organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-(2-Formyl­phen­­oxy­meth­yl)-3-phenyl­prop-2-ene­nitrile

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 9 May 2011; accepted 29 June 2011; online 9 July 2011)

In the title compound, C17H13NO2, the dihedral angle between the benzene and the phenyl ring is 65.92 (7)°. The carbonitrile side chain is almost linear, the C—C—N angle being 175.55 (14)°. The crystal structure is stabilized by inter­molecular C—H⋯O inter­actions.

Related literature

For background to the synthesis, see: Bakthadoss & Murugan (2010[Bakthadoss, M. & Murugan, G. (2010). Eur. J. Org. Chem. pp. 5825-5830.]). For a related structure, see: Jasinski et al. (2011[Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Sarojini, B. K. & Musthafa Khaleel, V. (2011). Acta Cryst. E67, o756.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13NO2

  • Mr = 263.28

  • Triclinic, [P \overline 1]

  • a = 8.0157 (4) Å

  • b = 9.2589 (4) Å

  • c = 10.2348 (5) Å

  • α = 68.283 (2)°

  • β = 73.432 (2)°

  • γ = 79.804 (2)°

  • V = 674.20 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 12600 measured reflections

  • 2628 independent reflections

  • 2162 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.03

  • 2628 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2i 0.93 2.48 3.2675 (17) 143
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is a stereodefined trisubstituted olefin, synthesized from the corresponding bromoderivative of Baylis-Hillman adduct with salicylaldehyde via simple SN2 reaction in good yields. This o-salicyladehyde derivative is an important precursor for many heterocyclic frameworks (Bakthadoss et al., 2010).

The title compund comprises a phenyl ring connected to a benzaldehyde through a chain of acrylonitrile and methoxymethyl groups (Fig. 1). The phenyl rings (C1—C6) and (C11—C16) form dihedral angles of 6.46 (8) and 71.66 (6)°, respectively, with the plane formed by the atoms (N1/C8—C10); the dihedral angle between the two phenyl rings is 65.92 (7)°. The deviation of the atom O2 in the aldehyde group, from the mean plane of the phenyl ring (C11—C16) is 0.0709 (12)Å. The bond angle around C9, in the chain of atoms N1/C9/C8, is 175.55 (14)° and thus the carbonitrile side chain is almost linear. The crystal packing is stabilized by intermolecular C—H···O interactions (Tab. 1 and Fig. 2).

Related literature top

For background to the synthesis, see: Bakthadoss & Murugan (2010). For a related structure, see: Jasinski et al. (2011).

Experimental top

A solution of salicylaldehyde (1.0 mmol, 0.122 g) and potassium carbonate (2.0 mmol, 0.2293 g) in acetonitrile solvent (5 ml) was stirred for 15 minute at room temperature. To this solution, (E)-2-(bromomethyl)-3-phenylacrylonitrile (1.2 mmol, 0.27 g) was added dropwise. After the completion of the reaction, as indicated by TLC, acetonitrile was evaporated. EtOAc (15 ml) and water (15 ml) were added to the crude mass. The organic layer was dried over anhydrous sodium sulfate. Removal of solvent led to the crude product, which was purified through pad of silica gel (100–200 mesh) using ethylacetate and hexanes(1:9) as solvents. The pure title compound was obtained as a colourless solid (0.22 g, 84% yield). Recrystallization was carried out using methanol as solvent.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.93 - 0.97 Å, and refined in riding model with fixed isotropic displacement parameters: Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. Packing arrangement of the title compound; C—H···O intermolecular interactions are indicated by dashed lines.
(E)-2-(2-Formylphenoxymethyl)-3-phenylprop-2-enenitrile top
Crystal data top
C17H13NO2Z = 2
Mr = 263.28F(000) = 276
Triclinic, P1Dx = 1.297 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0157 (4) ÅCell parameters from 2628 reflections
b = 9.2589 (4) Åθ = 1.0–26.0°
c = 10.2348 (5) ŵ = 0.09 mm1
α = 68.283 (2)°T = 293 K
β = 73.432 (2)°Block, colourless
γ = 79.804 (2)°0.30 × 0.25 × 0.25 mm
V = 674.20 (6) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2162 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 26.0°, θmin = 2.6°
ω scansh = 99
12600 measured reflectionsk = 1111
2628 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.0828P]
where P = (Fo2 + 2Fc2)/3
2628 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C17H13NO2γ = 79.804 (2)°
Mr = 263.28V = 674.20 (6) Å3
Triclinic, P1Z = 2
a = 8.0157 (4) ÅMo Kα radiation
b = 9.2589 (4) ŵ = 0.09 mm1
c = 10.2348 (5) ÅT = 293 K
α = 68.283 (2)°0.30 × 0.25 × 0.25 mm
β = 73.432 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2162 reflections with I > 2σ(I)
12600 measured reflectionsRint = 0.023
2628 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.03Δρmax = 0.12 e Å3
2628 reflectionsΔρmin = 0.17 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.26890 (18)0.64113 (15)0.64335 (14)0.0532 (3)
H10.30080.61320.73050.064*
C20.2241 (2)0.79493 (15)0.57315 (15)0.0595 (4)
H20.22700.87000.61250.071*
C30.17519 (19)0.83824 (15)0.44570 (16)0.0602 (4)
H30.14500.94250.39810.072*
C40.1710 (2)0.72668 (16)0.38826 (16)0.0648 (4)
H40.13720.75560.30170.078*
C50.21649 (18)0.57237 (15)0.45793 (15)0.0570 (3)
H50.21290.49800.41800.068*
C60.26761 (15)0.52628 (13)0.58692 (13)0.0449 (3)
C70.31669 (16)0.36612 (13)0.66887 (13)0.0468 (3)
H70.33730.35420.75740.056*
C80.33774 (15)0.23310 (13)0.64123 (13)0.0462 (3)
C90.31738 (18)0.22202 (14)0.51102 (15)0.0543 (3)
C100.38224 (15)0.08068 (13)0.74939 (14)0.0486 (3)
H10A0.47280.01930.70210.058*
H10B0.42330.09750.82270.058*
C110.23087 (14)0.14432 (12)0.91208 (12)0.0385 (3)
C120.37770 (16)0.21887 (14)0.96098 (14)0.0496 (3)
H120.48040.16900.92770.059*
C130.37016 (19)0.36785 (15)1.05952 (15)0.0582 (4)
H130.46860.41751.09350.070*
C140.2212 (2)0.44558 (15)1.10927 (14)0.0586 (4)
H140.21960.54741.17410.070*
C150.07545 (17)0.37049 (14)1.06170 (13)0.0497 (3)
H150.02620.42181.09540.060*
C160.07657 (14)0.21887 (13)0.96393 (11)0.0395 (3)
C170.08123 (16)0.14054 (16)0.91668 (14)0.0534 (3)
H170.07510.03990.84970.064*
N10.3060 (2)0.20353 (14)0.40992 (15)0.0774 (4)
O10.22458 (10)0.00245 (9)0.81342 (9)0.0484 (2)
O20.21885 (12)0.19734 (13)0.95850 (12)0.0737 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0663 (8)0.0489 (7)0.0454 (7)0.0121 (6)0.0079 (6)0.0176 (6)
C20.0776 (10)0.0449 (7)0.0588 (8)0.0084 (6)0.0097 (7)0.0244 (6)
C30.0708 (9)0.0423 (7)0.0632 (9)0.0010 (6)0.0138 (7)0.0173 (6)
C40.0848 (11)0.0519 (8)0.0624 (9)0.0057 (7)0.0312 (8)0.0195 (7)
C50.0736 (9)0.0456 (7)0.0589 (8)0.0028 (6)0.0204 (7)0.0230 (6)
C60.0463 (7)0.0423 (6)0.0428 (6)0.0110 (5)0.0012 (5)0.0145 (5)
C70.0499 (7)0.0448 (6)0.0421 (6)0.0128 (5)0.0041 (5)0.0117 (5)
C80.0454 (7)0.0422 (6)0.0461 (7)0.0110 (5)0.0023 (5)0.0124 (5)
C90.0643 (8)0.0384 (6)0.0577 (8)0.0074 (6)0.0094 (6)0.0158 (6)
C100.0411 (7)0.0437 (6)0.0548 (7)0.0100 (5)0.0047 (5)0.0119 (5)
C110.0407 (6)0.0357 (5)0.0382 (6)0.0023 (4)0.0092 (5)0.0121 (5)
C120.0421 (7)0.0504 (7)0.0583 (8)0.0000 (5)0.0167 (6)0.0189 (6)
C130.0644 (9)0.0514 (7)0.0619 (8)0.0136 (6)0.0308 (7)0.0193 (6)
C140.0839 (10)0.0380 (6)0.0495 (7)0.0008 (6)0.0211 (7)0.0087 (5)
C150.0609 (8)0.0451 (6)0.0419 (6)0.0154 (6)0.0047 (6)0.0139 (5)
C160.0416 (6)0.0421 (6)0.0358 (6)0.0063 (5)0.0073 (5)0.0145 (5)
C170.0436 (7)0.0618 (8)0.0535 (7)0.0085 (6)0.0120 (6)0.0159 (6)
N10.1142 (12)0.0570 (7)0.0704 (9)0.0038 (7)0.0291 (8)0.0284 (7)
O10.0401 (5)0.0395 (4)0.0557 (5)0.0078 (3)0.0119 (4)0.0026 (4)
O20.0447 (6)0.1005 (8)0.0789 (7)0.0212 (5)0.0146 (5)0.0272 (6)
Geometric parameters (Å, º) top
C1—C21.3719 (18)C10—O11.4324 (13)
C1—C61.3879 (17)C10—H10A0.9700
C1—H10.9300C10—H10B0.9700
C2—C31.3656 (19)C11—O11.3631 (13)
C2—H20.9300C11—C121.3802 (16)
C3—C41.3735 (19)C11—C161.3945 (15)
C3—H30.9300C12—C131.3743 (18)
C4—C51.3758 (18)C12—H120.9300
C4—H40.9300C13—C141.374 (2)
C5—C61.3865 (17)C13—H130.9300
C5—H50.9300C14—C151.3684 (19)
C6—C71.4555 (17)C14—H140.9300
C7—C81.3351 (16)C15—C161.3900 (16)
C7—H70.9300C15—H150.9300
C8—C91.4298 (19)C16—C171.4575 (17)
C8—C101.4950 (17)C17—O21.2026 (15)
C9—N11.1397 (17)C17—H170.9300
C2—C1—C6121.36 (12)C8—C10—H10A110.5
C2—C1—H1119.3O1—C10—H10B110.5
C6—C1—H1119.3C8—C10—H10B110.5
C3—C2—C1120.28 (12)H10A—C10—H10B108.7
C3—C2—H2119.9O1—C11—C12123.92 (10)
C1—C2—H2119.9O1—C11—C16115.88 (9)
C2—C3—C4119.54 (12)C12—C11—C16120.20 (10)
C2—C3—H3120.2C13—C12—C11119.10 (12)
C4—C3—H3120.2C13—C12—H12120.4
C3—C4—C5120.40 (13)C11—C12—H12120.4
C3—C4—H4119.8C14—C13—C12121.87 (12)
C5—C4—H4119.8C14—C13—H13119.1
C4—C5—C6120.90 (12)C12—C13—H13119.1
C4—C5—H5119.6C15—C14—C13118.78 (12)
C6—C5—H5119.6C15—C14—H14120.6
C5—C6—C1117.51 (11)C13—C14—H14120.6
C5—C6—C7124.85 (11)C14—C15—C16121.20 (12)
C1—C6—C7117.62 (11)C14—C15—H15119.4
C8—C7—C6132.27 (12)C16—C15—H15119.4
C8—C7—H7113.9C15—C16—C11118.81 (11)
C6—C7—H7113.9C15—C16—C17120.15 (11)
C7—C8—C9124.29 (11)C11—C16—C17121.04 (10)
C7—C8—C10121.16 (11)O2—C17—C16124.38 (12)
C9—C8—C10114.54 (10)O2—C17—H17117.8
N1—C9—C8175.55 (14)C16—C17—H17117.8
O1—C10—C8106.15 (9)C11—O1—C10118.29 (9)
O1—C10—H10A110.5
C6—C1—C2—C30.6 (2)C16—C11—C12—C130.92 (18)
C1—C2—C3—C40.1 (2)C11—C12—C13—C140.9 (2)
C2—C3—C4—C50.3 (2)C12—C13—C14—C151.7 (2)
C3—C4—C5—C60.1 (2)C13—C14—C15—C160.54 (19)
C4—C5—C6—C10.8 (2)C14—C15—C16—C111.25 (17)
C4—C5—C6—C7179.50 (13)C14—C15—C16—C17179.03 (11)
C2—C1—C6—C51.04 (19)O1—C11—C16—C15178.18 (10)
C2—C1—C6—C7179.87 (11)C12—C11—C16—C151.98 (16)
C5—C6—C7—C85.5 (2)O1—C11—C16—C171.54 (16)
C1—C6—C7—C8175.73 (13)C12—C11—C16—C17178.30 (11)
C6—C7—C8—C91.5 (2)C15—C16—C17—O21.27 (19)
C6—C7—C8—C10177.29 (12)C11—C16—C17—O2179.01 (12)
C7—C8—C10—O1104.09 (13)C12—C11—O1—C104.17 (16)
C9—C8—C10—O174.78 (13)C16—C11—O1—C10175.99 (9)
O1—C11—C12—C13179.25 (11)C8—C10—O1—C11176.89 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.932.483.2675 (17)143
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC17H13NO2
Mr263.28
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.0157 (4), 9.2589 (4), 10.2348 (5)
α, β, γ (°)68.283 (2), 73.432 (2), 79.804 (2)
V3)674.20 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12600, 2628, 2162
Rint0.023
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.03
No. of reflections2628
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.17

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.932.483.2675 (17)143
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

K. Swaminathan and K. Sethusankar thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection and Dr V. Murugan, Head of the Department of Physics, RKM Vivekananda College, Chennai, India, for providing facilities in the department to carry out this work.

References

First citationBakthadoss, M. & Murugan, G. (2010). Eur. J. Org. Chem. pp. 5825–5830.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Yathirajan, H. S., Sarojini, B. K. & Musthafa Khaleel, V. (2011). Acta Cryst. E67, o756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds