organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(Pyridin-2-yl)-3,3′-bi(1H-1,2,4-triazole)

aThe Department of Physics–Chemistry, Henan Polytechnic University, Jiao Zuo, 454000, People's Republic of China, and bThe Hospital of Henan Polytechnic University, Jiao Zuo, 454000, People's Republic of China
*Correspondence e-mail: wangqiang@hpu.edu.cn

(Received 5 July 2011; accepted 8 July 2011; online 13 July 2011)

In the title mol­ecule, C9H7N7, the two triazole rings are twisted by an angle of 3.8 (5)°; the central triazole ring is twisted by 32.3 (6)° with respect to the pyridyl ring. The crystal packing consists of layers generated by inter­molecular N—H⋯N hydrogen bonds.

Related literature

For related structures, see: Mai et al. (2009[Mai, X., Xia, H.-Y., Cao, Y.-S., Lu, X.-S. & Liao, Y.-J. (2009). Z. Kristallogr. New Cryst. Struct. 224, 547-548.]); Zhang et al. (2010[Zhang, C.-H., Zhang, J.-J., Li, W. & Liu, B.-H. (2010). Z. Kristallogr. New Cryst. Struct. 225, 599-600.]). For the synthesis, see: Potts (1960[Potts, K. T. (1960). Chem. Rev. 61, 87-127.]); Wiley & Hart (1953[Wiley, R. H. & Hart, A. J. (1953). J. Org. Chem. 18, 1368-1371.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7N7

  • Mr = 213.22

  • Monoclinic, P 21 /c

  • a = 12.372 (3) Å

  • b = 7.5361 (15) Å

  • c = 10.007 (2) Å

  • β = 93.670 (4)°

  • V = 931.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.979

  • 5150 measured reflections

  • 1832 independent reflections

  • 1072 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.156

  • S = 0.94

  • 1832 reflections

  • 154 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H1⋯N4i 0.98 (4) 1.93 (4) 2.891 (3) 165 (3)
N2—H2⋯N3ii 0.99 (3) 1.90 (4) 2.878 (3) 167 (3)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the past decads, copounds containling trazole subunits have been intensively studied due to their diverse biological activities, such as fungicide, herbicide, medicine, etc., and have become a central focus in the sudy of agricultural, medicinal and material chemicals. Furthermore, the study on crystal structures and properties of the new metal-organic frameworks (MOFs) of N-containing ligands have attracted considerable attentions during the past years for the their potential applications in polymeric materials, catalytic materials, biological materials optical materials and so on (Zhang, et al., 2010). Therefore, in search for new multidentate ligands, we have synthesized the title compound and determined its structure.

The molecule structure of title compound was shown in the Fig.1, the lengths and angles are within normal ranges. In triazol ring, the average C—N bond length is 1.336 (5) Å, which is shorter than C—N (mean 1.461 (2) Å) (Zhang, et al., 2010), but longer than C=N (mean 1.269 (3) Å) (Mai, et al., 2009). This is caused probably by electron delocalization in heterocyclic systems. In the crystal structure, the two triazole rings are almost coplanar, they are twisted by an angle of 3.8 (5)°. the central triazole ring form dihedral angles of 32.3 (6)° with the pyridyl ring. The crystal packing (Fig. 2) consists of two-dimensional infinite plane along the b axis generated by intermolecular interactions of N—H···N hydrogen bonds.

Related literature top

For related structures, see: Mai et al. (2009); Zhang et al. (2010). For the synthesis, see: Potts (1960); Wiley & Hart (1953).

Experimental top

5-(Pyridin-2-yl)-1H,1'H-3,3'-bi(1,2,4-triazole)was prepared according to Wiley & Hart (1953) and Potts et al. (1960). The crystals suitable for crystallographic analysis were grown by recrystallization from DMF and ethanol solution as colorless block.

Refinement top

N-bound H-atoms were located in a difference map and refined freely. C-bound H atoms were positioned geometrically (C—H = 0.94 Å) and were constrained in a riding motion approximation with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines, viewed down the b axis.
5-(Pyridin-2-yl)-3,3'-bi(1H-1,2,4-triazole) top
Crystal data top
C9H7N7F(000) = 440
Mr = 213.22Dx = 1.521 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.372 (3) ÅCell parameters from 6322 reflections
b = 7.5361 (15) Åθ = 2.0–27.9°
c = 10.007 (2) ŵ = 0.11 mm1
β = 93.670 (4)°T = 296 K
V = 931.1 (3) Å3Block, colourless
Z = 40.24 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
1832 independent reflections
Radiation source: fine-focus sealed tube1072 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scanθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1512
Tmin = 0.975, Tmax = 0.979k = 99
5150 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0843P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
1832 reflectionsΔρmax = 0.26 e Å3
154 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (5)
Crystal data top
C9H7N7V = 931.1 (3) Å3
Mr = 213.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.372 (3) ŵ = 0.11 mm1
b = 7.5361 (15) ÅT = 296 K
c = 10.007 (2) Å0.24 × 0.20 × 0.20 mm
β = 93.670 (4)°
Data collection top
Bruker SMART APEX
diffractometer
1832 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1072 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.979Rint = 0.055
5150 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.26 e Å3
1832 reflectionsΔρmin = 0.22 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N40.22980 (16)0.2080 (3)0.46400 (19)0.0342 (6)
N60.23958 (18)0.2161 (3)0.6818 (2)0.0370 (6)
N20.07056 (18)0.2247 (3)0.2744 (2)0.0394 (6)
N30.06963 (16)0.2067 (3)0.4914 (2)0.0367 (6)
N50.18243 (17)0.0672 (3)0.6502 (2)0.0372 (6)
C10.1252 (2)0.0720 (3)0.4381 (2)0.0311 (6)
N10.12802 (17)0.0763 (3)0.3067 (2)0.0387 (6)
C20.26642 (19)0.2993 (3)0.5708 (2)0.0329 (6)
C30.1792 (2)0.0682 (3)0.5182 (2)0.0324 (6)
C40.0376 (2)0.2994 (3)0.3838 (3)0.0388 (7)
H40.00280.40340.38510.047*
N70.40073 (18)0.4877 (3)0.6744 (2)0.0446 (6)
C50.4476 (2)0.7649 (4)0.5774 (3)0.0543 (8)
H50.49000.86690.58280.065*
C60.3285 (2)0.4650 (3)0.5701 (2)0.0343 (6)
C70.3123 (2)0.5856 (3)0.4680 (3)0.0417 (7)
H70.26200.56360.39690.050*
C80.3724 (2)0.7401 (4)0.4729 (3)0.0531 (8)
H80.36180.82570.40640.064*
C90.4592 (2)0.6366 (4)0.6738 (3)0.0547 (8)
H90.51130.65430.74370.066*
H10.249 (2)0.252 (4)0.776 (4)0.088 (11)*
H20.062 (2)0.262 (4)0.179 (3)0.081 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N40.0456 (13)0.0338 (12)0.0232 (11)0.0004 (10)0.0025 (9)0.0019 (9)
N60.0522 (14)0.0363 (13)0.0222 (12)0.0021 (11)0.0009 (10)0.0032 (10)
N20.0552 (15)0.0364 (13)0.0262 (13)0.0000 (11)0.0009 (10)0.0045 (10)
N30.0461 (13)0.0346 (13)0.0291 (12)0.0022 (10)0.0010 (10)0.0007 (9)
N50.0483 (14)0.0354 (13)0.0276 (12)0.0030 (10)0.0001 (10)0.0029 (9)
C10.0411 (15)0.0302 (14)0.0220 (13)0.0052 (11)0.0015 (11)0.0005 (11)
N10.0539 (15)0.0371 (13)0.0248 (12)0.0014 (11)0.0011 (10)0.0023 (9)
C20.0402 (15)0.0325 (15)0.0257 (14)0.0036 (12)0.0003 (11)0.0006 (11)
C30.0422 (15)0.0304 (14)0.0246 (13)0.0019 (11)0.0022 (11)0.0009 (11)
C40.0485 (17)0.0348 (15)0.0329 (15)0.0001 (12)0.0002 (12)0.0018 (12)
N70.0514 (14)0.0434 (14)0.0379 (14)0.0093 (12)0.0042 (11)0.0014 (11)
C50.061 (2)0.0467 (19)0.056 (2)0.0133 (15)0.0099 (16)0.0040 (16)
C60.0399 (15)0.0334 (15)0.0299 (14)0.0039 (12)0.0041 (11)0.0020 (11)
C70.0461 (17)0.0409 (16)0.0380 (16)0.0001 (13)0.0017 (12)0.0001 (13)
C80.057 (2)0.0426 (17)0.060 (2)0.0022 (15)0.0098 (16)0.0114 (16)
C90.057 (2)0.058 (2)0.0487 (19)0.0165 (16)0.0029 (15)0.0037 (16)
Geometric parameters (Å, º) top
N4—C21.326 (3)C2—C61.467 (3)
N4—C31.356 (3)C4—H40.9300
N6—C21.336 (3)N7—C91.336 (3)
N6—N51.353 (3)N7—C61.341 (3)
N6—H10.98 (4)C5—C91.366 (4)
N2—C41.319 (3)C5—C81.368 (4)
N2—N11.353 (3)C5—H50.9300
N2—H20.99 (3)C6—C71.372 (4)
N3—C41.322 (3)C7—C81.380 (4)
N3—C11.354 (3)C7—H70.9300
N5—C31.319 (3)C8—H80.9300
C1—N11.318 (3)C9—H90.9300
C1—C31.461 (3)
C2—N4—C3102.9 (2)N2—C4—N3111.0 (2)
C2—N6—N5110.4 (2)N2—C4—H4124.5
C2—N6—H1131 (2)N3—C4—H4124.5
N5—N6—H1119 (2)C9—N7—C6115.9 (2)
C4—N2—N1109.8 (2)C9—C5—C8118.6 (3)
C4—N2—H2131.2 (19)C9—C5—H5120.7
N1—N2—H2118.9 (19)C8—C5—H5120.7
C4—N3—C1102.0 (2)N7—C6—C7123.6 (2)
C3—N5—N6102.2 (2)N7—C6—C2115.3 (2)
N1—C1—N3114.9 (2)C7—C6—C2121.1 (2)
N1—C1—C3121.6 (2)C6—C7—C8118.7 (3)
N3—C1—C3123.5 (2)C6—C7—H7120.7
C1—N1—N2102.3 (2)C8—C7—H7120.7
N4—C2—N6109.7 (2)C5—C8—C7118.7 (3)
N4—C2—C6126.1 (2)C5—C8—H8120.6
N6—C2—C6124.2 (2)C7—C8—H8120.6
N5—C3—N4114.8 (2)N7—C9—C5124.5 (3)
N5—C3—C1121.9 (2)N7—C9—H9117.8
N4—C3—C1123.3 (2)C5—C9—H9117.8
C2—N6—N5—C30.7 (3)N1—C1—C3—N44.1 (4)
C4—N3—C1—N10.6 (3)N3—C1—C3—N4176.4 (2)
C4—N3—C1—C3179.1 (2)N1—N2—C4—N30.5 (3)
N3—C1—N1—N20.3 (3)C1—N3—C4—N20.6 (3)
C3—C1—N1—N2179.4 (2)C9—N7—C6—C70.9 (4)
C4—N2—N1—C10.2 (3)C9—N7—C6—C2178.9 (2)
C3—N4—C2—N60.6 (3)N4—C2—C6—N7147.8 (3)
C3—N4—C2—C6179.8 (2)N6—C2—C6—N731.2 (3)
N5—N6—C2—N40.9 (3)N4—C2—C6—C732.0 (4)
N5—N6—C2—C6180.0 (2)N6—C2—C6—C7149.0 (2)
N6—N5—C3—N40.3 (3)N7—C6—C7—C80.8 (4)
N6—N5—C3—C1179.4 (2)C2—C6—C7—C8179.5 (2)
C2—N4—C3—N50.2 (3)C9—C5—C8—C70.9 (5)
C2—N4—C3—C1179.9 (2)C6—C7—C8—C51.7 (4)
N1—C1—C3—N5175.6 (2)C6—N7—C9—C51.7 (4)
N3—C1—C3—N53.9 (4)C8—C5—C9—N70.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H1···N4i0.98 (4)1.93 (4)2.891 (3)165 (3)
N2—H2···N3ii0.99 (3)1.90 (4)2.878 (3)167 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC9H7N7
Mr213.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.372 (3), 7.5361 (15), 10.007 (2)
β (°) 93.670 (4)
V3)931.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.24 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.975, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
5150, 1832, 1072
Rint0.055
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.156, 0.94
No. of reflections1832
No. of parameters154
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.22

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H1···N4i0.98 (4)1.93 (4)2.891 (3)165 (3)
N2—H2···N3ii0.99 (3)1.90 (4)2.878 (3)167 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z1/2.
 

Acknowledgements

This work was supported by the Natural Science Research Program of the Education Department of Henan Province (2011 A150015), the Henan Polytechnic University Foundation for Youths (P051102) and the Henan Polytechnic University Foundation for Doctor Teachers (B2010–65). The authors thank Dr D. Zhao for help with the diffraction analysis.

References

First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMai, X., Xia, H.-Y., Cao, Y.-S., Lu, X.-S. & Liao, Y.-J. (2009). Z. Kristallogr. New Cryst. Struct. 224, 547–548.  CAS Google Scholar
First citationPotts, K. T. (1960). Chem. Rev. 61, 87–127.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiley, R. H. & Hart, A. J. (1953). J. Org. Chem. 18, 1368–1371.  CrossRef CAS Web of Science Google Scholar
First citationZhang, C.-H., Zhang, J.-J., Li, W. & Liu, B.-H. (2010). Z. Kristallogr. New Cryst. Struct. 225, 599–600.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds