organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(di­methyl­ammonium) 2,2′-(1,3,6,8-tetra­oxo-2,7-di­aza­pyrene-2,7-di­yl)di­acetate

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China, and bKey Laboratory for Molecular Design and Nutrition Engineering of Ningbo, Ningbo Institute of Technology, Zhejiang University, Ningbo, Zhejiang 315100, People's Republic of China
*Correspondence e-mail: hanlei@nbu.edu.cn

(Received 12 June 2011; accepted 4 July 2011; online 9 July 2011)

The asymmetric unit of title compound, 2C2H8N+·C18H8N2O82−, comprises one crystallographically independent dimethyl­ammonium cation and half of a 2,2′-(1,3,6,8-tetra­oxo-2,7-diaza­pyrene-2,7-di­yl)diacetate dianion. The anion lies on an inversion centre and the two carboxyl­ate groups are in trans positions based on the naphthaleneteracarb­oxy­lic diimide group. The crystal packing is stabilized by N—H⋯O hydrogen bonds between cations and anions, as well as by ππ inter­actions between the naph­thaleneteracarb­oxy­lic diimide groups [centroid–centroid distance = 4.812 (3) Å].

Related literature

For organic supra­molecular solids, see: Pantos et al. (2007[Pantos, G. D., Wietor, J.-L. & Sanders, J. K. M. (2007). Angew. Chem. Int. Ed. 46, 2238-2240.]). For the prediction of organic crystal structures, see: Pigge (2011[Pigge, F. C. (2011). CrystEngComm, 13, 1733-1748.]).

[Scheme 1]

Experimental

Crystal data
  • 2C2H8N+·C18H8N2O82−

  • Mr = 472.45

  • Triclinic, [P \overline 1]

  • a = 4.812 (3) Å

  • b = 8.901 (5) Å

  • c = 12.640 (7) Å

  • α = 92.361 (9)°

  • β = 91.512 (6)°

  • γ = 99.789 (9)°

  • V = 532.7 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2008[Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA]) Tmin = 0.976, Tmax = 0.983

  • 4207 measured reflections

  • 2298 independent reflections

  • 1969 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.114

  • S = 1.04

  • 2298 reflections

  • 202 parameters

  • All H-atom parameters refined

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H5⋯O2 1.006 (19) 1.76 (2) 2.7358 (18) 163.5 (16)
N2—H6⋯O1i 0.94 (2) 2.13 (2) 2.8419 (18) 131.8 (17)
N2—H6⋯O1ii 0.94 (2) 2.13 (2) 2.935 (2) 142.9 (17)
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z.

Data collection: CrystalClear (Rigaku/MSC, 2008[Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The assembly of functionalised organic molecules in the solid state has attracted much attention in crystal engineering and materials science (Pantos et al., 2007). The prediction of organic crystal structures is a central aim of the development of successful synthetic strategies. In general, precise control over solid state assembly processes will facilitate the synthesis of complex functional materials imbued with desirable optical, electronic, magnetic properties starting from carefully chosen yet relatively simple molecular precursors (Pigge, 2011). We are interested in utilizing acid-functionalized naphthalaleneteracarboxylic diimide derivative as starting materials in crystal engineering approaches to a range of functional organic materials. Herein we report an unexpected organic salt compound 2(C2H8N).(C18H8N2O8), (I), which is prepared under solvothermal reaction from 1,4,5,8-naphthalaleneteracarboxylic diimide-N,N'-diacetic acid and 4,4'-bipyridyl in DMF. The dimethylammonium cations come from in situ hydrolysis of DMF molecules.

The asymmetric unit of the title compound comprises one crystallographically independent dimethylammonium cation and half of 1,4,5,8-naphthalaleneteracarboxylic diimide-N,N'-diacetate anion. As shown in Figure 1, the anion lies on an inversion centre, and the two carboxylate groups of the anion are in trans positions based on naphthalaleneteracarboxylic diimide plane. There are strong N—H···O hydrogen bonds between dimethylammonium cations and the carboxylate groups of anions, which are listed in Table 1. The overall hydrogen bonding interaction makes a 12-atom ring and a 4-atom ring, as shown in Figure 2. On the other hand, because of the large π–conjugated skeleton in the naphthalaleneteracarboxylic diimide moiety, the strong intermolecular π···π interactions are formed with the perpendicular distance between planes of 3.32 Å. Therefore, the crystal packing of I is stabilized both by N—H···O hydrogen bonds and π···π interactions.

Related literature top

For organic supramolecular solids, see: Pantos et al. (2007). For the prediction of organic crystal structures, see: Pigge (2011).

Experimental top

A mixture of 1,4,5,8-naphthalaleneteracarboxylic diimide-N,N'-diacetic acid (38.32 mg), 4,4'-bipyridyl (31.24 mg) in DMF (3 ml) was sealed in a 25 ml Teflon-lined stainless steel reactor and heated at 373 K for 72 h. Single crystals of the title compound were obtained after cooling the solution to room temperature, and washed with DMF. The yield is calculated 60%.

Refinement top

All H atoms were located in difference maps and refined independently with isotropic displacement parameters.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement: CrystalClear (Rigaku/MSC, 2008); data reduction: CrystalClear (Rigaku/MSC, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure with displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. View of N—H···O hydrogen bonds and π···π interactions.
Bis(dimethylammonium) 2,2'-(1,3,6,8-tetraoxo-2,7-diazapyrene-2,7-diyl)diacetate top
Crystal data top
2C2H8N+·C18H8N2O82Z = 1
Mr = 472.45F(000) = 248
Triclinic, P1Dx = 1.473 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.812 (3) ÅCell parameters from 1620 reflections
b = 8.901 (5) Åθ = 2.3–27.5°
c = 12.640 (7) ŵ = 0.11 mm1
α = 92.361 (9)°T = 298 K
β = 91.512 (6)°Prism, colorless
γ = 99.789 (9)°0.2 × 0.2 × 0.2 mm
V = 532.7 (5) Å3
Data collection top
Rigaku Saturn724+
diffractometer
2298 independent reflections
Radiation source: fine-focus sealed tube1969 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.018
Detector resolution: 28.57 pixels mm-1θmax = 27.5°, θmin = 2.9°
ω scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2008)
k = 1111
Tmin = 0.976, Tmax = 0.983l = 1616
4207 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.069P)2 + 0.126P]
where P = (Fo2 + 2Fc2)/3
2298 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
2C2H8N+·C18H8N2O82γ = 99.789 (9)°
Mr = 472.45V = 532.7 (5) Å3
Triclinic, P1Z = 1
a = 4.812 (3) ÅMo Kα radiation
b = 8.901 (5) ŵ = 0.11 mm1
c = 12.640 (7) ÅT = 298 K
α = 92.361 (9)°0.2 × 0.2 × 0.2 mm
β = 91.512 (6)°
Data collection top
Rigaku Saturn724+
diffractometer
2298 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2008)
1969 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.983Rint = 0.018
4207 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.114All H-atom parameters refined
S = 1.04Δρmax = 0.50 e Å3
2298 reflectionsΔρmin = 0.23 e Å3
202 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4577 (2)0.61234 (11)0.08100 (7)0.0248 (3)
O20.1971 (2)0.79037 (11)0.12376 (7)0.0252 (3)
O30.63240 (19)1.06673 (10)0.27584 (7)0.0179 (2)
O40.2062 (2)1.40383 (10)0.63370 (7)0.0207 (2)
N10.4256 (2)0.83103 (11)0.32377 (7)0.0136 (2)
N20.0973 (3)0.68928 (13)0.06090 (8)0.0204 (3)
H50.030 (4)0.711 (2)0.0042 (15)0.038 (5)*
H60.248 (5)0.615 (2)0.0421 (16)0.046 (6)*
C10.3916 (3)0.71603 (14)0.14037 (9)0.0180 (3)
C20.5758 (3)0.75754 (15)0.24241 (9)0.0160 (3)
H10.736 (4)0.827 (2)0.2294 (13)0.029 (4)*
H20.634 (3)0.6701 (19)0.2725 (12)0.022 (4)*
C30.4599 (2)0.99015 (14)0.32887 (9)0.0136 (3)
C40.2780 (3)1.06025 (13)0.40288 (9)0.0130 (3)
C50.2994 (3)1.21692 (14)0.41186 (9)0.0151 (3)
H30.429 (4)1.2802 (18)0.3699 (13)0.023 (4)*
C60.1307 (3)1.28406 (14)0.48269 (9)0.0159 (3)
H40.150 (3)1.3937 (19)0.4859 (12)0.023 (4)*
C70.0576 (3)1.19431 (13)0.54381 (9)0.0131 (3)
C80.2309 (3)1.26571 (14)0.62007 (9)0.0147 (3)
C90.0849 (2)0.96643 (13)0.46443 (8)0.0121 (3)
C100.0565 (3)0.62531 (17)0.14666 (11)0.0257 (3)
H70.077 (4)0.587 (2)0.2030 (15)0.034 (5)*
H80.156 (4)0.544 (2)0.1197 (13)0.030 (4)*
H90.190 (4)0.711 (2)0.1699 (15)0.042 (5)*
C110.1980 (4)0.83071 (19)0.09026 (12)0.0301 (3)
H120.038 (4)0.910 (2)0.1036 (14)0.033 (5)*
H110.315 (4)0.804 (2)0.1546 (17)0.046 (5)*
H100.309 (4)0.866 (2)0.0336 (16)0.042 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0250 (5)0.0264 (5)0.0221 (5)0.0038 (4)0.0058 (4)0.0082 (4)
O20.0258 (5)0.0310 (6)0.0201 (5)0.0102 (4)0.0030 (4)0.0031 (4)
O30.0183 (5)0.0194 (5)0.0164 (4)0.0034 (4)0.0055 (3)0.0028 (3)
O40.0297 (5)0.0129 (4)0.0205 (4)0.0063 (4)0.0062 (4)0.0011 (3)
N10.0163 (5)0.0152 (5)0.0102 (5)0.0054 (4)0.0016 (4)0.0011 (4)
N20.0210 (6)0.0233 (6)0.0165 (5)0.0028 (5)0.0013 (4)0.0024 (4)
C10.0181 (6)0.0202 (6)0.0150 (6)0.0012 (5)0.0045 (5)0.0003 (4)
C20.0177 (6)0.0174 (6)0.0144 (5)0.0071 (5)0.0042 (5)0.0015 (4)
C30.0144 (6)0.0165 (6)0.0103 (5)0.0043 (5)0.0016 (4)0.0008 (4)
C40.0144 (6)0.0155 (6)0.0098 (5)0.0044 (5)0.0002 (4)0.0005 (4)
C50.0161 (6)0.0153 (6)0.0137 (5)0.0018 (5)0.0018 (4)0.0028 (4)
C60.0202 (6)0.0120 (6)0.0158 (6)0.0039 (5)0.0004 (5)0.0004 (4)
C70.0153 (6)0.0139 (6)0.0108 (5)0.0045 (5)0.0005 (4)0.0000 (4)
C80.0173 (6)0.0153 (6)0.0122 (5)0.0052 (5)0.0006 (4)0.0008 (4)
C90.0134 (6)0.0130 (6)0.0101 (5)0.0033 (5)0.0015 (4)0.0005 (4)
C100.0313 (8)0.0248 (7)0.0201 (6)0.0023 (7)0.0041 (6)0.0003 (5)
C110.0319 (8)0.0319 (8)0.0293 (7)0.0117 (7)0.0000 (6)0.0078 (6)
Geometric parameters (Å, º) top
O1—C11.2535 (16)C4—C91.4119 (18)
O2—C11.2529 (17)C5—C61.4061 (17)
O3—C31.2156 (15)C5—H30.954 (18)
O4—C81.2195 (16)C6—C71.3775 (19)
N1—C8i1.3909 (17)C6—H40.963 (16)
N1—C31.3963 (17)C7—C9i1.4135 (18)
N1—C21.4669 (15)C7—C81.4834 (16)
N2—C101.4771 (18)C8—N1i1.3909 (17)
N2—C111.4811 (19)C9—C9i1.412 (2)
N2—H51.006 (19)C9—C7i1.4135 (18)
N2—H60.94 (2)C10—H70.958 (19)
C1—C21.5410 (18)C10—H80.999 (18)
C2—H10.924 (18)C10—H90.97 (2)
C2—H20.961 (16)C11—H120.977 (19)
C3—C41.4872 (16)C11—H110.98 (2)
C4—C51.3804 (19)C11—H100.98 (2)
C8i—N1—C3125.18 (10)C6—C5—H3119.6 (9)
C8i—N1—C2116.13 (10)C7—C6—C5120.39 (12)
C3—N1—C2118.08 (10)C7—C6—H4121.9 (9)
C10—N2—C11112.51 (11)C5—C6—H4117.7 (9)
C10—N2—H5108.9 (11)C6—C7—C9i120.41 (11)
C11—N2—H5109.7 (10)C6—C7—C8120.22 (11)
C10—N2—H6109.1 (13)C9i—C7—C8119.36 (11)
C11—N2—H6110.9 (12)O4—C8—N1i120.54 (11)
H5—N2—H6105.5 (16)O4—C8—C7121.96 (12)
O2—C1—O1126.66 (12)N1i—C8—C7117.50 (11)
O2—C1—C2117.51 (11)C4—C9—C9i119.72 (14)
O1—C1—C2115.81 (11)C4—C9—C7i121.20 (11)
N1—C2—C1111.40 (10)C9i—C9—C7i119.08 (14)
N1—C2—H1106.2 (10)N2—C10—H7107.9 (11)
C1—C2—H1110.7 (11)N2—C10—H8110.6 (10)
N1—C2—H2107.6 (10)H7—C10—H8111.8 (14)
C1—C2—H2112.6 (10)N2—C10—H9105.1 (11)
H1—C2—H2108.1 (14)H7—C10—H9110.1 (15)
O3—C3—N1121.18 (11)H8—C10—H9111.0 (14)
O3—C3—C4122.08 (11)N2—C11—H12110.3 (11)
N1—C3—C4116.74 (11)N2—C11—H11106.1 (12)
C5—C4—C9120.10 (11)H12—C11—H11110.3 (15)
C5—C4—C3119.99 (11)N2—C11—H10110.0 (11)
C9—C4—C3119.92 (11)H12—C11—H10109.6 (15)
C4—C5—C6120.29 (12)H11—C11—H10110.4 (16)
C4—C5—H3120.1 (9)
C8i—N1—C2—C179.11 (13)C3—C4—C5—C6179.17 (10)
C3—N1—C2—C192.46 (13)C4—C5—C6—C70.01 (19)
O2—C1—C2—N123.91 (16)C5—C6—C7—C9i0.44 (19)
O1—C1—C2—N1157.63 (11)C5—C6—C7—C8178.71 (10)
C8i—N1—C3—O3178.82 (10)C6—C7—C8—O42.53 (19)
C2—N1—C3—O38.08 (17)C9i—C7—C8—O4176.63 (11)
C8i—N1—C3—C41.85 (17)C6—C7—C8—N1i177.33 (10)
C2—N1—C3—C4172.59 (9)C9i—C7—C8—N1i3.50 (17)
O3—C3—C4—C50.90 (18)C5—C4—C9—C9i0.3 (2)
N1—C3—C4—C5179.78 (10)C3—C4—C9—C9i179.21 (12)
O3—C3—C4—C9178.65 (10)C5—C4—C9—C7i179.58 (10)
N1—C3—C4—C90.67 (17)C3—C4—C9—C7i0.87 (18)
C9—C4—C5—C60.38 (19)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H5···O21.006 (19)1.76 (2)2.7358 (18)163.5 (16)
N2—H6···O1ii0.94 (2)2.13 (2)2.8419 (18)131.8 (17)
N2—H6···O1iii0.94 (2)2.13 (2)2.935 (2)142.9 (17)
Symmetry codes: (ii) x1, y, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula2C2H8N+·C18H8N2O82
Mr472.45
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)4.812 (3), 8.901 (5), 12.640 (7)
α, β, γ (°)92.361 (9), 91.512 (6), 99.789 (9)
V3)532.7 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerRigaku Saturn724+
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2008)
Tmin, Tmax0.976, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
4207, 2298, 1969
Rint0.018
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.114, 1.04
No. of reflections2298
No. of parameters202
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.50, 0.23

Computer programs: CrystalClear (Rigaku/MSC, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H5···O21.006 (19)1.76 (2)2.7358 (18)163.5 (16)
N2—H6···O1i0.94 (2)2.13 (2)2.8419 (18)131.8 (17)
N2—H6···O1ii0.94 (2)2.13 (2)2.935 (2)142.9 (17)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21071087), the Natural Science Foundation of Ningbo Municipality (2009A610129) and the K. C. Wong Magna Fund in Ningbo University.

References

First citationPantos, G. D., Wietor, J.-L. & Sanders, J. K. M. (2007). Angew. Chem. Int. Ed. 46, 2238–2240.  CAS Google Scholar
First citationPigge, F. C. (2011). CrystEngComm, 13, 1733–1748.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds