tmax = 0.958

  • 4865 measured reflections

  • 2489 independent reflections

  • 1570 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.217

  • S = 1.10

  • 2489 reflections

  • 168 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.87 (2) 2.00 (2) 2.850 (4) 168 (4)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

To explore the effect of substituents on the structures of acetanilides (Bhat & Gowda, 2000; Gowda, Foro et al., 2007) and benzanilides (Gowda, Foro et al., 2009; Gowda, Jyothi et al., 2003; Gowda, Tokarčík et al., 2010), in the present work, the structure of 2-chloro-N-(3,4-dimethylphenyl)-benzamide (I) has been determined. The N—H and CO bonds in the amide group are anti to each other (Fig.1), similar to that observed in N-(phenyl)-benzamide (Bowes et al., 2003), 2-chloro-N-(phenyl)-benzamide (Gowda, Jyothi et al., 2003), 2-chloro-N-(2,3-dimethylphenyl)- benzamide (Gowda, Tokarčík et al., 2010) and 2-chloro-N- (3,5-dimethylphenyl)-benzamide (Gowda, Foro et al., 2009).

The conformation of the N—H bond is anti to the meta-methyl group in the aniline ring, while that of the C=O bond is anti to the ortho-chloro group in the benzoyl ring.

The central amide group –NHCO– is inclined to the benzoyl ring with C9 – C8 – C7 – N1 and C9 – C8 – C7 – N1 torsional angles of 120.2 (5) and -62.7 (5)°, respectively, while it is inclined to the aniline benzene ring with C2 – C1 – N1 – C7 and C6 – C1 – N1 – C7 torsional angles of -40.1 (7) and 139.5 (7)°, respectively.

The mean planes through the two benzene rings make dihedral angle of 80.8 (2)°. The intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into column like chains extending along the b axis (Fig. 2).

Related literature top

For the preparation of the title compound, see: Gowda et al. (2003). For our studies on the effects of substituents on the structures of N-(aryl)-amides, see: Bhat & Gowda (2000); Gowda et al. (2007) and on N-(aryl)-benzamides, see: Gowda et al. (2009); Gowda et al. (2010). For related structure, see: Bowes et al. (2003).

Experimental top

The title compound was prepared according to the literature method (Gowda Jyothi et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Prism like light brown single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å and the methyl C—H = 0.96 Å. All H atoms were refined with isotropic displacement parameters. The Uiso(H) values were set at 1.2Ueq(C aromatic, N) and 1.5Ueq(C methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. View of the crystal packing of (I), showing the chains of molecules linked by intermolecular N–H···O hydrogen bonds (dashed lines).
2-Chloro-N-(3,4-dimethylphenyl)benzamide top
Crystal data top
C15H14ClNOF(000) = 544
Mr = 259.72Dx = 1.269 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 872 reflections
a = 20.893 (2) Åθ = 2.8–27.9°
b = 7.259 (1) ŵ = 0.27 mm1
c = 8.970 (1) ÅT = 293 K
β = 91.95 (1)°Prism, light brown
V = 1359.6 (3) Å30.30 × 0.26 × 0.16 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2489 independent reflections
Radiation source: fine-focus sealed tube1570 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Rotation method data acquisition using ω scansθmax = 25.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 2516
Tmin = 0.924, Tmax = 0.958k = 88
4865 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.074P)2 + 2.1954P]
where P = (Fo2 + 2Fc2)/3
2489 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.32 e Å3
1 restraintΔρmin = 0.28 e Å3
Crystal data top
C15H14ClNOV = 1359.6 (3) Å3
Mr = 259.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.893 (2) ŵ = 0.27 mm1
b = 7.259 (1) ÅT = 293 K
c = 8.970 (1) Å0.30 × 0.26 × 0.16 mm
β = 91.95 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2489 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1570 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.958Rint = 0.027
4865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0761 restraint
wR(F2) = 0.217H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.32 e Å3
2489 reflectionsΔρmin = 0.28 e Å3
168 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2020 (2)0.0975 (6)0.1139 (4)0.0465 (11)
C20.15704 (19)0.1524 (7)0.0060 (4)0.0509 (11)
H20.15550.27460.02510.061*
C30.11372 (19)0.0239 (8)0.0568 (4)0.0549 (13)
C40.1162 (2)0.1594 (7)0.0111 (5)0.0571 (13)
C50.1615 (2)0.2089 (8)0.0966 (5)0.0629 (13)
H50.16350.33080.12830.075*
C60.2037 (2)0.0836 (7)0.1584 (5)0.0572 (12)
H60.23380.12150.23090.069*
C70.2788 (2)0.3563 (6)0.1115 (4)0.0443 (10)
C80.3274 (2)0.4554 (6)0.2085 (4)0.0446 (10)
C90.3914 (2)0.4586 (6)0.1757 (5)0.0545 (12)
C100.4350 (2)0.5547 (8)0.2628 (6)0.0706 (14)
H100.47820.55280.24140.085*
C110.4141 (3)0.6539 (8)0.3824 (6)0.0832 (18)
H110.44330.72250.43980.100*
C120.3509 (3)0.6532 (8)0.4181 (6)0.0733 (15)
H120.33720.71910.50000.088*
C130.3083 (2)0.5538 (7)0.3309 (5)0.0566 (12)
H130.26530.55260.35480.068*
C140.0649 (2)0.0927 (9)0.1727 (6)0.0855 (19)
H14A0.07220.22100.19150.103*
H14B0.02250.07620.13650.103*
H14C0.06900.02430.26340.103*
C150.0705 (3)0.3013 (9)0.0752 (6)0.0836 (18)
H15A0.07400.30540.18160.100*
H15B0.02750.26910.05110.100*
H15C0.08100.41990.03370.100*
N10.24717 (17)0.2223 (5)0.1808 (3)0.0506 (10)
H1N0.260 (2)0.189 (6)0.270 (3)0.061*
O10.26938 (16)0.3992 (5)0.0198 (3)0.0633 (9)
Cl10.41840 (7)0.3313 (2)0.02704 (17)0.0920 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.047 (2)0.061 (3)0.031 (2)0.005 (2)0.0019 (17)0.0008 (19)
C20.047 (2)0.064 (3)0.042 (2)0.003 (2)0.0029 (18)0.002 (2)
C30.038 (2)0.089 (4)0.037 (2)0.001 (2)0.0061 (17)0.010 (2)
C40.052 (3)0.076 (4)0.044 (2)0.014 (3)0.0045 (19)0.009 (2)
C50.069 (3)0.064 (3)0.055 (3)0.015 (3)0.002 (2)0.002 (2)
C60.058 (3)0.065 (3)0.048 (2)0.011 (2)0.010 (2)0.005 (2)
C70.051 (2)0.049 (3)0.032 (2)0.001 (2)0.0033 (17)0.0021 (19)
C80.055 (3)0.040 (2)0.037 (2)0.003 (2)0.0077 (18)0.0038 (18)
C90.058 (3)0.052 (3)0.053 (3)0.003 (2)0.003 (2)0.003 (2)
C100.056 (3)0.077 (4)0.079 (4)0.013 (3)0.002 (3)0.001 (3)
C110.082 (4)0.083 (4)0.083 (4)0.029 (3)0.012 (3)0.022 (3)
C120.084 (4)0.074 (4)0.062 (3)0.013 (3)0.000 (3)0.025 (3)
C130.068 (3)0.055 (3)0.047 (2)0.006 (2)0.000 (2)0.010 (2)
C140.064 (3)0.127 (5)0.064 (3)0.011 (3)0.024 (3)0.009 (3)
C150.079 (4)0.107 (5)0.064 (3)0.034 (4)0.000 (3)0.019 (3)
N10.059 (2)0.060 (2)0.0313 (17)0.015 (2)0.0121 (16)0.0037 (17)
O10.082 (2)0.073 (2)0.0339 (16)0.0139 (18)0.0117 (14)0.0075 (15)
Cl10.0697 (9)0.1153 (14)0.0917 (11)0.0070 (9)0.0146 (7)0.0370 (9)
Geometric parameters (Å, º) top
C1—C61.375 (6)C9—C101.371 (6)
C1—C21.384 (6)C9—Cl11.732 (5)
C1—N11.426 (5)C10—C111.375 (7)
C2—C31.404 (6)C10—H100.9300
C2—H20.9300C11—C121.369 (7)
C3—C41.393 (7)C11—H110.9300
C3—C141.516 (6)C12—C131.370 (7)
C4—C51.377 (7)C12—H120.9300
C4—C151.504 (7)C13—H130.9300
C5—C61.371 (6)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
C7—O11.228 (4)C15—H15A0.9600
C7—N11.340 (5)C15—H15B0.9600
C7—C81.500 (5)C15—H15C0.9600
C8—C91.379 (6)N1—H1N0.866 (19)
C8—C131.380 (6)
C6—C1—C2119.3 (4)C9—C10—C11119.3 (5)
C6—C1—N1118.3 (4)C9—C10—H10120.4
C2—C1—N1122.4 (4)C11—C10—H10120.4
C1—C2—C3120.1 (5)C12—C11—C10121.0 (5)
C1—C2—H2119.9C12—C11—H11119.5
C3—C2—H2119.9C10—C11—H11119.5
C4—C3—C2120.0 (4)C11—C12—C13118.8 (5)
C4—C3—C14122.2 (5)C11—C12—H12120.6
C2—C3—C14117.8 (5)C13—C12—H12120.6
C5—C4—C3118.2 (4)C12—C13—C8121.8 (5)
C5—C4—C15120.1 (5)C12—C13—H13119.1
C3—C4—C15121.7 (4)C8—C13—H13119.1
C6—C5—C4121.9 (5)C3—C14—H14A109.5
C6—C5—H5119.0C3—C14—H14B109.5
C4—C5—H5119.0H14A—C14—H14B109.5
C5—C6—C1120.4 (4)C3—C14—H14C109.5
C5—C6—H6119.8H14A—C14—H14C109.5
C1—C6—H6119.8H14B—C14—H14C109.5
O1—C7—N1124.3 (4)C4—C15—H15A109.5
O1—C7—C8121.2 (4)C4—C15—H15B109.5
N1—C7—C8114.5 (3)H15A—C15—H15B109.5
C9—C8—C13118.1 (4)C4—C15—H15C109.5
C9—C8—C7121.8 (4)H15A—C15—H15C109.5
C13—C8—C7120.1 (4)H15B—C15—H15C109.5
C10—C9—C8121.1 (4)C7—N1—C1126.6 (3)
C10—C9—Cl1118.9 (4)C7—N1—H1N119 (3)
C8—C9—Cl1119.9 (3)C1—N1—H1N113 (3)
C6—C1—C2—C30.1 (6)N1—C7—C8—C1362.7 (5)
N1—C1—C2—C3179.8 (4)C13—C8—C9—C100.8 (7)
C1—C2—C3—C40.4 (6)C7—C8—C9—C10177.9 (4)
C1—C2—C3—C14179.0 (4)C13—C8—C9—Cl1177.8 (3)
C2—C3—C4—C50.5 (6)C7—C8—C9—Cl15.0 (6)
C14—C3—C4—C5178.9 (4)C8—C9—C10—C112.0 (8)
C2—C3—C4—C15179.8 (4)Cl1—C9—C10—C11179.1 (4)
C14—C3—C4—C150.4 (7)C9—C10—C11—C122.1 (9)
C3—C4—C5—C60.3 (7)C10—C11—C12—C131.0 (9)
C15—C4—C5—C6179.6 (5)C11—C12—C13—C80.2 (8)
C4—C5—C6—C10.0 (7)C9—C8—C13—C120.3 (7)
C2—C1—C6—C50.1 (7)C7—C8—C13—C12176.9 (5)
N1—C1—C6—C5179.6 (4)O1—C7—N1—C15.7 (7)
O1—C7—C8—C960.5 (6)C8—C7—N1—C1175.1 (4)
N1—C7—C8—C9120.2 (5)C6—C1—N1—C7139.5 (5)
O1—C7—C8—C13116.5 (5)C2—C1—N1—C740.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.87 (2)2.00 (2)2.850 (4)168 (4)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H14ClNO
Mr259.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)20.893 (2), 7.259 (1), 8.970 (1)
β (°) 91.95 (1)
V3)1359.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.30 × 0.26 × 0.16
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.924, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
4865, 2489, 1570
Rint0.027
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.217, 1.10
No. of reflections2489
No. of parameters168
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.28

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.866 (19)2.00 (2)2.850 (4)168 (4)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship.

References

First citationBhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279–284.  CAS Google Scholar
First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975–o1976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2009). Acta Cryst. E65, o444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Rodrigues, V. Z., Kožíšek, J. & Fuess, H. (2010). Acta Cryst. E66, o1897.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds