organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis[(2-ethyl-1H-benzimidazol-1-yl)meth­yl]benzene

aThe Department of Physics–Chemistry, Henan Polytechnic University, Jiao Zuo, 454000, People's Republic of China
*Correspondence e-mail: wangqiang@hpu.edu.cn

(Received 20 June 2011; accepted 28 June 2011; online 2 July 2011)

In the title mol­ecule, C26H26N4, the central benzene ring forms dihedral angles of 89.9 (2) and 85.4 (2)° with the two benzimidazole rings.

Related literature

The title compound is a precursor of N,NN′-benzimidazolium ionic liquids (ILs). For background to the use of ILs as solvents or ligands in the synthesis of new metal-organic frameworks (MOFs), see: Fei et al. (2006[Fei, Z. F., Ang, W. H., Geldbach, T. J., Scopelliti, R. & Dyson, P. J. (2006). Chem. Eur. J. 12, 4014-4020.]); Wang et al. (2009[Wang, K. F., Jian, F. F., Zhuang, R. R. & Xiao, H. L. (2009). Cryst. Growth Des. 9, 3934-3940.]); Xu et al. (2009[Xu, L., Yan, S.-H., Choi, E.-Y., Lee, J. Y. & Kwon, Y.-U. (2009). Chem. Commun. pp. 3431-3433.]). For properties of metal-containing ILs, see: Lee et al. (2004[Lee, C. K., Peng, H. H. & Lin, I. J. B. (2004). Chem. Mater. 16, 530-536.]); Sasaki et al. (2005[Sasaki, T., Zhong, C., Tada, M. & Iwasawa, Y. (2005). Chem. Commun. pp. 2506-2508.]); Wang et al. (2009[Wang, K. F., Jian, F. F., Zhuang, R. R. & Xiao, H. L. (2009). Cryst. Growth Des. 9, 3934-3940.]). For details of the synthesis, see Rajakannu et al. (2011[Rajakannu, P., Shankar, B., Yadav, A., Shanmugam, R., Gupta, D., Hussain, F., Chang, C.-H., Sathiyendiran, M. & Lu, K.-L. (2011). Organometallics, 30, 3168-3176.]).

[Scheme 1]

Experimental

Crystal data
  • C26H26N4

  • Mr = 394.51

  • Orthorhombic, P 21 21 21

  • a = 10.300 (2) Å

  • b = 11.437 (2) Å

  • c = 17.809 (4) Å

  • V = 2098.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.20 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.986, Tmax = 0.989

  • 16782 measured reflections

  • 2829 independent reflections

  • 2488 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.153

  • S = 1.04

  • 2829 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ionic liquids (ILs) have attracted great interest as solvents or ligands in the synthesis of new metal-organic frameworks (MOFs)(Fei et al.,2006; Wang et al., 2009; Xu et al., 2009). By incorporating metal ions to the ILs, metal-containing ILs can be formed. the presence of metal ions in ILs provided many additional properties such as color, geometry, and magnetism (Lee et al., 2004; Sasaki et al., 2005; Wang et al., 2009). As a part of our program devoted to the new applications of the ILs ligands in coordination polymer, we report herein the crystal structure of the title compound as the precursor of the N,N'-benzimidazolium ILs.

The molecule structure of title compound was shown in the Fig.1, all bond lengths and angles are in normal range. In the crystal structure, the central benzene ring forms dihedral angles of 88.9 (0)° and 84.4 (2)° with the two benzimidazole rings, respectively. The N2 atom are nearly co-planar with benzene ring by 0.055 (4) Å derivation. The crystal packing is stabilized by van der Waals forces.

Related literature top

For background to the use of ionic liquids (ILs) as solvents or ligands in the synthesis of new metal-organic frameworks (MOFs), see: Fei et al. (2006); Wang et al. (2009); Xu et al. (2009). For properties of metal-containing ILs, see: Lee et al. (2004); Sasaki et al. (2005); Wang et al. (2009). For details of the synthesis, see Rajakannu et al. (2011).

Experimental top

(type here to add preparation details)

Refinement top

H atoms were located in a difference map and treated as riding with C—H = 0.96 Å for methyl groups and C—H = 0.93 Å for all other H atoms with Uiso (H) = 1.2 Ueq (aromatic, methylene) or Uiso(H) = 1.5 Ueq (methyl).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
1,4-Bis[(2-ethyl-1H-benzimidazol-1-yl)methyl]benzene top
Crystal data top
C26H26N4F(000) = 840
Mr = 394.51Dx = 1.249 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 10.300 (2) Åθ = 2.1–25.0°
b = 11.437 (2) ŵ = 0.08 mm1
c = 17.809 (4) ÅT = 298 K
V = 2098.0 (7) Å3Block, colorless
Z = 40.20 × 0.16 × 0.15 mm
Data collection top
Bruker SMART APEX
diffractometer
2829 independent reflections
Radiation source: fine-focus sealed tube2488 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 27.9°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1311
Tmin = 0.986, Tmax = 0.989k = 1315
16782 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0508P)2 + 1.P]
where P = (Fo2 + 2Fc2)/3
2829 reflections(Δ/σ)max = 0.002
273 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C26H26N4V = 2098.0 (7) Å3
Mr = 394.51Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.300 (2) ŵ = 0.08 mm1
b = 11.437 (2) ÅT = 298 K
c = 17.809 (4) Å0.20 × 0.16 × 0.15 mm
Data collection top
Bruker SMART APEX
diffractometer
2829 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2488 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.989Rint = 0.053
16782 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.04Δρmax = 0.13 e Å3
2829 reflectionsΔρmin = 0.19 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7649 (6)0.2700 (5)0.3958 (3)0.0931 (19)
H1A0.75710.18680.40120.140*
H1B0.71730.30810.43510.140*
H1C0.85470.29190.39880.140*
C20.8228 (5)0.9074 (4)0.3524 (3)0.0684 (13)
H2A0.84410.98890.35630.103*
H2B0.88550.86210.37960.103*
H2C0.73800.89420.37300.103*
C30.7113 (5)0.3063 (4)0.3214 (3)0.0656 (12)
H3A0.62100.28280.31880.079*
H3B0.71420.39090.31800.079*
C40.4406 (5)1.0546 (4)0.0497 (3)0.0729 (14)
H40.40071.06580.00340.087*
C50.3894 (5)1.1102 (4)0.1121 (3)0.0676 (13)
H50.31591.15670.10680.081*
C60.9239 (5)0.1282 (4)0.0326 (3)0.0688 (13)
H60.92850.11480.01880.083*
C71.0183 (5)0.0806 (4)0.0793 (3)0.0681 (13)
H71.08480.03640.05820.082*
C80.5478 (5)0.9837 (4)0.0534 (3)0.0648 (12)
H80.58060.94630.01110.078*
C90.8237 (4)0.1949 (4)0.0606 (2)0.0586 (11)
H90.76070.22750.02960.070*
C100.8240 (4)0.8715 (4)0.2708 (2)0.0567 (11)
H10A0.90770.89150.24940.068*
H10B0.81450.78720.26790.068*
C111.0161 (4)0.0968 (4)0.1559 (3)0.0586 (11)
H111.08000.06490.18660.070*
C120.7925 (4)0.8299 (3)0.1041 (2)0.0528 (10)
H12A0.88250.83950.11900.063*
H12B0.78560.85110.05150.063*
C130.6274 (4)0.6663 (3)0.1021 (2)0.0473 (9)
H130.56620.71960.08470.057*
C140.8429 (4)0.6215 (3)0.1381 (2)0.0494 (10)
H140.92870.64380.14590.059*
C150.5904 (4)0.5521 (3)0.1160 (2)0.0463 (9)
H150.50440.53010.10850.056*
C160.4456 (4)1.0978 (3)0.1817 (3)0.0551 (10)
H160.41181.13610.22340.066*
C170.6048 (4)0.9707 (3)0.1238 (2)0.0481 (10)
C180.7536 (4)0.7026 (3)0.1137 (2)0.0429 (9)
C190.8053 (4)0.5061 (3)0.1511 (2)0.0479 (9)
H190.86700.45220.16710.058*
N40.6289 (3)0.9968 (3)0.25067 (19)0.0487 (8)
C200.8219 (4)0.2108 (3)0.1384 (2)0.0438 (9)
C210.7811 (4)0.2564 (3)0.2563 (2)0.0450 (9)
C220.6790 (4)0.4702 (3)0.1407 (2)0.0409 (8)
C230.9151 (4)0.1625 (3)0.1859 (2)0.0460 (9)
C240.5549 (4)1.0261 (3)0.1880 (2)0.0462 (9)
N30.7116 (3)0.9081 (3)0.14849 (19)0.0469 (8)
C250.7199 (4)0.9271 (3)0.2246 (2)0.0462 (9)
N10.8875 (3)0.1927 (3)0.25983 (19)0.0512 (8)
N20.7370 (3)0.2705 (2)0.18419 (18)0.0431 (7)
C260.6341 (4)0.3469 (3)0.1584 (2)0.0476 (9)
H26A0.56730.35060.19660.057*
H26B0.59550.31340.11360.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.117 (5)0.110 (4)0.052 (3)0.041 (4)0.011 (3)0.003 (3)
C20.081 (3)0.068 (3)0.056 (3)0.009 (3)0.011 (3)0.004 (2)
C30.067 (3)0.069 (3)0.061 (3)0.018 (2)0.008 (2)0.004 (2)
C40.090 (4)0.064 (3)0.064 (3)0.000 (3)0.021 (3)0.010 (3)
C50.062 (3)0.056 (3)0.085 (4)0.000 (2)0.015 (3)0.014 (3)
C60.084 (4)0.065 (3)0.058 (3)0.004 (3)0.016 (3)0.004 (2)
C70.068 (3)0.059 (3)0.078 (3)0.003 (2)0.020 (3)0.011 (2)
C80.084 (3)0.052 (2)0.058 (3)0.002 (2)0.007 (3)0.003 (2)
C90.060 (3)0.057 (2)0.058 (3)0.008 (2)0.000 (2)0.003 (2)
C100.058 (3)0.054 (2)0.058 (3)0.009 (2)0.005 (2)0.001 (2)
C110.049 (2)0.052 (2)0.074 (3)0.005 (2)0.004 (2)0.004 (2)
C120.065 (3)0.037 (2)0.056 (2)0.0053 (19)0.012 (2)0.0022 (18)
C130.051 (2)0.041 (2)0.051 (2)0.0031 (18)0.0063 (19)0.0059 (17)
C140.041 (2)0.042 (2)0.065 (3)0.0067 (17)0.0014 (19)0.0016 (18)
C150.041 (2)0.044 (2)0.054 (2)0.0034 (17)0.0085 (18)0.0004 (18)
C160.051 (2)0.044 (2)0.070 (3)0.0003 (19)0.001 (2)0.007 (2)
C170.060 (3)0.0322 (18)0.052 (2)0.0064 (18)0.000 (2)0.0065 (16)
C180.052 (2)0.0358 (18)0.041 (2)0.0026 (17)0.0066 (18)0.0046 (15)
C190.042 (2)0.0382 (19)0.063 (2)0.0003 (17)0.0072 (19)0.0028 (18)
N40.0480 (18)0.0435 (17)0.0546 (19)0.0018 (15)0.0026 (16)0.0025 (15)
C200.050 (2)0.0317 (17)0.049 (2)0.0045 (16)0.0024 (19)0.0028 (16)
C210.048 (2)0.041 (2)0.045 (2)0.0006 (18)0.0005 (17)0.0027 (17)
C220.044 (2)0.0409 (19)0.0380 (18)0.0006 (16)0.0033 (16)0.0016 (15)
C230.044 (2)0.0373 (19)0.057 (2)0.0043 (16)0.0030 (19)0.0010 (17)
C240.049 (2)0.0367 (18)0.054 (2)0.0081 (17)0.0017 (19)0.0057 (17)
N30.056 (2)0.0364 (16)0.0484 (18)0.0004 (15)0.0037 (16)0.0001 (14)
C250.051 (2)0.039 (2)0.049 (2)0.0043 (18)0.0016 (18)0.0004 (16)
N10.0480 (19)0.0485 (19)0.057 (2)0.0046 (16)0.0009 (16)0.0002 (16)
N20.0432 (17)0.0356 (15)0.0504 (18)0.0028 (13)0.0008 (15)0.0022 (14)
C260.045 (2)0.0358 (18)0.062 (2)0.0002 (17)0.0034 (19)0.0048 (17)
Geometric parameters (Å, º) top
C1—C31.492 (6)C12—N31.456 (5)
C1—H1A0.9600C12—C181.520 (5)
C1—H1B0.9600C12—H12A0.9700
C1—H1C0.9600C12—H12B0.9700
C2—C101.510 (6)C13—C181.380 (5)
C2—H2A0.9600C13—C151.383 (5)
C2—H2B0.9600C13—H130.9300
C2—H2C0.9600C14—C181.376 (5)
C3—C211.479 (5)C14—C191.395 (5)
C3—H3A0.9700C14—H140.9300
C3—H3B0.9700C15—C221.380 (5)
C4—C81.371 (7)C15—H150.9300
C4—C51.384 (7)C16—C241.397 (5)
C4—H40.9300C16—H160.9300
C5—C161.376 (6)C17—N31.384 (5)
C5—H50.9300C17—C241.404 (5)
C6—C91.377 (6)C19—C221.377 (5)
C6—C71.391 (7)C19—H190.9300
C6—H60.9300N4—C251.316 (5)
C7—C111.378 (6)N4—C241.393 (5)
C7—H70.9300C20—N21.377 (5)
C8—C171.393 (6)C20—C231.394 (5)
C8—H80.9300C21—N11.317 (5)
C9—C201.396 (6)C21—N21.372 (5)
C9—H90.9300C22—C261.516 (5)
C10—C251.495 (5)C23—N11.390 (5)
C10—H10A0.9700N3—C251.375 (5)
C10—H10B0.9700N2—C261.449 (4)
C11—C231.390 (5)C26—H26A0.9700
C11—H110.9300C26—H26B0.9700
C3—C1—H1A109.5C18—C13—H13119.5
C3—C1—H1B109.5C15—C13—H13119.5
H1A—C1—H1B109.5C18—C14—C19120.3 (4)
C3—C1—H1C109.5C18—C14—H14119.8
H1A—C1—H1C109.5C19—C14—H14119.8
H1B—C1—H1C109.5C13—C15—C22121.1 (4)
C10—C2—H2A109.5C13—C15—H15119.5
C10—C2—H2B109.5C22—C15—H15119.5
H2A—C2—H2B109.5C5—C16—C24118.1 (4)
C10—C2—H2C109.5C5—C16—H16120.9
H2A—C2—H2C109.5C24—C16—H16120.9
H2B—C2—H2C109.5N3—C17—C8132.6 (4)
C21—C3—C1114.1 (4)N3—C17—C24105.4 (3)
C21—C3—H3A108.7C8—C17—C24122.0 (4)
C1—C3—H3A108.7C13—C18—C14118.3 (3)
C21—C3—H3B108.7C13—C18—C12121.3 (4)
C1—C3—H3B108.7C14—C18—C12120.3 (4)
H3A—C3—H3B107.6C22—C19—C14121.5 (4)
C8—C4—C5122.7 (5)C22—C19—H19119.3
C8—C4—H4118.6C14—C19—H19119.3
C5—C4—H4118.6C25—N4—C24104.6 (3)
C16—C5—C4121.0 (5)N2—C20—C9131.3 (4)
C16—C5—H5119.5N2—C20—C23105.9 (3)
C4—C5—H5119.5C9—C20—C23122.8 (4)
C9—C6—C7121.6 (4)N1—C21—N2112.6 (3)
C9—C6—H6119.2N1—C21—C3125.5 (4)
C7—C6—H6119.2N2—C21—C3121.9 (3)
C11—C7—C6121.9 (4)C19—C22—C15117.7 (3)
C11—C7—H7119.1C19—C22—C26122.5 (3)
C6—C7—H7119.1C15—C22—C26119.7 (3)
C4—C8—C17116.5 (5)C11—C23—N1130.6 (4)
C4—C8—H8121.8C11—C23—C20119.8 (4)
C17—C8—H8121.8N1—C23—C20109.6 (3)
C6—C9—C20116.2 (4)N4—C24—C16130.3 (4)
C6—C9—H9121.9N4—C24—C17110.1 (3)
C20—C9—H9121.9C16—C24—C17119.6 (4)
C25—C10—C2114.1 (4)C25—N3—C17106.3 (3)
C25—C10—H10A108.7C25—N3—C12126.6 (4)
C2—C10—H10A108.7C17—N3—C12126.9 (3)
C25—C10—H10B108.7N4—C25—N3113.5 (4)
C2—C10—H10B108.7N4—C25—C10125.1 (4)
H10A—C10—H10B107.6N3—C25—C10121.4 (4)
C7—C11—C23117.8 (4)C21—N1—C23105.2 (3)
C7—C11—H11121.1C21—N2—C20106.6 (3)
C23—C11—H11121.1C21—N2—C26127.6 (3)
N3—C12—C18112.1 (3)C20—N2—C26125.1 (3)
N3—C12—H12A109.2N2—C26—C22113.8 (3)
C18—C12—H12A109.2N2—C26—H26A108.8
N3—C12—H12B109.2C22—C26—H26A108.8
C18—C12—H12B109.2N2—C26—H26B108.8
H12A—C12—H12B107.9C22—C26—H26B108.8
C18—C13—C15121.1 (4)H26A—C26—H26B107.7
C8—C4—C5—C160.8 (7)N3—C17—C24—N40.6 (4)
C9—C6—C7—C110.4 (7)C8—C17—C24—N4179.1 (4)
C5—C4—C8—C170.6 (7)N3—C17—C24—C16179.5 (3)
C7—C6—C9—C200.5 (7)C8—C17—C24—C160.8 (6)
C6—C7—C11—C230.4 (7)C8—C17—N3—C25179.0 (4)
C18—C13—C15—C221.1 (6)C24—C17—N3—C250.7 (4)
C4—C5—C16—C240.9 (6)C8—C17—N3—C123.7 (7)
C4—C8—C17—N3179.8 (4)C24—C17—N3—C12176.0 (3)
C4—C8—C17—C240.6 (6)C18—C12—N3—C2577.0 (5)
C15—C13—C18—C141.3 (6)C18—C12—N3—C1797.5 (4)
C15—C13—C18—C12175.4 (4)C24—N4—C25—N30.1 (4)
C19—C14—C18—C130.5 (6)C24—N4—C25—C10179.7 (4)
C19—C14—C18—C12176.3 (4)C17—N3—C25—N40.5 (4)
N3—C12—C18—C1353.7 (5)C12—N3—C25—N4175.9 (3)
N3—C12—C18—C14123.0 (4)C17—N3—C25—C10179.3 (3)
C18—C14—C19—C220.5 (6)C12—N3—C25—C103.9 (6)
C6—C9—C20—N2179.5 (4)C2—C10—C25—N43.5 (6)
C6—C9—C20—C230.2 (6)C2—C10—C25—N3176.8 (4)
C1—C3—C21—N15.2 (7)N2—C21—N1—C230.3 (4)
C1—C3—C21—N2173.1 (4)C3—C21—N1—C23178.1 (4)
C14—C19—C22—C150.8 (6)C11—C23—N1—C21179.6 (4)
C14—C19—C22—C26176.7 (4)C20—C23—N1—C210.3 (4)
C13—C15—C22—C190.0 (6)N1—C21—N2—C200.2 (4)
C13—C15—C22—C26177.6 (4)C3—C21—N2—C20178.3 (4)
C7—C11—C23—N1179.7 (4)N1—C21—N2—C26171.1 (3)
C7—C11—C23—C201.1 (6)C3—C21—N2—C2610.4 (6)
N2—C20—C23—C11179.6 (3)C9—C20—N2—C21179.4 (4)
C9—C20—C23—C111.0 (6)C23—C20—N2—C210.0 (4)
N2—C20—C23—N10.2 (4)C9—C20—N2—C269.0 (6)
C9—C20—C23—N1179.7 (4)C23—C20—N2—C26171.6 (3)
C25—N4—C24—C16179.8 (4)C21—N2—C26—C2286.5 (5)
C25—N4—C24—C170.3 (4)C20—N2—C26—C2283.2 (4)
C5—C16—C24—N4178.9 (4)C19—C22—C26—N22.2 (6)
C5—C16—C24—C170.9 (5)C15—C22—C26—N2179.6 (3)

Experimental details

Crystal data
Chemical formulaC26H26N4
Mr394.51
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)10.300 (2), 11.437 (2), 17.809 (4)
V3)2098.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.986, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
16782, 2829, 2488
Rint0.053
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.153, 1.04
No. of reflections2829
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.19

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Natural Science Research Program of the Education Department of Henan Province (2011 A150015), Henan Polytechnic University Foundation for Doctoral Teachers (B2010–65) and Henan Polytechnic University Foundation for the Youth (P051102). The authors thank Dr L. Yang and D. Zhao for assistance with the data analysis.

References

First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFei, Z. F., Ang, W. H., Geldbach, T. J., Scopelliti, R. & Dyson, P. J. (2006). Chem. Eur. J. 12, 4014–4020.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, C. K., Peng, H. H. & Lin, I. J. B. (2004). Chem. Mater. 16, 530–536.  Web of Science CSD CrossRef CAS Google Scholar
First citationRajakannu, P., Shankar, B., Yadav, A., Shanmugam, R., Gupta, D., Hussain, F., Chang, C.-H., Sathiyendiran, M. & Lu, K.-L. (2011). Organometallics, 30, 3168–3176.  Web of Science CSD CrossRef CAS Google Scholar
First citationSasaki, T., Zhong, C., Tada, M. & Iwasawa, Y. (2005). Chem. Commun. pp. 2506–2508.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, K. F., Jian, F. F., Zhuang, R. R. & Xiao, H. L. (2009). Cryst. Growth Des. 9, 3934–3940.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, L., Yan, S.-H., Choi, E.-Y., Lee, J. Y. & Kwon, Y.-U. (2009). Chem. Commun. pp. 3431–3433.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds