Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-[Amino(azido)methylidene]-4-methylbenzenesulfonamide

Ayyaz Mahmood, Islam Ullah Khan,* Muhammad Nadeem Arshad \ddagger and Jamil Ahmed

Materials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan
Correspondence e-mail: iukhan@gcu.edu.pk

Received 29 June 2011; accepted 6 July 2011

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$;
R factor $=0.035 ; w R$ factor $=0.107$; data-to-parameter ratio $=17.1$.

In the title molecule, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$, the amino(azido)methyl and p-toluenesulfonyl moieties are inclined almost at right angles with respect to each other, making a dihedral angle of 83.49 (6) ${ }^{\circ}$. An intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond gives rise to the formation of six-membered ring with graph-set motif $S(6)$. In the crystal, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding is responsible for the formation of dimers about inversion centers, which are linked through another N $\mathrm{H} \cdots \mathrm{O}$ interaction along the b axis.

Related literature

For the synthesis, see: Arshad et al. (2009). For the biological activity of sulfonamides, see: Moree et al. (1991); Arshad et al. (2008); Gennarti et al. (1994). For related structures, see: Denny et al. (1980); Müller \& Bärnighausen (1970). For graphset notation, see: Bernstein et al. (1995).

Experimental

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$

$$
\begin{aligned}
& \gamma=110.505(1)^{\circ} \AA^{3} \\
& V=528.18(3) \AA^{3}
\end{aligned}
$$

$M_{r}=239.26$
Triclinic, $P \overline{1}$
$a=6.8986$ (2) \AA
$b=7.2146$ (2) \AA
$c=11.3771$ (3) A
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.30 \mathrm{~mm}^{-1}$
$\alpha=92241(1)^{\circ} \mathrm{A}$
$T=296 \mathrm{~K}$
$\alpha=92.244(1)^{\circ}$
$0.34 \times 0.17 \times 0.17 \mathrm{~mm}$
$\beta=93.615(1)^{\circ}$
\ddagger X-ray Diffraction and Physical Laboratory, Department of Physics, School of Physical Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.

Data collection
Bruker APEXII CCD
diffractometer
8664 measured reflections
2549 independent reflections 2343 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.088$
$S=1.09$
2549 reflections
152 parameters
independent and constrained refinement
$\Delta \rho_{\max }=0.30 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.29 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 N \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.80(2)$	$2.24(2)$	$2.9459(16)$	$148(2)$
$\mathrm{N} 2-\mathrm{H} 3 N \cdots 1^{\mathrm{ii}}$	$0.89(2)$	$2.08(2)$	$2.9481(15)$	$164(2)$
$\mathrm{N} 2-\mathrm{H} 2 N \cdots \mathrm{O} 2$	$0.80(2)$	$2.34(2)$	$2.8862(16)$	$127(2)$

Symmetry codes: (i) $-x+2,-y,-z$; (ii) $x, y-1, z$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Higher Education Commission of Pakistan for the purchase of the diffractometer under the grant to strengthen the Materials Chemistry Laboratory at GC University, Lahore, and thank Dr Sohail Anjum Shehzad for helpful discussions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2426).

References

Arshad, M. N., Khan, I. U. \& Zia-ur-Rehman, M. (2008). Acta Cryst. E64, o2283-o2284.
Arshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. \& Shafiq, M. (2009). Acta Cryst. E65, o281.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Denny, G. H., Crageo, E. J. Jr \& Rooney, C. S. (1980). J. Org. Chem. E45, 1662 1665.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gennarti, C., Salom, B., Potenza, D. \& Williams, A. (1994). Angew. Chem. Int. Ed. Engl. 33, 2067-2069.
Moree, W. J., Van der Marel, G. A. \& Liskamp, R. M. (1991). Tetrahedron Lett. 32, 409-411.
Müller, U. \& Bärnighausen, H. (1970). Acta Cryst. B26, 1671-1679.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o2140 [doi:10.1107/S1600536811026973]

N-[Amino(azido)methylidene]-4-methylbenzenesulfonamide

Ayyaz Mahmood, Islam Ullah Khan, Muhammad Nadeem Arshad and Jamil Ahmed

S1. Comment

Sulfonamides are an important class of pharmaceutical compounds (Moree et al., 1991), they exhibit a broad spectrum of biological activites which include antibacterial, diuretic, hypoglycermic, anti-convulsant, HIV protease inhibitors and for the treatment of inflammatory rheumatic and non-rheumatic processes including onsets and traumatologic lesions (Arshad et al., 2008; Gennarti et al., 1994). Herein, we report the crystal structure of the title compound.

In the title compound (Fig. 1), the azido group consisting of three nitrogen atoms carries cationic and anionic characters (Denny et al., 1980; Muller \& Barnighausen, 1970). The bond distance N4—N5 is 1.112 (2) \AA, which is nearly equal to a \equiv bond distance between two nitrogen atoms i.e. $1.10 \AA$. The amino(azido)methyl ($\mathrm{N} 1 / \mathrm{C} 8 / \mathrm{N} 2 / \mathrm{N} 3 / \mathrm{N} 4 / \mathrm{N} 5$) moiety is almost planer with r. m. s. deviation of $0.0156 \AA$ and is oriented at a dihedral angle of $83.19(5)^{\circ}$ with respect to the toluene ring ($\mathrm{C} 1-\mathrm{C} 7$). The molecule exhibits both inter- and intra-molecular hydrogen bonding. The intermolecular hydrogen bonds result in dimers about inversion centers which are further connected through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ type interactions and extended along the b axis (Tab. $1 \&$ Fig. 2). The intramolecular hydrogen bonding $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O} 2$ gives rise to the formation of a six membered ring motif which can be represented mathematically as $S_{1}{ }^{1}(6)$ (Bernstein et al., 1995).

S2. Experimental

A mixture of 5-aminotetrazole monohydrate ($4.85 \mathrm{mmol}, 0.5 \mathrm{~g}$) and p-toluenesulfonyl chloride ($4.85 \mathrm{mmol}, 0.92 \mathrm{~g}$) was stirred in distilled water $(10 \mathrm{ml})$ at room temperature while pH was maintained at $9-10$ in accordance with (Arshad et al., 2009). The completion of the reaction was checked by TLC. As the reaction completed, the precipitates obtained were filtered, washed with distilled water and finally dried. Suitable crystals for X-ray analysis were grown from mixture of methanol and ethyl acetate (1:1) by slow evaporation. Yield of the reaction was 84% (0.97 g) $\mathrm{mp} 408-413 \mathrm{~K}$.

S3. Refinement

All H atoms were positioned geometrically with $\mathrm{C}_{\text {methyl }}-\mathrm{H}=0.96 \AA, \mathrm{C}_{\text {aromatic }}-\mathrm{H}=0.93 \AA \& \mathrm{~N} 1-\mathrm{H}=0.8600 \AA$ and treated as riding on their parent atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ for aromatic \& N1 H-atoms and $1.5 U_{\text {eq }}$ for methyl H -atoms. The hydrogen atoms for primary amino group were located via fourier map allowed to refine with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{N})$.

Figure 1

Labelled diagram of the title molecule with thermal ellipsoids drawn at 50% probability level.

Figure 2
Unit cell packing diagram of the title compound showing hydrogen bonds by dshed lines; H -atoms not involved in H bonds have been excluded for clarity.

N-[Amino(azido)methylidene]-4-methylbenzenesulfonamide

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=239.26$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=6.8986$ (2) \AA
$b=7.2146$ (2) \AA
$c=11.3771(3) \AA$
$\alpha=92.244(1)^{\circ}$
$\beta=93.615(1)^{\circ}$
$\gamma=110.505(1)^{\circ}$
$V=528.18(3) \AA^{3}$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
8664 measured reflections
2549 independent reflections

$$
\begin{aligned}
& Z=2 \\
& F(000)=248 \\
& D_{\mathrm{x}}=1.504 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Melting point: } 444(2) \mathrm{K} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 7120 \text { reflections } \\
& \theta=3.0-28.3^{\circ} \\
& \mu=0.30 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Needle, colourless } \\
& 0.34 \times 0.17 \times 0.17 \mathrm{~mm} \\
& \\
& 2343 \mathrm{reflections} \text { with } I>2 \sigma(I) \\
& R_{\text {int }}=0.020 \\
& \theta_{\max }=28.3^{\circ}, \theta_{\min }=3.2^{\circ} \\
& h=-9 \rightarrow 9 \\
& k=-9 \rightarrow 9 \\
& l=-15 \rightarrow 14
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.088$
$S=1.09$
2549 reflections
152 parameters

0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H atoms treated by a mixture of independent
and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0384 P)^{2}+0.179 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.004$
$\Delta \rho_{\max }=0.30$ e \AA^{-3}
$\Delta \rho_{\min }=-0.29$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger. The reflection 001 has been omitted as this was obscured by beamstop.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iss }} * / U_{\text {eq }}$
S1	$0.77484(4)$	$0.16023(4)$	$0.12702(3)$	$0.02808(11)$
O1	$0.70020(17)$	$0.32207(14)$	$0.13239(11)$	$0.0459(3)$

O2	$0.87648(15)$	$0.13621(15)$	$0.02394(8)$	$0.0370(2)$
N 1	$0.57940(16)$	$-0.03376(15)$	$0.14825(9)$	$0.0291(2)$
N 2	$0.7254(2)$	$-0.27167(18)$	$0.08497(12)$	$0.0383(3)$
H 2 N	$0.825(3)$	$-0.194(3)$	$0.0593(18)$	0.057^{*}
H3N	$0.710(3)$	$-0.399(3)$	$0.0848(18)$	0.057^{*}
N3	$0.40903(18)$	$-0.37488(16)$	$0.15282(11)$	$0.0368(3)$
N4	$0.27278(18)$	$-0.32615(17)$	$0.19944(11)$	$0.0381(3)$
N5	$0.1395(2)$	$-0.3067(2)$	$0.24161(15)$	$0.0586(4)$
C1	$1.3707(4)$	$0.2513(3)$	$0.55842(19)$	$0.0833(8)$
H1A	1.3230	0.1326	0.6002	0.125^{*}
H1B	1.3738	0.3624	0.6088	0.125^{*}
H1C	1.5079	0.2718	0.5354	0.125^{*}
C2	$1.2249(3)$	$0.2310(2)$	$0.44945(14)$	$0.0514(4)$
C3	$1.0431(3)$	$0.2697(3)$	$0.45779(14)$	$0.0578(5)$
H3	1.0116	0.3084	0.5309	0.069^{*}
C4	$0.9072(3)$	$0.2521(2)$	$0.35961(14)$	$0.0468(4)$
H4	0.7868	0.2807	0.3664	0.056^{*}
C5	$0.95280(19)$	$0.19123(17)$	$0.25110(11)$	$0.0301(3)$
C6	$1.1336(2)$	$0.1525(2)$	$0.24079(13)$	$0.0391(3)$
H6	1.1648	0.1128	0.1678	0.047^{*}
C7	$1.2684(3)$	$0.1733(3)$	$0.34053(15)$	$0.0508(4)$
H7	1.3904	0.1478	0.3335	0.061^{*}
C8	$0.58221(18)$	$-0.21318(17)$	$0.12696(10)$	$0.0275(2)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.02984(17)$	$0.02068(16)$	$0.03386(18)$	$0.00862(11)$	$0.00265(11)$	$0.00626(11)$
O1	$0.0493(6)$	$0.0259(5)$	$0.0674(7)$	$0.0189(4)$	$0.0042(5)$	$0.0108(5)$
O2	$0.0366(5)$	$0.0402(5)$	$0.0313(5)$	$0.0090(4)$	$0.0053(4)$	$0.0083(4)$
N1	$0.0278(5)$	$0.0233(5)$	$0.0357(5)$	$0.0081(4)$	$0.0037(4)$	$0.0035(4)$
N2	$0.0397(6)$	$0.0250(5)$	$0.0526(7)$	$0.0129(5)$	$0.0117(5)$	$0.0047(5)$
N3	$0.0366(6)$	$0.0243(5)$	$0.0458(6)$	$0.0054(4)$	$0.0072(5)$	$0.0039(4)$
N4	$0.0360(6)$	$0.0283(5)$	$0.0438(6)$	$0.0028(4)$	$0.0057(5)$	$0.0077(5)$
N5	$0.0480(8)$	$0.0493(8)$	$0.0766(10)$	$0.0108(6)$	$0.0250(7)$	$0.0119(7)$
C1	$0.0957(16)$	$0.0691(13)$	$0.0535(11)$	$-0.0045(12)$	$-0.0346(11)$	$0.0146(10)$
C2	$0.0585(10)$	$0.0377(8)$	$0.0402(8)$	$-0.0029(7)$	$-0.0128(7)$	$0.0082(6)$
C3	$0.0735(12)$	$0.0533(10)$	$0.0311(7)$	$0.0038(8)$	$0.0057(7)$	$-0.0045(7)$
C4	$0.0470(8)$	$0.0470(8)$	$0.0410(8)$	$0.0101(7)$	$0.0089(6)$	$-0.0059(6)$
C5	$0.0334(6)$	$0.0212(5)$	$0.0317(6)$	$0.0045(4)$	$0.0024(5)$	$0.0021(4)$
C6	$0.0391(7)$	$0.0417(7)$	$0.0366(7)$	$0.0153(6)$	$-0.0015(5)$	$-0.0002(6)$
C7	$0.0441(8)$	$0.0537(9)$	$0.0513(9)$	$0.0154(7)$	$-0.0110(7)$	$0.0039(7)$
C8	$0.0301(6)$	$0.0233(5)$	$0.0271(5)$	$0.0073(4)$	$-0.0009(4)$	$0.0036(4)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

S1—O1	$1.4324(10)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9600
$\mathrm{~S} 1-\mathrm{O} 2$	$1.4387(10)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9600

S1-N1	1.6064 (10)
S1-C5	1.7648 (13)
N1-C8	1.3147 (15)
N2-C8	1.3104 (17)
N2-H2N	0.80 (2)
N2-H3N	0.89 (2)
N3-N4	1.2523 (17)
N3-C8	1.4034 (15)
N4-N5	1.112 (2)
$\mathrm{C} 1-\mathrm{C} 2$	1.515 (2)
C1-H1A	0.9600
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	117.13 (6)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1$	105.65 (6)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$	112.85 (6)
O1-S1-C5	107.75 (6)
O2-S1-C5	107.55 (6)
N1-S1-C5	105.20 (6)
C8-N1-S1	121.49 (9)
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	120.4 (15)
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{H} 3 \mathrm{~N}$	119.0 (13)
$\mathrm{H} 2 \mathrm{~N}-\mathrm{N} 2-\mathrm{H} 3 \mathrm{~N}$	120.6 (19)
N4-N3-C8	113.81 (11)
N5-N4-N3	171.56 (14)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
H1B- $\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
C7-C2-C3	118.41 (15)
C7-C2-C1	121.3 (2)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 8$	166.90 (10)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 8$	37.71 (12)
$\mathrm{C} 5-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 8$	-79.26 (11)
$\mathrm{C} 8-\mathrm{N} 3-\mathrm{N} 4-\mathrm{N} 5$	-177.3 (11)
C7-C2-C3-C4	-0.2 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-179.94 (16)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	1.0 (3)
C3-C4-C5-C6	-1.2 (2)
C3-C4-C5-S1	177.75 (12)
O1-S1-C5-C6	-139.43 (11)
O2-S1-C5-C6	-12.31 (13)
N1-S1-C5-C6	108.21 (11)

$\mathrm{C} 2-\mathrm{C} 7$	$1.376(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.385(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.384(3)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 4-\mathrm{C} 5$	$1.385(2)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 5-\mathrm{C} 6$	$1.381(2)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.389(2)$
$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 7-\mathrm{H} 7$	0.9300

120.33 (19)
121.43 (15)
119.3
119.3
119.15 (16)
120.4
120.4
120.34 (13)
120.58 (10)
119.08 (11)
119.34 (14)
120.3
120.3
121.31 (16)
119.3
119.3
130.52 (12)
111.45 (11)
118.03 (11)
41.58 (13)
168.70 (11)
-70.78 (12)
0.6 (2)
-178.38 (12)
-0.5 (3)
179.26 (16)
0.3 (2)
-2.0 (2)
177.16 (9)
176.19 (12)
-3.12 (18)

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 N \cdots \mathrm{O}^{2}$	$0.80(2)$	$2.24(2)$	$2.9459(16)$	$148(2)$
$\mathrm{N} 2 — \mathrm{H} 3 N \cdots 1^{\mathrm{i}}$		$0.89(2)$	$2.08(2)$	$2.9481(15)$
$\mathrm{N} 2 — \mathrm{H} 2 N \cdots \mathrm{O} 2$	$0.80(2)$	$2.34(2)$	$2.8862(16)$	$164(2)$

Symmetry codes: (i) $-x+2,-y,-z$; (ii) $x, y-1, z$.

