metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1166-m1167

Poly[tetra­deca­aqua­tetra­kis­(μ3-imidazole-4,5-di­carboxyl­ato)hexa-μ3-sulfato-cobalt(II)hexa­samarium(III)]

aSchool of Chemistry and the Environment, South China Normal University, Guangzhou 510631, People's Republic of China, and bSchool of Light Industry and Food Science, South China University of Technology, Guangzhou 510641, People's Republic of China
*Correspondence e-mail: simingzhu76@yahoo.com.cn

(Received 15 July 2011; accepted 26 July 2011; online 30 July 2011)

In the title three-dimensional compound, [CoSm6(C5H2N2O4)4(SO4)6(H2O)14]n, the CoII ion is six-coordinated with two O atoms and two N atoms from two imidazole-4,5-dicarboxyl­ate ligands and two coordinated water mol­ecules, giving a slightly distorted octa­hedral geometry. One SmIII ion is eight-coordinated in a bicapped trigonal–prismatic coordination geometry by four O atoms from two imidazole-4,5-dicarboxyl­ate ligands, two O atoms from two SO42− anions and two coordinated water mol­ecules. The other two SmIII ions are nine-coordinated in a tricapped trigonal–prismatic coordination geometry; one of these SmIII ions is bonded to four O atoms from two imidazole-4,5-dicarboxyl­ate ligands, three O atoms from three SO42− anions and two water O atoms, and the other SmIII ion is coordinated by one O atom and one N atom from one imidazole-4,5-dicarboxyl­ate ligand, five O atoms from three SO42− anions, as well as two coordinated water mol­ecules. The crystal structure is further stabilized by N—H⋯O, O—H⋯O, and C—H⋯O hydrogen-bonding inter­actions.

Related literature

For the application of lanthanide transition metal heterometallic complexes with bridging multifunctional organic ligands, see: Cheng et al. (2006[Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73-77.]); Kuang et al. (2007[Kuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526-m2527.]); Sun & Yang (2007[Sun, Y.-Q. & Yang, G.-Y. (2007). Dalton Trans. pp. 3771-3781.]); Zhu et al. (2010[Zhu, L.-C., Zhao, Y., Yu, S.-J. & Zhao, M.-M. (2010). Inorg. Chem. Commun. 13, 1299-1303.]).

[Scheme 1]

Experimental

Crystal data
  • [CoSm6(C5H2N2O4)4(SO4)6(H2O)14]

  • Mr = 2406.08

  • Triclinic, [P \overline 1]

  • a = 6.6395 (10) Å

  • b = 9.5090 (14) Å

  • c = 21.619 (3) Å

  • α = 97.068 (2)°

  • β = 94.391 (2)°

  • γ = 98.006 (2)°

  • V = 1335.2 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 7.17 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.260, Tmax = 0.341

  • 6967 measured reflections

  • 4716 independent reflections

  • 3971 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.070

  • S = 1.02

  • 4716 reflections

  • 478 parameters

  • 23 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.00 e Å−3

  • Δρmin = −1.03 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O18i 0.87 (6) 2.06 (5) 2.916 (8) 170 (6)
O1W—H1W⋯O7 0.82 (5) 2.52 (8) 3.140 (8) 133 (7)
O1W—H1W⋯O16i 0.82 (5) 2.12 (6) 2.777 (6) 136 (8)
N4—H2⋯O7ii 0.87 (4) 1.94 (5) 2.803 (8) 171 (8)
O1W—H2W⋯O1iii 0.82 (5) 2.51 (6) 3.247 (7) 150 (7)
O2W—H3W⋯O3W 0.83 (5) 2.02 (5) 2.809 (8) 160 (6)
O2W—H4W⋯O6iv 0.83 (4) 2.55 (4) 3.303 (9) 152 (8)
O2W—H4W⋯O8iv 0.83 (4) 2.53 (7) 3.204 (8) 140 (6)
O3W—H5W⋯O4v 0.83 (4) 1.98 (5) 2.789 (7) 166 (8)
O3W—H6W⋯O1iv 0.83 (5) 1.93 (5) 2.732 (7) 161 (5)
O4W—H7W⋯O17 0.81 (5) 2.59 (6) 3.270 (8) 142 (7)
O4W—H7W⋯O19 0.81 (5) 2.20 (6) 2.874 (7) 141 (5)
O4W—H8W⋯O6vi 0.81 (7) 2.47 (7) 3.186 (8) 149 (6)
O5W—H10W⋯O7Wvii 0.82 (6) 2.10 (6) 2.794 (8) 142 (6)
O6W—H11W⋯O14viii 0.81 (4) 1.99 (5) 2.751 (7) 157 (5)
O6W—H12W⋯O5Wviii 0.81 (6) 2.27 (7) 3.053 (8) 162 (7)
O7W—H13W⋯O11vii 0.81 (5) 2.45 (5) 3.063 (6) 133 (7)
O7W—H13W⋯O12vii 0.81 (5) 2.06 (6) 2.855 (7) 168 (7)
O7W—H14W⋯O12ix 0.81 (5) 1.85 (5) 2.661 (7) 174 (7)
C5—H5⋯O3x 0.93 2.52 3.388 (8) 155
C10—H11⋯O17ix 0.93 2.54 3.430 (9) 161
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) -x, -y+1, -z+1; (iv) -x, -y, -z+1; (v) -x+1, -y, -z+1; (vi) x+1, y, z; (vii) -x, -y, -z+2; (viii) -x+1, -y, -z+2; (ix) x-1, y-1, z; (x) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In the past few years, lanthanide-transition metal heterometallic complexs with bridging multifunctionnal organic ligands gained increasing interest, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and as luminescent probes (Cheng et al., 2006; Kuang et al., 2007; Sun & Yang, 2007; Zhu et al., 2010). As an extension of this research, the structure of the title compound, a new heterometallic coordination polymer has been determined which is presented in this artcle.

The asymmetric unit of the title compound (Fig. 1), contains a CoII ion, three SmIII ions, two imidazole-4, 5-dicarboxylate ligands, three SO42- anions, and seven coordinated water molecules. The CoII ion lie in the inversion center and is six-coordinated with two O atoms from two coordinated water molecules, two O atoms and two N atoms from two imidazole-4, 5-dicarboxylate ligands, giving a slightly distorted octahedral geometry. The SmIII ions exhibit three types of coordination environment. One SmIII ion is eight-coordinated in a bicapped trigonal prismatic coordination geometry by four O atoms from two imidazole-4,5-dicarboxylate ligands, two O atoms from two SO42- anions and two coordinated water molecules. The other SmIII ions are nine-coordinated in a tricapped trigonal prismatic coordination geometry; one of these SmIII ions is bonded to four O atoms from two imidazole-4,5-dicarboxylate ligands, three O atoms from three SO42- anions and two water O atoms and the other SmIII ion is coordinated by one O atom and one N atom from one imidazole-4, 5-dicarboxylate ligand, five O atoms from three SO42- anions as well as two coordinated water molecules. These metal coordination units are connected by bridging imidazole-4, 5-dicarboxylate and sulfate ligands, generating a three-dimensional network (Fig. 2). The crystal structure is further stabilized by N—H···O, O—H···O, and C—H···O hydrogen-bonding interactions between water molecules, SO42- anions, and imidazole-4, 5-dicarboxylate ligands (Table 1).

Related literature top

For the application of lanthanide transition metal heterometallic complexes with bridging multifunctional organic ligands, see: Cheng et al. (2006); Kuang et al. (2007); Sun & Yang (2007); Zhu et al. (2010).

Experimental top

A mixture of CoSO4.7H2O(0.141 g, 0.5 mmol), Sm2O3(0.087 g, 0.25 mmol), imidazole-4,5-dicarboxylic acid (0.156 g, 1 mmol), and H2O(10 ml) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 5 days then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Red block crystals suitable for X-ray analysis were obtained.

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). H atoms bonded to N atoms and H atoms of water molecules were found from difference Fourier maps and refined isotropically with a restraint of N—H = 0.87 Å, O—H = 0.82 Å and Uiso(H) = 1.5 Ueq(N, O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atomic-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms were omitted for clarity. Symmetry codes: (A) -x, -1 - y, 2 - z; (B) -1 + x, y, z; (C) - x, - y, 1 - z; (D) 1 + x, y, z; (E) 1 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. A view of the three-dimensional structure of the title compound. Hydrogen atoms were omitted for clarity.
Poly[tetradecaaquatetrakis(µ3-imidazole-4,5-dicarboxylato)hexa-µ3- sulfato-cobalt(II)hexasamarium(III)] top
Crystal data top
[CoSm6(C5H2N2O4)4(SO4)6(H2O)14]Z = 1
Mr = 2406.08F(000) = 1139
Triclinic, P1Dx = 2.992 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6395 (10) ÅCell parameters from 2636 reflections
b = 9.5090 (14) Åθ = 2.2–27.9°
c = 21.619 (3) ŵ = 7.17 mm1
α = 97.068 (2)°T = 296 K
β = 94.391 (2)°Block, red
γ = 98.006 (2)°0.20 × 0.18 × 0.15 mm
V = 1335.2 (3) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
4716 independent reflections
Radiation source: fine-focus sealed tube3971 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scanθmax = 25.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 75
Tmin = 0.260, Tmax = 0.341k = 1111
6967 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0293P)2 + 2.3668P]
where P = (Fo2 + 2Fc2)/3
4716 reflections(Δ/σ)max = 0.002
478 parametersΔρmax = 1.00 e Å3
23 restraintsΔρmin = 1.03 e Å3
Crystal data top
[CoSm6(C5H2N2O4)4(SO4)6(H2O)14]γ = 98.006 (2)°
Mr = 2406.08V = 1335.2 (3) Å3
Triclinic, P1Z = 1
a = 6.6395 (10) ÅMo Kα radiation
b = 9.5090 (14) ŵ = 7.17 mm1
c = 21.619 (3) ÅT = 296 K
α = 97.068 (2)°0.20 × 0.18 × 0.15 mm
β = 94.391 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
4716 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3971 reflections with I > 2σ(I)
Tmin = 0.260, Tmax = 0.341Rint = 0.024
6967 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03123 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.00 e Å3
4716 reflectionsΔρmin = 1.03 e Å3
478 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm30.33206 (6)0.01643 (4)0.860687 (16)0.01396 (10)
Sm20.06536 (5)0.11526 (4)0.677756 (16)0.01039 (9)
Sm10.34787 (5)0.29252 (4)0.577813 (16)0.01209 (10)
Co10.00000.50001.00000.0144 (3)
S10.3305 (3)0.35636 (18)0.43568 (8)0.0117 (3)
S20.1527 (3)0.18219 (18)0.62306 (8)0.0144 (4)
S30.7700 (3)0.05896 (19)0.81404 (8)0.0163 (4)
N10.4459 (9)0.4015 (6)0.6919 (3)0.0158 (13)
N20.5267 (9)0.5408 (6)0.7811 (3)0.0145 (13)
N30.0134 (9)0.5242 (6)0.8997 (3)0.0139 (13)
N40.0377 (9)0.5503 (6)0.7965 (2)0.0129 (12)
C10.3005 (10)0.1744 (7)0.7196 (3)0.0110 (14)
C20.4007 (10)0.3228 (7)0.7395 (3)0.0123 (14)
C30.4487 (10)0.4087 (7)0.7958 (3)0.0113 (14)
C40.4360 (10)0.3875 (7)0.8624 (3)0.0147 (15)
C50.5213 (11)0.5311 (8)0.7190 (3)0.0176 (16)
H50.56550.60690.69750.021*
C60.1796 (11)0.2840 (7)0.9305 (3)0.0154 (15)
C70.0741 (10)0.3984 (7)0.8801 (3)0.0131 (15)
C80.0601 (10)0.4121 (7)0.8155 (3)0.0114 (14)
C90.1121 (11)0.3170 (7)0.7687 (3)0.0148 (15)
C100.0769 (10)0.6128 (7)0.8472 (3)0.0144 (15)
H110.14080.70670.84590.017*
O10.1806 (7)0.3703 (5)0.4827 (2)0.0177 (11)
O20.4117 (8)0.4971 (5)0.4209 (2)0.0221 (12)
O30.2273 (7)0.2689 (5)0.3784 (2)0.0198 (11)
O40.4904 (7)0.2855 (5)0.4640 (2)0.0232 (12)
O50.0086 (8)0.2036 (6)0.5754 (2)0.0259 (12)
O60.1534 (8)0.0358 (5)0.6398 (3)0.0319 (14)
O70.0966 (9)0.2882 (6)0.6773 (3)0.0410 (16)
O80.3591 (7)0.1881 (5)0.5942 (2)0.0242 (12)
O90.2794 (7)0.1296 (5)0.6617 (2)0.0152 (10)
O100.2340 (7)0.0918 (5)0.7580 (2)0.0137 (10)
O110.3918 (8)0.2647 (5)0.8764 (2)0.0231 (12)
O120.4709 (8)0.4987 (5)0.9016 (2)0.0226 (12)
O130.2724 (8)0.1722 (5)0.9173 (2)0.0205 (12)
O140.1701 (8)0.3116 (5)0.9862 (2)0.0184 (11)
O150.2062 (7)0.1901 (5)0.7844 (2)0.0148 (11)
O160.0501 (8)0.3614 (5)0.7124 (2)0.0198 (11)
O170.6400 (8)0.0535 (6)0.8074 (3)0.0347 (14)
O180.6559 (11)0.1679 (6)0.8443 (3)0.052 (2)
O190.8096 (7)0.1215 (5)0.7507 (2)0.0212 (12)
O200.9627 (7)0.0049 (5)0.8501 (2)0.0243 (12)
H10.563 (12)0.623 (5)0.804 (3)0.036*
H20.042 (12)0.598 (7)0.7595 (18)0.036*
O1W0.1566 (8)0.5002 (6)0.6016 (2)0.0261 (13)
H1W0.096 (10)0.495 (9)0.6332 (19)0.039*
H2W0.065 (8)0.500 (9)0.574 (2)0.039*
O2W0.2776 (10)0.0581 (6)0.5120 (3)0.0341 (14)
H3W0.218 (13)0.017 (5)0.522 (3)0.051*
H4W0.292 (14)0.032 (8)0.4750 (16)0.051*
O3W0.1551 (8)0.1832 (5)0.5707 (2)0.0227 (12)
H5W0.266 (5)0.213 (7)0.567 (4)0.034*
H6W0.073 (7)0.249 (6)0.550 (3)0.034*
O4W0.4309 (8)0.1323 (6)0.6751 (2)0.0259 (12)
H7W0.496 (10)0.127 (9)0.7089 (18)0.039*
H8W0.504 (10)0.087 (8)0.654 (3)0.039*
O5W0.1776 (9)0.0980 (6)0.9654 (3)0.0349 (14)
H9W0.060 (6)0.083 (9)0.949 (4)0.052*
H10W0.184 (12)0.170 (6)0.991 (3)0.052*
O6W0.6080 (9)0.0697 (5)0.9447 (2)0.0259 (13)
H11W0.651 (12)0.152 (3)0.959 (3)0.039*
H12W0.639 (12)0.021 (6)0.971 (3)0.039*
O7W0.2592 (8)0.3945 (6)0.9992 (2)0.0225 (12)
H13W0.311 (10)0.413 (8)1.0306 (17)0.034*
H14W0.348 (8)0.425 (8)0.971 (2)0.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm30.0175 (2)0.01187 (19)0.01055 (18)0.00508 (15)0.00139 (15)0.00379 (14)
Sm20.01014 (19)0.01094 (18)0.00963 (18)0.00008 (14)0.00035 (14)0.00181 (13)
Sm10.0119 (2)0.01235 (19)0.01166 (18)0.00027 (14)0.00082 (14)0.00227 (14)
Co10.0199 (8)0.0113 (7)0.0108 (7)0.0047 (6)0.0021 (6)0.0040 (5)
S10.0102 (9)0.0135 (8)0.0101 (8)0.0031 (7)0.0000 (7)0.0024 (6)
S20.0132 (9)0.0142 (9)0.0161 (9)0.0018 (7)0.0027 (7)0.0034 (7)
S30.0127 (9)0.0206 (9)0.0133 (9)0.0015 (7)0.0020 (7)0.0023 (7)
N10.022 (3)0.015 (3)0.011 (3)0.001 (3)0.005 (3)0.003 (2)
N20.018 (3)0.011 (3)0.013 (3)0.001 (3)0.003 (3)0.000 (2)
N30.015 (3)0.011 (3)0.014 (3)0.007 (2)0.001 (3)0.004 (2)
N40.021 (3)0.011 (3)0.007 (3)0.001 (2)0.004 (3)0.002 (2)
C10.011 (4)0.011 (3)0.013 (3)0.002 (3)0.004 (3)0.002 (3)
C20.008 (3)0.016 (4)0.013 (3)0.003 (3)0.002 (3)0.001 (3)
C30.016 (4)0.008 (3)0.010 (3)0.003 (3)0.006 (3)0.001 (3)
C40.011 (4)0.015 (4)0.017 (4)0.006 (3)0.002 (3)0.004 (3)
C50.020 (4)0.020 (4)0.013 (4)0.001 (3)0.003 (3)0.006 (3)
C60.015 (4)0.018 (4)0.011 (3)0.001 (3)0.001 (3)0.001 (3)
C70.015 (4)0.009 (3)0.016 (4)0.000 (3)0.003 (3)0.009 (3)
C80.011 (4)0.016 (4)0.007 (3)0.005 (3)0.002 (3)0.003 (3)
C90.016 (4)0.015 (4)0.016 (4)0.005 (3)0.005 (3)0.003 (3)
C100.009 (4)0.013 (3)0.021 (4)0.004 (3)0.004 (3)0.002 (3)
O10.015 (3)0.022 (3)0.013 (2)0.004 (2)0.003 (2)0.002 (2)
O20.030 (3)0.016 (3)0.020 (3)0.006 (2)0.007 (2)0.007 (2)
O30.019 (3)0.024 (3)0.013 (2)0.007 (2)0.004 (2)0.004 (2)
O40.016 (3)0.028 (3)0.028 (3)0.008 (2)0.000 (2)0.009 (2)
O50.015 (3)0.040 (3)0.023 (3)0.001 (2)0.004 (2)0.010 (2)
O60.015 (3)0.018 (3)0.066 (4)0.000 (2)0.002 (3)0.025 (3)
O70.044 (4)0.045 (4)0.026 (3)0.003 (3)0.001 (3)0.021 (3)
O80.015 (3)0.033 (3)0.028 (3)0.011 (2)0.001 (2)0.010 (2)
O90.021 (3)0.012 (2)0.011 (2)0.000 (2)0.001 (2)0.0008 (19)
O100.016 (3)0.013 (2)0.013 (2)0.002 (2)0.005 (2)0.0036 (19)
O110.041 (3)0.012 (3)0.016 (3)0.001 (2)0.005 (2)0.006 (2)
O120.031 (3)0.017 (3)0.017 (3)0.001 (2)0.000 (2)0.003 (2)
O130.030 (3)0.016 (3)0.010 (2)0.011 (2)0.004 (2)0.001 (2)
O140.028 (3)0.013 (2)0.010 (2)0.012 (2)0.001 (2)0.0035 (19)
O150.021 (3)0.010 (2)0.012 (2)0.003 (2)0.002 (2)0.0015 (19)
O160.032 (3)0.015 (3)0.010 (3)0.004 (2)0.004 (2)0.001 (2)
O170.022 (3)0.059 (4)0.026 (3)0.022 (3)0.003 (3)0.001 (3)
O180.079 (5)0.042 (4)0.022 (3)0.031 (4)0.019 (3)0.008 (3)
O190.013 (3)0.033 (3)0.016 (3)0.001 (2)0.003 (2)0.005 (2)
O200.014 (3)0.029 (3)0.025 (3)0.002 (2)0.000 (2)0.010 (2)
O1W0.032 (3)0.034 (3)0.014 (3)0.011 (3)0.006 (2)0.003 (3)
O2W0.048 (4)0.022 (3)0.027 (3)0.006 (3)0.005 (3)0.002 (2)
O3W0.015 (3)0.025 (3)0.024 (3)0.004 (2)0.004 (2)0.006 (2)
O4W0.019 (3)0.041 (4)0.020 (3)0.009 (3)0.002 (2)0.006 (3)
O5W0.043 (4)0.028 (3)0.031 (4)0.002 (3)0.005 (3)0.005 (3)
O6W0.041 (4)0.016 (3)0.016 (3)0.002 (3)0.012 (3)0.003 (2)
O7W0.024 (3)0.030 (3)0.013 (3)0.003 (2)0.003 (2)0.001 (2)
Geometric parameters (Å, º) top
Sm3—O132.300 (5)S3—O191.481 (5)
Sm3—O112.317 (5)N1—C51.311 (9)
Sm3—O152.411 (4)N1—C21.374 (8)
Sm3—O172.427 (5)N2—C51.331 (8)
Sm3—O20i2.431 (5)N2—C31.375 (8)
Sm3—O6W2.432 (5)N2—H10.87 (2)
Sm3—O102.484 (4)N3—C101.330 (8)
Sm3—O5W2.631 (6)N3—C71.384 (8)
Sm3—S33.2922 (19)N4—C101.335 (8)
Sm2—O62.353 (5)N4—C81.380 (8)
Sm2—O19i2.404 (5)N4—H20.86 (2)
Sm2—O3ii2.408 (5)C1—O91.262 (8)
Sm2—O4W2.459 (5)C1—O101.272 (7)
Sm2—O3W2.465 (5)C1—C21.471 (9)
Sm2—O102.527 (4)C2—C31.368 (9)
Sm2—O162.535 (5)C3—C41.486 (9)
Sm2—O92.630 (4)C4—O111.243 (8)
Sm2—O152.636 (4)C4—O121.252 (8)
Sm2—C92.939 (7)C5—H50.9300
Sm2—C12.969 (6)C6—O131.229 (8)
Sm1—O8iii2.327 (5)C6—O141.268 (8)
Sm1—O2iv2.375 (5)C6—C71.496 (9)
Sm1—O52.394 (5)C7—C81.382 (9)
Sm1—O2W2.457 (5)C8—C91.467 (9)
Sm1—O12.502 (5)C9—O161.255 (8)
Sm1—O1W2.515 (5)C9—O151.272 (8)
Sm1—N12.552 (6)C10—H110.9300
Sm1—O92.553 (4)O2—Sm1iv2.375 (5)
Sm1—O42.699 (5)O3—Sm2ii2.408 (5)
Sm1—S13.2011 (17)O8—Sm1i2.327 (5)
Co1—O142.048 (4)O19—Sm2iii2.404 (5)
Co1—O14v2.048 (4)O20—Sm3iii2.431 (5)
Co1—O7W2.109 (5)O1W—H1W0.82 (2)
Co1—O7Wv2.109 (5)O1W—H2W0.82 (2)
Co1—N3v2.146 (5)O2W—H3W0.83 (2)
Co1—N32.146 (5)O2W—H4W0.82 (2)
S1—O21.454 (5)O3W—H5W0.83 (2)
S1—O31.467 (5)O3W—H6W0.83 (2)
S1—O41.469 (5)O4W—H7W0.81 (2)
S1—O11.483 (5)O4W—H8W0.81 (2)
S2—O71.438 (5)O5W—H9W0.82 (2)
S2—O51.472 (5)O5W—H10W0.81 (2)
S2—O81.473 (5)O6W—H11W0.81 (2)
S2—O61.480 (5)O6W—H12W0.80 (2)
S3—O181.449 (6)O7W—H13W0.81 (2)
S3—O201.459 (5)O7W—H14W0.81 (2)
S3—O171.478 (6)
O13—Sm3—O11139.58 (16)O4—Sm1—S127.17 (11)
O13—Sm3—O1574.54 (15)O14—Co1—O14v180.000 (1)
O11—Sm3—O15143.87 (16)O14—Co1—O7W88.2 (2)
O13—Sm3—O17120.75 (19)O14v—Co1—O7W91.8 (2)
O11—Sm3—O1781.19 (19)O14—Co1—O7Wv91.8 (2)
O15—Sm3—O1789.23 (17)O14v—Co1—O7Wv88.2 (2)
O13—Sm3—O20i85.31 (19)O7W—Co1—O7Wv180.000 (3)
O11—Sm3—O20i93.60 (18)O14—Co1—N3v101.16 (19)
O15—Sm3—O20i74.62 (16)O14v—Co1—N3v78.84 (19)
O17—Sm3—O20i144.84 (18)O7W—Co1—N3v88.7 (2)
O13—Sm3—O6W76.76 (17)O7Wv—Co1—N3v91.3 (2)
O11—Sm3—O6W77.13 (18)O14—Co1—N378.84 (19)
O15—Sm3—O6W133.98 (17)O14v—Co1—N3101.16 (19)
O17—Sm3—O6W75.58 (19)O7W—Co1—N391.3 (2)
O20i—Sm3—O6W137.37 (18)O7Wv—Co1—N388.7 (2)
O13—Sm3—O10141.54 (15)N3v—Co1—N3180.000 (2)
O11—Sm3—O1074.32 (16)O2—S1—O3109.0 (3)
O15—Sm3—O1069.57 (15)O2—S1—O4111.9 (3)
O17—Sm3—O1072.68 (17)O3—S1—O4111.1 (3)
O20i—Sm3—O1072.44 (16)O2—S1—O1110.0 (3)
O6W—Sm3—O10139.86 (17)O3—S1—O1108.9 (3)
O13—Sm3—O5W69.51 (18)O4—S1—O1105.9 (3)
O11—Sm3—O5W73.27 (18)O2—S1—Sm1120.5 (2)
O15—Sm3—O5W127.62 (17)O3—S1—Sm1130.2 (2)
O17—Sm3—O5W142.04 (19)O4—S1—Sm157.0 (2)
O20i—Sm3—O5W65.80 (18)O1—S1—Sm149.36 (19)
O6W—Sm3—O5W71.7 (2)O7—S2—O5110.8 (3)
O10—Sm3—O5W124.27 (17)O7—S2—O8111.8 (3)
O13—Sm3—S396.29 (14)O5—S2—O8107.8 (3)
O11—Sm3—S3101.50 (14)O7—S2—O6111.0 (4)
O15—Sm3—S380.81 (12)O5—S2—O6108.4 (3)
O17—Sm3—S324.47 (14)O8—S2—O6106.9 (3)
O20i—Sm3—S3154.02 (12)O18—S3—O20112.5 (4)
O6W—Sm3—S367.43 (14)O18—S3—O17107.1 (4)
O10—Sm3—S391.30 (11)O20—S3—O17109.2 (3)
O5W—Sm3—S3138.88 (14)O18—S3—O19109.7 (3)
O6—Sm2—O19i77.78 (18)O20—S3—O19109.8 (3)
O6—Sm2—O3ii73.35 (18)O17—S3—O19108.5 (3)
O19i—Sm2—O3ii75.41 (16)O18—S3—Sm364.5 (3)
O6—Sm2—O4W134.97 (18)O20—S3—Sm3120.6 (2)
O19i—Sm2—O4W139.39 (17)O17—S3—Sm342.9 (2)
O3ii—Sm2—O4W129.63 (17)O19—S3—Sm3127.5 (2)
O6—Sm2—O3W90.2 (2)C5—N1—C2105.9 (6)
O19i—Sm2—O3W148.19 (16)C5—N1—Sm1133.2 (4)
O3ii—Sm2—O3W72.93 (16)C2—N1—Sm1120.6 (4)
O4W—Sm2—O3W67.74 (17)C5—N2—C3107.9 (6)
O6—Sm2—O1088.95 (18)C5—N2—H1120 (6)
O19i—Sm2—O1081.35 (15)C3—N2—H1131 (6)
O3ii—Sm2—O10153.19 (15)C10—N3—C7104.9 (6)
O4W—Sm2—O1077.07 (17)C10—N3—Co1144.9 (5)
O3W—Sm2—O10128.31 (15)C7—N3—Co1110.2 (4)
O6—Sm2—O16140.10 (17)C10—N4—C8108.7 (5)
O19i—Sm2—O1675.70 (17)C10—N4—H2123 (6)
O3ii—Sm2—O1671.47 (17)C8—N4—H2126 (5)
O4W—Sm2—O1683.19 (18)O9—C1—O10119.7 (6)
O3W—Sm2—O1696.93 (16)O9—C1—C2117.5 (6)
O10—Sm2—O16115.56 (14)O10—C1—C2122.9 (6)
O6—Sm2—O970.15 (16)O9—C1—Sm262.2 (3)
O19i—Sm2—O9120.47 (16)O10—C1—Sm257.6 (3)
O3ii—Sm2—O9134.74 (16)C2—C1—Sm2175.1 (5)
O4W—Sm2—O968.06 (17)C3—C2—N1109.4 (6)
O3W—Sm2—O981.28 (15)C3—C2—C1135.0 (6)
O10—Sm2—O950.23 (14)N1—C2—C1115.4 (6)
O16—Sm2—O9149.71 (16)C2—C3—N2105.2 (6)
O6—Sm2—O15140.23 (18)C2—C3—C4135.0 (6)
O19i—Sm2—O1569.01 (16)N2—C3—C4119.8 (6)
O3ii—Sm2—O15116.59 (15)O11—C4—O12124.0 (7)
O4W—Sm2—O1570.80 (16)O11—C4—C3119.9 (6)
O3W—Sm2—O15129.46 (16)O12—C4—C3116.1 (6)
O10—Sm2—O1565.45 (14)N1—C5—N2111.6 (6)
O16—Sm2—O1550.12 (14)N1—C5—H5124.2
O9—Sm2—O15108.56 (14)N2—C5—H5124.2
O6—Sm2—C9143.70 (19)O13—C6—O14123.2 (6)
O19i—Sm2—C966.30 (18)O13—C6—C7120.7 (6)
O3ii—Sm2—C992.08 (18)O14—C6—C7116.0 (6)
O4W—Sm2—C979.88 (19)C8—C7—N3110.4 (6)
O3W—Sm2—C9117.63 (18)C8—C7—C6133.2 (6)
O10—Sm2—C990.65 (17)N3—C7—C6116.1 (6)
O16—Sm2—C925.15 (17)N4—C8—C7104.3 (5)
O9—Sm2—C9133.08 (17)N4—C8—C9119.9 (6)
O15—Sm2—C925.64 (16)C7—C8—C9135.7 (6)
O6—Sm2—C177.54 (18)O16—C9—O15120.3 (6)
O19i—Sm2—C1100.65 (17)O16—C9—C8117.9 (6)
O3ii—Sm2—C1150.81 (18)O15—C9—C8121.6 (6)
O4W—Sm2—C171.87 (18)O16—C9—Sm259.1 (3)
O3W—Sm2—C1105.37 (17)O15—C9—Sm263.8 (3)
O10—Sm2—C125.15 (15)C8—C9—Sm2159.8 (5)
O16—Sm2—C1136.44 (17)N3—C10—N4111.7 (6)
O9—Sm2—C125.14 (15)N3—C10—H11124.2
O15—Sm2—C187.51 (16)N4—C10—H11124.2
C9—Sm2—C1113.14 (19)S1—O1—Sm1103.9 (2)
O8iii—Sm1—O2iv82.97 (18)S1—O2—Sm1iv157.7 (3)
O8iii—Sm1—O5132.72 (18)S1—O3—Sm2ii151.1 (3)
O2iv—Sm1—O5143.93 (18)S1—O4—Sm195.8 (2)
O8iii—Sm1—O2W74.9 (2)S2—O5—Sm1135.0 (3)
O2iv—Sm1—O2W134.42 (18)S2—O6—Sm2141.8 (3)
O5—Sm1—O2W71.7 (2)S2—O8—Sm1i154.6 (3)
O8iii—Sm1—O1132.36 (16)C1—O9—Sm1123.4 (4)
O2iv—Sm1—O184.65 (16)C1—O9—Sm292.6 (4)
O5—Sm1—O174.15 (16)Sm1—O9—Sm2141.08 (19)
O2W—Sm1—O181.88 (18)C1—O10—Sm3141.3 (4)
O8iii—Sm1—O1W149.16 (18)C1—O10—Sm297.2 (4)
O2iv—Sm1—O1W73.88 (18)Sm3—O10—Sm2112.87 (16)
O5—Sm1—O1W70.95 (18)C4—O11—Sm3157.0 (5)
O2W—Sm1—O1W135.9 (2)C6—O13—Sm3155.7 (5)
O1—Sm1—O1W66.14 (16)C6—O14—Co1118.2 (4)
O8iii—Sm1—N182.36 (18)C9—O15—Sm3152.2 (4)
O2iv—Sm1—N172.20 (17)C9—O15—Sm290.6 (4)
O5—Sm1—N1103.37 (18)Sm3—O15—Sm2111.56 (17)
O2W—Sm1—N1140.42 (19)C9—O16—Sm295.7 (4)
O1—Sm1—N1135.86 (17)S3—O17—Sm3112.7 (3)
O1W—Sm1—N171.45 (18)S3—O19—Sm2iii142.2 (3)
O8iii—Sm1—O973.54 (17)S3—O20—Sm3iii146.5 (3)
O2iv—Sm1—O9130.86 (16)Sm1—O1W—H1W112 (6)
O5—Sm1—O968.57 (16)Sm1—O1W—H2W111 (6)
O2W—Sm1—O980.04 (17)H1W—O1W—H2W104 (3)
O1—Sm1—O9142.05 (15)Sm1—O2W—H3W125 (5)
O1W—Sm1—O9106.70 (16)Sm1—O2W—H4W133 (5)
N1—Sm1—O962.47 (16)H3W—O2W—H4W101 (7)
O8iii—Sm1—O478.70 (16)Sm2—O3W—H5W118 (6)
O2iv—Sm1—O472.14 (16)Sm2—O3W—H6W114 (5)
O5—Sm1—O4114.36 (16)H5W—O3W—H6W102 (3)
O2W—Sm1—O464.80 (17)Sm2—O4W—H7W116 (6)
O1—Sm1—O453.73 (15)Sm2—O4W—H8W123 (6)
O1W—Sm1—O4112.03 (16)H7W—O4W—H8W106 (7)
N1—Sm1—O4141.24 (17)Sm3—O5W—H9W94 (6)
O9—Sm1—O4139.76 (15)Sm3—O5W—H10W139 (7)
O8iii—Sm1—S1105.85 (13)H9W—O5W—H10W105 (8)
O2iv—Sm1—S174.94 (12)Sm3—O6W—H11W120 (5)
O5—Sm1—S195.75 (12)Sm3—O6W—H12W129 (5)
O2W—Sm1—S173.64 (14)H11W—O6W—H12W107 (3)
O1—Sm1—S126.73 (11)Co1—O7W—H13W104 (6)
O1W—Sm1—S187.74 (12)Co1—O7W—H14W116 (6)
N1—Sm1—S1144.82 (13)H13W—O7W—H14W105 (3)
O9—Sm1—S1152.67 (11)
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z+1; (v) x, y1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O18vi0.87 (6)2.06 (5)2.916 (8)170 (6)
O1W—H1W···O70.82 (5)2.52 (8)3.140 (8)133 (7)
O1W—H1W···O16vi0.82 (5)2.12 (6)2.777 (6)136 (8)
N4—H2···O7vii0.87 (4)1.94 (5)2.803 (8)171 (8)
O1W—H2W···O1viii0.82 (5)2.51 (6)3.247 (7)150 (7)
O2W—H3W···O3W0.83 (5)2.02 (5)2.809 (8)160 (6)
O2W—H4W···O6ii0.83 (4)2.55 (4)3.303 (9)152 (8)
O2W—H4W···O8ii0.83 (4)2.53 (7)3.204 (8)140 (6)
O3W—H5W···O4ix0.83 (4)1.98 (5)2.789 (7)166 (8)
O3W—H6W···O1ii0.83 (5)1.93 (5)2.732 (7)161 (5)
O4W—H7W···O170.81 (5)2.59 (6)3.270 (8)142 (7)
O4W—H7W···O190.81 (5)2.20 (6)2.874 (7)141 (5)
O4W—H8W···O6iii0.81 (7)2.47 (7)3.186 (8)149 (6)
O5W—H10W···O7Wx0.82 (6)2.10 (6)2.794 (8)142 (6)
O6W—H11W···O14xi0.81 (4)1.99 (5)2.751 (7)157 (5)
O6W—H12W···O5Wxi0.81 (6)2.27 (7)3.053 (8)162 (7)
O7W—H13W···O11x0.81 (5)2.45 (5)3.063 (6)133 (7)
O7W—H13W···O12x0.81 (5)2.06 (6)2.855 (7)168 (7)
O7W—H14W···O12xii0.81 (5)1.85 (5)2.661 (7)174 (7)
C5—H5···O3iv0.932.523.388 (8)155
C10—H11···O17xii0.932.543.430 (9)161
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z+1; (vi) x, y+1, z; (vii) x, y1, z; (viii) x, y+1, z+1; (ix) x+1, y, z+1; (x) x, y, z+2; (xi) x+1, y, z+2; (xii) x1, y1, z.

Experimental details

Crystal data
Chemical formula[CoSm6(C5H2N2O4)4(SO4)6(H2O)14]
Mr2406.08
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.6395 (10), 9.5090 (14), 21.619 (3)
α, β, γ (°)97.068 (2), 94.391 (2), 98.006 (2)
V3)1335.2 (3)
Z1
Radiation typeMo Kα
µ (mm1)7.17
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.260, 0.341
No. of measured, independent and
observed [I > 2σ(I)] reflections
6967, 4716, 3971
Rint0.024
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.070, 1.02
No. of reflections4716
No. of parameters478
No. of restraints23
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.00, 1.03

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O18i0.87 (6)2.06 (5)2.916 (8)170 (6)
O1W—H1W···O70.82 (5)2.52 (8)3.140 (8)133 (7)
O1W—H1W···O16i0.82 (5)2.12 (6)2.777 (6)136 (8)
N4—H2···O7ii0.87 (4)1.94 (5)2.803 (8)171 (8)
O1W—H2W···O1iii0.82 (5)2.51 (6)3.247 (7)150 (7)
O2W—H3W···O3W0.83 (5)2.02 (5)2.809 (8)160 (6)
O2W—H4W···O6iv0.83 (4)2.55 (4)3.303 (9)152 (8)
O2W—H4W···O8iv0.83 (4)2.53 (7)3.204 (8)140 (6)
O3W—H5W···O4v0.83 (4)1.98 (5)2.789 (7)166 (8)
O3W—H6W···O1iv0.83 (5)1.93 (5)2.732 (7)161 (5)
O4W—H7W···O170.81 (5)2.59 (6)3.270 (8)142 (7)
O4W—H7W···O190.81 (5)2.20 (6)2.874 (7)141 (5)
O4W—H8W···O6vi0.81 (7)2.47 (7)3.186 (8)149 (6)
O5W—H10W···O7Wvii0.82 (6)2.10 (6)2.794 (8)142 (6)
O6W—H11W···O14viii0.81 (4)1.99 (5)2.751 (7)157 (5)
O6W—H12W···O5Wviii0.81 (6)2.27 (7)3.053 (8)162 (7)
O7W—H13W···O11vii0.81 (5)2.45 (5)3.063 (6)133 (7)
O7W—H13W···O12vii0.81 (5)2.06 (6)2.855 (7)168 (7)
O7W—H14W···O12ix0.81 (5)1.85 (5)2.661 (7)174 (7)
C5—H5···O3x0.93002.52003.388 (8)155.00
C10—H11···O17ix0.93002.54003.430 (9)161.00
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x, y+1, z+1; (iv) x, y, z+1; (v) x+1, y, z+1; (vi) x+1, y, z; (vii) x, y, z+2; (viii) x+1, y, z+2; (ix) x1, y1, z; (x) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge South China Normal University and South China University of Technology for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526–m2527.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-Q. & Yang, G.-Y. (2007). Dalton Trans. pp. 3771–3781.  Web of Science CSD CrossRef Google Scholar
First citationZhu, L.-C., Zhao, Y., Yu, S.-J. & Zhao, M.-M. (2010). Inorg. Chem. Commun. 13, 1299–1303.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1166-m1167
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds