Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N, N^{\prime}-Bis(4-methylphenylsulfonyl)suberamide

Vinola Z. Rodrigues, ${ }^{\text {a }}$ Sabine Foro ${ }^{\text {b }}$ and B. Thimme Gowda ${ }^{\mathbf{a} *}$

${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com
Received 19 July 2011; accepted 22 July 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.058 ; w R$ factor $=0.139$; data-to-parameter ratio $=14.6$.

In the crystal structure of the title compound, $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$, the asymmetric unit contains one half molecule with a center of symmetry at the mid-point of the central $\mathrm{C}-\mathrm{C}$ bond. The conformations of all the $\mathrm{N}-\mathrm{H}, \mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{H}$ bonds in the central amide and aliphatic segments are anti to their adjacent bonds. The molecule is bent at the S atom with an $\mathrm{C}-\mathrm{SO}_{2}-$ $\mathrm{NH}-\mathrm{C}(\mathrm{O})$ torsion angle of $-76.4(3)^{\circ}$. The dihedral angle between the benzene ring and the $\mathrm{SO}_{2}-\mathrm{NH}-\mathrm{C}(\mathrm{O})$ segment in the two halves of the molecule is $67.2(1)^{\circ}$. In the crystal, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}(\mathrm{C})$ intermolecular hydrogen bonds link the molecules into chains along the b axis.

Related literature

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Arjunan et al. (2004); Gowda et al. (1999, 2006); for N-(aryl)-methanesulfonamides, see: Gowda et al. (2007); and for N-(arylsulfonyl)-amides, see: Rodrigues et al. (2011)

Experimental

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$
$M_{r}=480.58$
Monoclinic, $P 2_{1} / c$
$a=8.025$ (1) A
$b=15.835$ (2) A
$c=10.106$ (1) \AA
$V=1188.1(2) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.26 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.22 \times 0.20 \times 0.06 \mathrm{~mm}$
$\beta=112.31(1)^{\circ}$

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
Absorption correction: multi-scan (CrysAlis RED; Oxford

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.139$
$S=1.04$
2174 reflections
149 parameters
1 restraint

Diffraction, 2009)
$T_{\text {min }}=0.944, T_{\text {max }}=0.984$
4285 measured reflections
2174 independent reflections
1326 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.027$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O}^{\mathrm{i}}$	$0.85(2)$	$2.12(2)$	$2.968(3)$	$177(3)$

Symmetry code: (i) $x,-y+\frac{3}{2}, z-\frac{1}{2}$.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2239).

References

Arjunan, V., Mohan, S., Subramanian, S. \& Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141-1159.
Gowda, B. T., Bhat, D. K., Fuess, H. \& Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 261-267.
Gowda, B. T., Foro, S. \& Fuess, H. (2007). Acta Cryst. E63, o2337
Gowda, B. T., Kožíšek, J. \& Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 588594.

Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
Rodrigues, V. Z., Foro, S. \& Gowda, B. T. (2011). Acta Cryst. E67, o2101.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o2161 [doi:10.1107/S1600536811029783]

N, N^{\prime}-Bis(4-methylphenylsulfonyl)suberamide

Vinola Z. Rodrigues, Sabine Foro and B. Thimme Gowda

S1. Comment

The amide and sulfonamide moieties are important constituents of many biologically significant compounds. As part of our studies on the effects of ring and side chain substitutions on the structures and other aspects of N-(aryl)-amides (Arjunan et al., 2004; Gowda et al., 1999, 2006), N-(aryl)-methanesulfonamides (Gowda et al., 2007) and N-(aryl-sulfonyl)-amides (Rodrigues et al., 2011), the crystal structure of N, N-bis(4-methylphenylsulfonyl)-suberamide (I) has been determined (Fig. 1).
In the two $\mathrm{C}-\mathrm{SO}_{2}-\mathrm{NH}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ central segments of the structure, all the $\mathrm{N}-\mathrm{H}, \mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{H}$ bonds in the amide and aliphatic segments are anti to the adjacent bonds, similar to that observed in N, N-bis(4-chloro-phenylsulfonyl)-suberamide (II) (Rodrigues et al., 2011). The orientations of sulfonamide groups with respect to the attached phenyl rings are given by the $\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1$ and $\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1$ torsion angles of $78.2(4)^{\circ}$ and $-104.3(3)^{\circ}$, respectively, compared to the corresponding angles of $67.2(3)^{\circ}$ and -113.9 (4) ${ }^{\circ}$ in (II).
The molecule is bent at the S atom with the $\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 7$ torsion angle of $-76.4(3)^{\circ}$, compared to the value of $-80.6(4)^{\circ}$ in (II). In (I), the aliphatic chain is almost linear with C7-C8-C9-C10 torsion angle of -176.9 (3) ${ }^{\circ}$, compared to the value of -179.4 (4) ${ }^{\circ}$ in (II).
The dihedral angle between the benzene ring and the $\mathrm{SO}_{2}-\mathrm{NH}-\mathrm{C}(\mathrm{O})$ segment in the two halves of the molecule is $67.2(1)^{\circ}$, compared to the value of $79.5(2)^{\circ}$ in (II).
The structure shows simultaneous of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}(\mathrm{C})$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}(\mathrm{S})$ intermolecular hydrogen bonds (Table 1), which link the molecules into infinite chains along the b-axis.

S2. Experimental

N, N-Bis(4-methylphenylsulfonyl)-suberamide was prepared by refluxing a mixture of suberic acid (0.01 mol) with 4methylbenzenesulfonamide $(0.02 \mathrm{~mol})$ and $\mathrm{POCl}_{3}(0.02 \mathrm{~mol})$ for 1 h on a water bath. The reaction mixture was allowed to cool and added ether to it. The solid product obtained was filtered, washed thoroughly with ether and hot ethanol. The compound was recrystallized to the constant melting point and was characterized by its infrared and NMR spectra.
Plate like colorless single crystals used in the X-ray diffraction studies were grown by a slow evaporation of a solution of the compound in ethanol at room temperature.

S3. Refinement

The H atom of the NH group was located in a difference map and later restrained to the distance $\mathrm{N}-\mathrm{H}=0.86$ (2) \AA. The other H atoms were positioned with idealized geometry using a riding model with the aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$, the methyl $\mathrm{C}-\mathrm{H}=0.96 \AA$ and the methylene $\mathrm{C}-\mathrm{H}=0.97 \AA$. All H atoms were refined with isotropic displacement parameters. The $U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\mathrm{eq}}(\mathrm{C}$-aromatic, N$)$ and $1.5 U_{\mathrm{eq}}(C$-methyl $)$.

Figure 1
Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radii (Symmetry code: (i) $-x+2,-y+2,-$ $z+1)$.

Figure 2
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

N, N^{\prime}-Bis(4-methylphenylsulfonyl)suberamide

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$

$$
M_{r}=480.58
$$

$$
\begin{aligned}
& a=8.025(1) \AA \\
& b=15.835(2) \AA \\
& c=10.106(1) \AA \\
& \beta=112.31(1)^{\circ}
\end{aligned}
$$

Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$V=1188.1(2) \AA^{3}$
$Z=2$
$F(000)=508$
$D_{\mathrm{x}}=1.343 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1291 reflections

Data collection

Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Radiation source: fine-focus sealed tube
Graphite monochromator
Rotation method data acquisition using ω and φ scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\text {min }}=0.944, T_{\text {max }}=0.984$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.139$
$S=1.04$
2174 reflections
149 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
\theta & =2.6-27.9^{\circ} \\
\mu & =0.26 \mathrm{~mm}^{-1} \\
T & =293 \mathrm{~K}
\end{aligned}
$$

Plate, colourless
$0.22 \times 0.20 \times 0.06 \mathrm{~mm}$

> 4285 measured reflections
> 2174 independent reflections
> 1326 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.027$
> $\theta_{\max }=25.4^{\circ}, \theta_{\min }=2.6^{\circ}$
> $h=-8 \rightarrow 9$
> $k=-18 \rightarrow 19$
> $l=-12 \rightarrow 5$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0552 P)^{2}+0.6042 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.24 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.18 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.5932(5)$	$0.5531(2)$	$0.2952(4)$	$0.0497(9)$
C2	$0.6538(6)$	$0.5479(3)$	$0.4421(4)$	$0.0737(13)$
H2	0.6270	0.5905	0.4942	0.088^{*}
C3	$0.7543(6)$	$0.4790(3)$	$0.5116(4)$	$0.0764(13)$
H3	0.7974	0.4766	0.6109	0.092^{*}
C4	$0.7924(5)$	$0.4137(3)$	$0.4374(4)$	$0.0618(10)$
C5	$0.7280(6)$	$0.4193(3)$	$0.2923(5)$	$0.0729(12)$
H5	0.7494	0.3752	0.2401	0.088^{*}
C6	$0.6318(5)$	$0.4888(3)$	$0.2201(4)$	$0.0659(11)$

H6	0.5933	0.4920	0.1211	0.079^{*}
C7	$0.6778(4)$	$0.7666(2)$	$0.3447(3)$	$0.0426(8)$
C8	$0.7768(5)$	$0.8427(2)$	$0.3252(4)$	$0.0514(9)$
H8A	0.6928	0.8786	0.2525	0.062^{*}
H8B	0.8681	0.8245	0.2902	0.062^{*}
C9	$0.8661(5)$	$0.8942(2)$	$0.4590(3)$	$0.0502(9)$
H9A	0.9560	0.8596	0.5299	0.060^{*}
H9B	0.7765	0.9099	0.4974	0.060^{*}
C10	$0.9552(5)$	$0.9732(2)$	$0.4338(3)$	$0.0472(9)$
H10A	0.8651	1.0072	0.3619	0.057^{*}
H10B	1.0450	0.9572	0.3958	0.057^{*}
C11	$0.8969(6)$	$0.3379(3)$	$0.5150(5)$	$0.0877(14)$
H11A	0.8168	0.2989	0.5336	0.132^{*}
H11B	0.9882	0.3555	0.6040	0.132^{*}
H11C	0.9525	0.3109	0.4572	0.132^{*}
N1	$0.6017(4)$	$0.71857(18)$	$0.2220(3)$	$0.0603(8)$
H1N	$0.622(5)$	$0.730(2)$	$0.147(3)$	$0.0675(8)$
O1	$0.3945(4)$	$0.62103(16)$	$0.0532(2)$	$0.0676(8)$
O2	$0.3391(3)$	$0.66139(16)$	$0.2692(3)$	$0.0530(7)$
O3	$0.6643(3)$	$0.74728(14)$	$0.4557(2)$	$0.0530(3)$
S1	$0.46037(13)$	$0.63862(6)$	$0.20264(10)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.058(2)$	$0.046(2)$	$0.046(2)$	$-0.0189(18)$	$0.0211(19)$	$-0.0049(17)$
C2	$0.121(4)$	$0.052(3)$	$0.048(2)$	$-0.004(3)$	$0.032(2)$	$-0.005(2)$
C3	$0.115(4)$	$0.061(3)$	$0.044(2)$	$-0.007(3)$	$0.020(2)$	$0.001(2)$
C4	$0.060(2)$	$0.064(3)$	$0.064(3)$	$-0.009(2)$	$0.026(2)$	$0.000(2)$
C5	$0.083(3)$	$0.074(3)$	$0.067(3)$	$0.013(3)$	$0.034(2)$	$-0.009(2)$
C6	$0.077(3)$	$0.073(3)$	$0.046(2)$	$0.005(2)$	$0.022(2)$	$-0.006(2)$
C7	$0.050(2)$	$0.038(2)$	$0.040(2)$	$-0.0043(17)$	$0.0181(17)$	$-0.0070(15)$
C8	$0.065(2)$	$0.043(2)$	$0.047(2)$	$-0.0127(18)$	$0.0215(18)$	$-0.0077(16)$
C9	$0.057(2)$	$0.039(2)$	$0.049(2)$	$-0.0055(18)$	$0.0142(17)$	$-0.0054(16)$
C10	$0.049(2)$	$0.038(2)$	$0.047(2)$	$-0.0009(17)$	$0.0093(17)$	$-0.0032(15)$
C11	$0.084(3)$	$0.081(4)$	$0.096(4)$	$0.018(3)$	$0.033(3)$	$0.018(3)$
N1	$0.072(2)$	$0.0452(17)$	$0.0398(16)$	$-0.0234(16)$	$0.0283(16)$	$-0.0108(14)$
O1	$0.0841(19)$	$0.0595(18)$	$0.0454(14)$	$-0.0210(14)$	$0.0091(13)$	$-0.0094(12)$
O2	$0.0662(17)$	$0.0630(18)$	$0.0816(19)$	$-0.0098(14)$	$0.0372(16)$	$0.0012(14)$
O3	$0.0784(18)$	$0.0485(15)$	$0.0385(13)$	$-0.0094(13)$	$0.0292(13)$	$-0.0069(11)$
S1	$0.0622(6)$	$0.0473(6)$	$0.0471(5)$	$-0.0178(5)$	$0.0179(4)$	$-0.0062(4)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 6$	$1.374(5)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9700
$\mathrm{C} 1-\mathrm{C} 2$	$1.378(5)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9700
$\mathrm{C} 1-\mathrm{S} 1$	$1.757(4)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.510(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.379(6)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9700

$\mathrm{C} 2-\mathrm{H} 2$	0.9300
C3-C4	1.379 (5)
C3-H3	0.9300
C4-C5	1.360 (5)
C4-C11	1.503 (6)
C5-C6	1.383 (6)
C5-H5	0.9300
C6-H6	0.9300
C7-O3	1.206 (3)
C7-N1	1.384 (4)
C7-C8	1.498 (4)
C8-C9	1.507 (4)
C6- $\mathrm{C} 1-\mathrm{C} 2$	119.3 (4)
C6- $\mathrm{C} 1-\mathrm{S} 1$	119.7 (3)
C2- $21-\mathrm{S} 1$	121.0 (3)
C3-C2-C1	119.7 (4)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.2
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.2
C2-C3-C4	121.6 (4)
C2-C3-H3	119.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.2
C5-C4-C3	117.7 (4)
C5-C4-C11	121.6 (4)
C3-C4-C11	120.7 (4)
C4-C5-C6	121.9 (4)
C4-C5-H5	119.0
C6-C5-H5	119.0
C1-C6-C5	119.7 (4)
C1-C6-H6	120.1
C5-C6-H6	120.1
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{N} 1$	122.0 (3)
O3-C7-C8	124.5 (3)
N1-C7-C8	113.6 (3)
C7-C8-C9	114.3 (3)
C7-C8-H8A	108.7
C9-C8-H8A	108.7
C7-C8-H8B	108.7
С9-С8-Н8B	108.7
H8A-C8-H8B	107.6
C6-C1-C2-C3	1.0 (6)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	178.5 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-1.7 (7)
C2-C3-C4-C5	0.3 (6)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 11$	-177.9 (4)
C3-C4-C5-C6	1.8 (6)
C11-C4-C5-C6	180.0 (4)

$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	0.9700
$\mathrm{C} 10-\mathrm{C} 10^{\mathrm{i}}$	$1.515(6)$
$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9700
$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.9700
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9600
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.9600
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	0.9600
$\mathrm{~N} 1-\mathrm{S} 1$	$1.661(3)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$0.851(18)$
$\mathrm{O} 1-\mathrm{S} 1$	$1.425(2)$
$\mathrm{O} 2-\mathrm{S} 1$	$1.423(3)$

113.0 (3)
109.0
109.0
109.0
109.0
107.8
114.3 (3)
108.7
108.7
108.7
108.7
107.6
109.5
109.5
109.5
109.5
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C} \quad 109.5$
$\mathrm{H} 11 \mathrm{~B}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C} \quad 109.5$
C7—N1—S1 125.0 (2)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} \quad 121$ (2)
$\mathrm{S} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} \quad 114$ (2)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1 \quad 120.31$ (18)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1 \quad 108.08$ (15)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1 \quad 103.64$ (15)
O2—S1—C1 109.20 (16)
O1—S1—C1 108.66 (17)
N1—S1—C1 105.98 (16)
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 10^{\mathrm{i}} \quad 179.5$ (4)
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{N} 1-\mathrm{S} 1 \quad 9.4$ (5)
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{N} 1-\mathrm{S} 1 \quad-170.9(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{S} 1-\mathrm{O} 2 \quad 40.5$ (3)
C7-N1—S1—O1 169.2 (3)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 1 \quad-76.5(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 2 \quad 139.5$ (3)

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$1.0(6)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 2$	$-38.0(4)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-176.5(3)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 1$	$6.5(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-2.4(6)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 1$	$-170.9(3)$
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$1.7(5)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1$	$-104.3(3)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-178.0(3)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1$	$78.2(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-176.5(3)$		

Symmetry code: (i) $-x+2,-y+2,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{O}^{\mathrm{ii}}$	$0.85(2)$	$2.12(2)$	$2.968(3)$	$177(3)$

Symmetry code: (ii) $x,-y+3 / 2, z-1 / 2$.

