

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dichlorido{N,N-dimethyl-N'-[1-(2pyridyl)ethylidene]ethane-1,2-diamine- $\kappa^3 N, N', N''$ zinc

Nura Suleiman Gwaram, Hamid Khaledi* and Hapipah Mohd Ali

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: khaledi@siswa.um.edu.my

Received 26 June 2011; accepted 29 June 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.021; wR factor = 0.052; data-to-parameter ratio = 20.1.

The asymmetric unit of the title compound, [ZnCl₂-(C₁₁H₁₇N₃)], contains two independent pentacoordinate Zn^{II} complex molecules. In each molecule, the metal atom is coordinated by an N, N', N''-tridenate Schiff base and two Cl atoms in a distorted square-pyramidal geometry. The two molecules differ little in their geometry, but more in their intermolecular interactions. In the crystal, adjacent molecules are connected via C-H···Cl interactions into a threedimensional supramolecular structure. The network is supplemented by $\pi - \pi$ interactions formed between the aromatic rings of pairs of the symmetry-related molecules [centroidcentroid distances = 3.6255(10) and 3.7073(10) Å]. The crystal lattice contains void spaces with a size of 52 $Å^3$.

Related literature

For the isotypic Mn(II) complex, see: Ikmal Hisham et al. (2011). For the crystal structures of similar ZnCl₂ complexes, see: Gourbatsis et al. (1999); Sun (2005). For a description of the geometry of five-coordinate metal complexes, see: Addison et al. (1984).

V = 2886.6 (2) Å³

Mo $K\alpha$ radiation

 $0.27 \times 0.23 \times 0.15 \text{ mm}$

20477 measured reflections

6294 independent reflections

5510 reflections with $I > 2\sigma(I)$

 $\mu = 2.05 \text{ mm}^-$

T = 100 K

 $R_{\rm int} = 0.022$

Z = 8

Experimental

Crystal data

[ZnCl₂(C₁₁H₁₇N₃)] $M_r = 327.55$ Monoclinic, $P2_1/c$ a = 17.4849 (8) Å b = 9.8161 (4) Å c = 20.4264 (7) Å $\beta = 124.578 (3)^{\circ}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.607, \ T_{\max} = 0.748$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.021$	313 parameters
$wR(F^2) = 0.052$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.36 \ {\rm e} \ {\rm \AA}^{-3}$
6294 reflections	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C3-H3···Cl2 ⁱ	0.95	2.79	3.6690 (17)	155
$C8-H8A\cdots Cl1^{ii}$	0.99	2.63	3.5668 (16)	158
$C8-H8B\cdots Cl2^{iii}$	0.99	2.73	3.6564 (16)	156
$C11 - H11A \cdot \cdot \cdot Cl2^{iii}$	0.98	2.77	3.6573 (17)	151
$C15-H15\cdots Cl2^{iv}$	0.95	2.74	3.6347 (17)	157
$C18-H18B\cdots Cl1^{iv}$	0.98	2.75	3.7227 (17)	175
$C19-H19B\cdots Cl4^{v}$	0.99	2.82	3.8089 (16)	174

Symmetry codes: (i) -x, -y + 1, -z; (ii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) -x + 1, -y + 1, -z + 1; (v) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

The authors thank the University of Malaya for funding this study (UMRG grant No. RG024/09BIO).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2444).

References

Addison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Barbour, L. J. (2001). J. Supramol. Chem, 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Gourbatsis, S., Perlepes, S. P., Butler, I. S. & Hadjiliadis, N. (1999). Polyhedron, 18, 2369-2375.

Ikmal Hisham, N. A., Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m229.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sun, Y.-X. (2005). Acta Cryst. E61, m373-m374.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, m1027 [doi:10.1107/S1600536811025669]

Dichlorido{*N*,*N*-dimethyl-*N'*-[1-(2-pyridyl)ethylidene]ethane-1,2-diamine- $\kappa^3 N, N', N''$ }zinc

Nura Suleiman Gwaram, Hamid Khaledi and Hapipah Mohd Ali

S1. Comment

The crystal structure of the title Zn^{II} complex is isomorphous with that of the Mn^{II} analogue (Ikmal Hisham *et al.*, 2011). The asymmetric unit consists of two geometrically slightly different molecules; the weighted r.m.s. fit for the superposition of the non-H atoms in both molecules (after inversion) being 0.078 Å. The metal centers are five-coordinate in distorted square-pyramidal geometries, the apical positions being occupied by a chlorine atom. The Addison τ values (Addison *et al.*, 1984) for Zn1 and Zn2 molecules are 0.103 and 0.168, respectively. The Zn—Cl and Zn—N bond lengths are comparable to those reported for similar complexes (Gourbatsis *et al.*, 1999, Sun, 2005). In the crystal, the molecules are linked through C—H…Cl interactions (Table 1) into a three-dimensional polymeric structure and this is consolidated by π - π interactions formed between pairs of molecules [Cg1… $Cg1^i$ = 3.6255 (10) Å; Cg2… $Cg2^{ii}$ = 3.7073 (10) Å, where Cg1 and Cg2, are the centroids of the rings N1/C1—C5 and N4/C12—C16, for i: -*x*, -*y* + 1, -*z*; ii: -*x* + 1, -*y* + 1, -*z* + 1]. The lattice contains void spaces with the size of 52 Å³ within which there is no evidence for included solvent.

S2. Experimental

A mixture of 2-acetylpyridine (0.20 g, 1.65 mmol) and *N*,*N*-dimethylethyldiamine (0.15 g, 1.65 mmol) in ethanol (20 ml) was refluxed for 2 hr followed by addition of a solution of zinc(II) chloride (0.225 g, 1.65 mmol) in the minimum amount of water. The resulting solution was refluxed for 30 min, and then set aside at room temperature. The colorless crystals of the title compound were obtained in a few days.

S3. Refinement

Hydrogen atoms were placed at calculated positions and refined as riding atoms with C—H distances of 0.95 (aryl), 0.98 (methyl) and 0.99 (methylene) Å, and Uiso(H) set to 1.2 (1.5 for methyl) Ueq(carrier atoms). The most disagreeable reflections with delta(F2)/ e.s.d. >10 were omitted (6 reflections).

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Dichlorido{N,N-dimethyl-N'-[1-(2- pyridyl)ethylidene]ethane-1,2-diamine- $\kappa^3 N, N', N''$ }zinc

Crystal data

 $[ZnCl_2(C_{11}H_{17}N_3)]$ $M_r = 327.55$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 17.4849 (8) Å b = 9.8161 (4) Å c = 20.4264 (7) Å $\beta = 124.578$ (3)° V = 2886.6 (2) Å³ Z = 8

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.607, T_{\max} = 0.748$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.052$ S = 1.046294 reflections 313 parameters 0 restraints F(000) = 1344 $D_x = 1.507 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9925 reflections $\theta = 2.4-30.6^{\circ}$ $\mu = 2.05 \text{ mm}^{-1}$ T = 100 KBlock, colorless $0.27 \times 0.23 \times 0.15 \text{ mm}$

20477 measured reflections 6294 independent reflections 5510 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 27.0^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -22 \rightarrow 21$ $k = -12 \rightarrow 12$ $l = -26 \rightarrow 26$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0226P)^{2} + 0.9433P] \qquad \Delta \rho_{\max} = 0.36 \text{ e } \text{\AA}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{\min} = -0.28 \text{ e } \text{\AA}^{-3}$ $(\Delta/\sigma)_{\max} = 0.002$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates	and isotropic of	or equivalent isotro	pic displacement	parameters	$(Å^2)$	ļ
-------------------------------	------------------	----------------------	------------------	------------	---------	---

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.097383 (12)	0.523307 (18)	0.248455 (10)	0.01180 (5)	
C11	0.22099 (3)	0.66993 (4)	0.31121 (2)	0.01561 (8)	
C12	0.14396 (3)	0.31088 (4)	0.23943 (2)	0.01519 (8)	
N1	0.03628 (9)	0.60104 (13)	0.12863 (8)	0.0139 (3)	
N2	-0.04898 (9)	0.51386 (13)	0.19110 (8)	0.0141 (3)	
N3	0.08663 (9)	0.49253 (13)	0.34845 (8)	0.0141 (3)	
C1	0.08312 (12)	0.65350 (16)	0.10080 (10)	0.0181 (3)	
H1	0.1487	0.6620	0.1358	0.022*	
C2	0.03935 (13)	0.69606 (17)	0.02250 (10)	0.0225 (4)	
H2	0.0745	0.7317	0.0041	0.027*	
C3	-0.05605 (13)	0.68571 (18)	-0.02813 (10)	0.0238 (4)	
H3	-0.0876	0.7140	-0.0820	0.029*	
C4	-0.10510 (12)	0.63350 (17)	0.00065 (10)	0.0202 (3)	
H4	-0.1709	0.6268	-0.0330	0.024*	
C5	-0.05711 (11)	0.59111 (16)	0.07919 (9)	0.0156 (3)	
C6	-0.10354 (11)	0.53702 (15)	0.11671 (10)	0.0153 (3)	
C7	-0.20671 (12)	0.51654 (19)	0.06620(11)	0.0247 (4)	
H7A	-0.2272	0.4868	0.0997	0.037*	
H7B	-0.2229	0.4469	0.0259	0.037*	
H7C	-0.2375	0.6025	0.0400	0.037*	
C8	-0.08002 (11)	0.46662 (16)	0.24024 (10)	0.0161 (3)	
H8A	-0.1292	0.3968	0.2113	0.019*	
H8B	-0.1056	0.5436	0.2534	0.019*	
C9	0.00363 (11)	0.40623 (16)	0.31586 (9)	0.0167 (3)	
H9A	-0.0107	0.3962	0.3560	0.020*	
H9B	0.0166	0.3145	0.3043	0.020*	
C10	0.16872 (11)	0.42164 (17)	0.41521 (9)	0.0196 (3)	
H10A	0.2242	0.4774	0.4349	0.029*	
H10B	0.1762	0.3336	0.3969	0.029*	
H10C	0.1601	0.4069	0.4581	0.029*	
C11	0.07513 (12)	0.62345 (17)	0.37716 (10)	0.0186 (3)	
H11A	0.0239	0.6745	0.3324	0.028*	

H11B	0.1326	0.6765	0.4015	0.028*
H11C	0.0613	0.6065	0.4167	0.028*
Zn2	0.381351 (12)	0.529056 (18)	0.644032 (11)	0.01293 (5)
C13	0.34646 (3)	0.30943 (4)	0.59819 (2)	0.01758 (8)
Cl4	0.27052 (3)	0.69499 (4)	0.58273 (2)	0.01882 (9)
N4	0.45804 (9)	0.59876 (13)	0.59532 (8)	0.0145 (3)
N5	0.52234 (9)	0.51339 (13)	0.73866 (8)	0.0130 (3)
N6	0.37431 (9)	0.51154 (13)	0.74869 (8)	0.0163 (3)
C12	0.42130 (12)	0.64614 (16)	0.52195 (10)	0.0182 (3)
H12	0.3558	0.6565	0.4872	0.022*
C13	0.47570 (12)	0.68075 (17)	0.49470 (10)	0.0205 (4)
H13	0.4477	0.7133	0.4420	0.025*
C14	0.57101 (12)	0.66722 (16)	0.54521 (10)	0.0198 (4)
H14	0.6095	0.6906	0.5279	0.024*
C15	0.60962 (11)	0.61874 (16)	0.62199 (10)	0.0161 (3)
H15	0.6750	0.6085	0.6580	0.019*
C16	0.55100 (11)	0.58562 (15)	0.64499 (9)	0.0130 (3)
C17	0.58544 (11)	0.53679 (15)	0.72681 (9)	0.0129 (3)
C18	0.68712 (11)	0.52205 (17)	0.78736 (10)	0.0181 (3)
H18A	0.7152	0.6124	0.8059	0.027*
H18B	0.7153	0.4753	0.7636	0.027*
H18C	0.6978	0.4688	0.8324	0.027*
C19	0.54256 (11)	0.46863 (16)	0.81533 (9)	0.0157 (3)
H19A	0.5678	0.5453	0.8536	0.019*
H19B	0.5891	0.3943	0.8374	0.019*
C20	0.45215 (11)	0.41849 (16)	0.80131 (10)	0.0172 (3)
H20A	0.4377	0.3267	0.7770	0.021*
H20B	0.4595	0.4110	0.8529	0.021*
C21	0.38747 (13)	0.64417 (17)	0.78738 (11)	0.0234 (4)
H21A	0.3349	0.7038	0.7516	0.035*
H21B	0.4451	0.6861	0.7997	0.035*
H21C	0.3912	0.6309	0.8367	0.035*
C22	0.28596 (12)	0.4513 (2)	0.72779 (11)	0.0263 (4)
H22A	0.2878	0.4376	0.7762	0.039*
H22B	0.2766	0.3634	0.7015	0.039*
H22C	0.2346	0.5127	0.6918	0.039*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.01005 (10)	0.01180 (9)	0.01230 (9)	0.00035 (7)	0.00560 (8)	0.00060 (7)
Cl1	0.01217 (18)	0.01420 (18)	0.01770 (19)	-0.00150 (14)	0.00683 (16)	-0.00033 (14)
Cl2	0.01386 (19)	0.01249 (18)	0.01870 (19)	0.00000 (14)	0.00892 (16)	-0.00121 (14)
N1	0.0130 (7)	0.0136 (7)	0.0141 (6)	0.0031 (5)	0.0071 (6)	0.0012 (5)
N2	0.0132 (7)	0.0117 (6)	0.0175 (7)	0.0005 (5)	0.0088 (6)	-0.0004(5)
N3	0.0128 (7)	0.0131 (6)	0.0142 (7)	0.0005 (5)	0.0064 (6)	0.0003 (5)
C1	0.0182 (9)	0.0167 (8)	0.0211 (8)	0.0044 (7)	0.0122 (7)	0.0029 (6)
C2	0.0274 (10)	0.0221 (9)	0.0227 (9)	0.0062 (7)	0.0170 (8)	0.0067 (7)

C3	0.0294 (10)	0.0232 (9)	0.0151 (8)	0.0067 (7)	0.0105 (8)	0.0033 (7)
C4	0.0188 (9)	0.0201 (9)	0.0158 (8)	0.0025 (7)	0.0062 (7)	-0.0008 (7)
C5	0.0161 (8)	0.0121 (8)	0.0153 (8)	0.0018 (6)	0.0068 (7)	-0.0023 (6)
C6	0.0137 (8)	0.0114 (7)	0.0179 (8)	0.0003 (6)	0.0072 (7)	-0.0017 (6)
C7	0.0150 (9)	0.0282 (10)	0.0222 (9)	-0.0020 (7)	0.0055 (8)	0.0009 (7)
C8	0.0147 (8)	0.0158 (8)	0.0198 (8)	-0.0029 (6)	0.0109 (7)	-0.0009 (6)
C9	0.0182 (9)	0.0144 (8)	0.0197 (8)	-0.0015 (6)	0.0120 (7)	0.0009 (6)
C10	0.0179 (9)	0.0203 (9)	0.0166 (8)	0.0038 (7)	0.0074 (7)	0.0048 (7)
C11	0.0186 (9)	0.0178 (8)	0.0189 (8)	0.0017 (7)	0.0103 (7)	-0.0035 (7)
Zn2	0.01031 (10)	0.01210 (9)	0.01425 (9)	-0.00008 (7)	0.00570 (8)	-0.00033 (7)
C13	0.0177 (2)	0.01292 (18)	0.01780 (19)	-0.00023 (15)	0.00746 (17)	-0.00134 (14)
Cl4	0.0140 (2)	0.01604 (19)	0.02074 (19)	0.00305 (15)	0.00643 (17)	0.00000 (15)
N4	0.0132 (7)	0.0133 (7)	0.0142 (7)	-0.0006 (5)	0.0062 (6)	-0.0007 (5)
N5	0.0126 (7)	0.0121 (6)	0.0138 (6)	0.0007 (5)	0.0071 (6)	0.0003 (5)
N6	0.0143 (7)	0.0154 (7)	0.0205 (7)	-0.0009 (5)	0.0107 (6)	-0.0018 (5)
C12	0.0157 (8)	0.0182 (8)	0.0147 (8)	0.0000 (7)	0.0051 (7)	0.0007 (6)
C13	0.0264 (10)	0.0181 (8)	0.0165 (8)	-0.0003 (7)	0.0118 (8)	0.0021 (6)
C14	0.0253 (9)	0.0179 (8)	0.0221 (9)	-0.0022 (7)	0.0168 (8)	0.0005 (7)
C15	0.0144 (8)	0.0151 (8)	0.0190 (8)	0.0005 (6)	0.0096 (7)	-0.0011 (6)
C16	0.0127 (8)	0.0102 (7)	0.0138 (7)	0.0012 (6)	0.0062 (7)	-0.0009 (6)
C17	0.0117 (8)	0.0097 (7)	0.0142 (8)	-0.0005 (6)	0.0055 (7)	-0.0021 (6)
C18	0.0124 (8)	0.0215 (9)	0.0184 (8)	0.0004 (7)	0.0075 (7)	0.0017 (7)
C19	0.0169 (8)	0.0165 (8)	0.0145 (8)	0.0020 (6)	0.0093 (7)	0.0027 (6)
C20	0.0196 (9)	0.0155 (8)	0.0177 (8)	0.0008 (7)	0.0113 (7)	0.0017 (6)
C21	0.0255 (10)	0.0216 (9)	0.0248 (9)	0.0036 (7)	0.0152 (8)	-0.0044 (7)
C22	0.0199 (10)	0.0327 (10)	0.0310 (10)	-0.0051 (8)	0.0173 (9)	-0.0013 (8)

Geometric parameters (Å, °)

Zn1—N2	2.1278 (13)	Zn2—N5	2.1044 (13)
Zn1—N3	2.1758 (13)	Zn2—N4	2.1842 (13)
Zn1—N1	2.1785 (13)	Zn2—N6	2.2166 (13)
Zn1—Cl2	2.2837 (4)	Zn2—Cl4	2.2852 (4)
Zn1—Cl1	2.2893 (4)	Zn2—C13	2.2910 (4)
N1—C1	1.337 (2)	N4—C12	1.335 (2)
N1—C5	1.351 (2)	N4—C16	1.348 (2)
N2—C6	1.275 (2)	N5—C17	1.2775 (19)
N2—C8	1.4612 (19)	N5—C19	1.4635 (19)
N3—C11	1.473 (2)	N6—C21	1.472 (2)
N3—C9	1.473 (2)	N6—C22	1.473 (2)
N3—C10	1.477 (2)	N6—C20	1.477 (2)
C1—C2	1.389 (2)	C12—C13	1.390 (2)
C1—H1	0.9500	C12—H12	0.9500
C2—C3	1.380 (3)	C13—C14	1.381 (2)
C2—H2	0.9500	C13—H13	0.9500
C3—C4	1.384 (2)	C14—C15	1.393 (2)
С3—Н3	0.9500	C14—H14	0.9500
C4—C5	1.387 (2)	C15—C16	1.387 (2)

C4—H4	0.9500	С15—Н15	0.9500
C5—C6	1,495 (2)	C16—C17	1.498 (2)
C6—C7	1.499 (2)	C17—C18	1.488 (2)
C7—H7A	0.9800	C18—H18A	0.9800
C7—H7B	0.9800	C18—H18B	0.9800
C7—H7C	0.9800	C18 - H18C	0.9800
C8—C9	1 521 (2)	C19-C20	1.520(2)
C8—H8A	0.9900	C19—H19A	0.9900
C8—H8B	0.9900	C19—H19B	0.9900
	0.9900	C_{20} H20A	0.9900
C9—H9B	0.9900	C20—H20B	0.9900
C10_H10A	0.9900	C21_H21A	0.9900
C10 H10R	0.9800	C_{21} H21R	0.9800
C10_H10D	0.9800	C_{21} H21C	0.9800
	0.9800		0.9800
	0.9800	C22—1122A	0.9800
	0.9800	C22—H22B	0.9800
сп—ппс	0.9800	С22—Н22С	0.9800
$N_{2} = 7n_{1} = N_{3}$	78.06 (5)	N5—7n2—N4	74 89 (5)
N2 = Zn1 = N1	74.15 (5)	N5 = 7n2 = N6	77.63 (5)
$N_3 = 7n_1 = N_1$	14873(5)	N4— $7n2$ — $N6$	$148\ 01\ (5)$
$N_2 = 7n_1 = Cl_2$	146.75(3) 106.76(4)	$N5_7n2_12$	137.94(4)
$N_2 = Z_{III} = C_{IZ}$	100.70(4) 100.01(4)	$N_{4} = Z_{112} = C_{14}$	137.94(4)
$N_1 = Zn_1 = Cl_2$	100.01(4) 101.48(3)	N_{4} Z_{112} C_{14}	94.30(4)
$N_1 = Z_{III} = C_{IZ}$ $N_2 = Z_{P1} = C_{I1}$	101.46(3) 142.56(4)	N5 Zn2 C13	95.15(4)
$N_2 = Z_{III} = C_{III}$	142.30(4)	$N_{4} = Z_{112} = C_{13}$	102.01(4)
$N_1 = Z_{P1} = C_{P1}$	90.82 (4) 96.55 (4)	N4-ZHZ-CHS N6-ZhZ-CH3	101.43(4)
$\Gamma_{12} = \Gamma_{11} = \Gamma_{11}$	90.55(4)	10 - 212 - C13	99.99 (4) 120.032 (16)
C1 = C1	110.030(13) 118.82(14)	$C12 \qquad N4 \qquad C16$	120.032(10) 110.00(13)
C1 = N1 = Zn1	110.03(14) 125.76(11)	C12 = N4 = C10	119.00(13)
CI = NI = ZnI	125.70 (11)	C12 N4 $Zn2$	120.29 (11)
C_{2} N1-Zn1	115.39(10) 122.84(14)	C10 - N4 - Zn2	114.05(10) 122.12(14)
$C_0 = N_2 = C_8$	123.84 (14)	C17 - N5 - C19	123.13(14)
C_{0} N2 Zn1	120.07 (11)	C17 - N5 - Zn2	120.03 (11)
C8 - N2 - Zn1	115./9 (10)	C19 - N5 - Zn2	116.78 (10)
C11 = N3 = C10	111.07 (12)	C_{21} NG C_{22}	109.24 (13)
CII = N3 = CI0	108.91 (12)	C_{21} N_{6} C_{20}	110.95 (13)
C9—N3—C10	109.76 (12)	C22—N6—C20	110.13 (13)
CII—N3—Znl	110.89 (9)	C21—N6—Zn2	111.83 (10)
C9—N3—Zn1	104.09 (9)	C22—N6—Zn2	112.01 (11)
C10—N3—Zn1	112.07 (10)	C20—N6—Zn2	102.55 (9)
N1—C1—C2	122.36 (16)	N4—C12—C13	122.15 (16)
N1—C1—H1	118.8	N4—C12—H12	118.9
C2—C1—H1	118.8	C13—C12—H12	118.9
C3—C2—C1	118.86 (16)	C14—C13—C12	119.16 (15)
C3—C2—H2	120.6	C14—C13—H13	120.4
C1—C2—H2	120.6	C12—C13—H13	120.4
C2—C3—C4	119.06 (16)	C13—C14—C15	118.84 (15)
С2—С3—Н3	120.5	C13—C14—H14	120.6

С4—С3—Н3	120.5	C15—C14—H14	120.6
C3—C4—C5	119.25 (16)	C16—C15—C14	118.83 (15)
C3—C4—H4	120.4	C16—C15—H15	120.6
С5—С4—Н4	120.4	C14—C15—H15	120.6
N1-C5-C4	121.63 (15)	N4—C16—C15	122.01 (14)
N1—C5—C6	114.84 (13)	N4—C16—C17	114.84 (13)
C4—C5—C6	123.48 (15)	C15—C16—C17	123.13 (14)
N2—C6—C5	114.69 (14)	N5—C17—C18	125.30 (14)
N2—C6—C7	126.21 (15)	N5—C17—C16	115.18 (14)
C5—C6—C7	119.10 (14)	C18—C17—C16	119.51 (13)
С6—С7—Н7А	109.5	C17—C18—H18A	109.5
С6—С7—Н7В	109.5	C17—C18—H18B	109.5
H7A—C7—H7B	109.5	H18A—C18—H18B	109.5
С6—С7—Н7С	109.5	C17—C18—H18C	109.5
H7A—C7—H7C	109.5	H18A—C18—H18C	109.5
H7B—C7—H7C	109.5	H18B—C18—H18C	109.5
N2—C8—C9	107.67 (12)	N5-C19-C20	107.57 (13)
N2—C8—H8A	110.2	N5—C19—H19A	110.2
С9—С8—Н8А	110.2	C20—C19—H19A	110.2
N2—C8—H8B	110.2	N5—C19—H19B	110.2
С9—С8—Н8В	110.2	C20—C19—H19B	110.2
H8A—C8—H8B	108.5	H19A—C19—H19B	108.5
N3—C9—C8	111.57 (13)	N6—C20—C19	111.55 (13)
N3—C9—H9A	109.3	N6—C20—H20A	109.3
С8—С9—Н9А	109.3	C19—C20—H20A	109.3
N3—C9—H9B	109.3	N6—C20—H20B	109.3
С8—С9—Н9В	109.3	С19—С20—Н20В	109.3
H9A—C9—H9B	108.0	H20A-C20-H20B	108.0
N3—C10—H10A	109.5	N6—C21—H21A	109.5
N3—C10—H10B	109.5	N6—C21—H21B	109.5
H10A—C10—H10B	109.5	H21A—C21—H21B	109.5
N3—C10—H10C	109.5	N6—C21—H21C	109.5
H10A—C10—H10C	109.5	H21A—C21—H21C	109.5
H10B—C10—H10C	109.5	H21B—C21—H21C	109.5
N3—C11—H11A	109.5	N6—C22—H22A	109.5
N3—C11—H11B	109.5	N6—C22—H22B	109.5
H11A—C11—H11B	109.5	H22A—C22—H22B	109.5
N3—C11—H11C	109.5	N6—C22—H22C	109.5
H11A—C11—H11C	109.5	H22A—C22—H22C	109.5
H11B—C11—H11C	109.5	H22B—C22—H22C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
C3—H3···Cl2 ⁱ	0.95	2.79	3.6690 (17)	155
C8—H8A···Cl1 ⁱⁱ	0.99	2.63	3.5668 (16)	158
C8—H8B····Cl2 ⁱⁱⁱ	0.99	2.73	3.6564 (16)	156
C11—H11A····Cl2 ⁱⁱⁱ	0.98	2.77	3.6573 (17)	151

supporting information

C15—H15…Cl2 ^{iv}	0.95	2.74	3.6347 (17)	157
C18—H18B····Cl1 ^{iv}	0.98	2.75	3.7227 (17)	175
C19—H19B…Cl4 ^v	0.99	2.82	3.8089 (16)	174

Symmetry codes: (i) -x, -y+1, -z; (ii) -x, y-1/2, -z+1/2; (iii) -x, y+1/2, -z+1/2; (iv) -x+1, -y+1, -z+1; (v) -x+1, y-1/2, -z+3/2.