organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo-1-methyl-4-[2-(4-methyl­benzyl­­idene)hydrazinyl­­idene]-3H-2λ6,1-benzo­thia­zine-2,2-dione

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, bApplied Chemistry Research Center, PCSIR Laboratories Complex, Ferozpur Road, Lahore 54600, Pakistan, cX-ray Diffraction and Physical Laboratory, Department of Physics, School of Physical Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan, and dThe Center of Excellence for Advanced Materials Research, King Abdul Aziz University, Jeddah, PO Box 80203, Saudi Arabia
*Correspondence e-mail: iukhan@gcu.edu.pk, mnachemist@hotmail.com

(Received 11 July 2011; accepted 15 July 2011; online 23 July 2011)

In the title compound, C17H16BrN3O2S, the two fused rings are twisted by a dihedral angle of 6.61 (15)°. The thia­zine ring adopts a sofa conformation. The toluene ring is oriented at dihedral angles of 15.5 (2) and 20.6 (2)° with respect to the bromo­benzene and thia­zine rings, respectively. The benzyl­idene system is approximately planar [r.m.s. deviation = 0.0388 Å]. In the cyrstal, weak inter­molecular C—H⋯O hydrogen bonds connects the mol­ecules into a chain along the b axis.

Related literature

For the synthesis of the title compound, see: Shafiq et al. (2011[Shafiq, M., Zia-ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011). J. Chil. Chem. Soc. 56, 527-531.]). For related structures, see: Khan et al. (2010[Khan, I. U., Shafiq, M. & Arshad, M. N. (2010). Acta Cryst. E66, o2839.]); Shafiq et al. (2009[Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Safdar, M. (2009). Acta Cryst. E65, o393.]); Arshad et al. (2009[Arshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009). Acta Cryst. E65, o3077.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16BrN3O2S

  • Mr = 406.30

  • Monoclinic, P 21

  • a = 9.1077 (6) Å

  • b = 6.8328 (4) Å

  • c = 14.1765 (9) Å

  • β = 96.807 (3)°

  • V = 876.00 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.48 mm−1

  • T = 296 K

  • 0.32 × 0.12 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.504, Tmax = 0.790

  • 10166 measured reflections

  • 4119 independent reflections

  • 2881 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.078

  • S = 0.97

  • 4119 reflections

  • 220 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1771 Friedel pairs

  • Flack parameter: 0.004 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17C⋯O1i 0.96 2.64 3.546 (5) 158
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In the title molecule (Fig. 1), the thiazine ring adopts a sofa conformation which is similar to the conformation of the corresponding ring in a previously reported compoud, 1-propyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide (Khan et al., 2010). The aromatic ring (C1—C6) in the title compound is twisted at 15.5 (2)° with respect to the touluene ring (C10—C15). The benzylidene moiety (C9—C16/N1/N2) is also very near to planerity as showing the r. m. s. deviation of 0.0388Å and is oriented at a dihedral angle 15.02 (12)° with respect to the benzene ring (C1—C6). The fused aromatic (C1—C6) and thiazine (C1/C6/C7/C8/N1/S1) rings are twisted at a dihedral angle 6.61 (15)°. The oxygen atom from SO2 group is involved in weak C—H···O type hydrogen bonding interaction, which connects the molecules in a zig-zag mode along the b-axis.

The crystal structures of several molecules related to the title compound have been reported (Arshad et al., 2009; Shafiq et al., 2009).

Related literature top

For the synthesis of the title compound, see: Shafiq et al. (2011). For related structures, see: Khan et al. (2010); Shafiq et al. (2009); Arshad et al. (2009).

Experimental top

The synthesis of the title compound has already been reportrd (Shafiq et al., 2011). It was recrystalized from a solution in dry ethanol.

Refinement top

All H-atoms were positioned at idealized geometry with Caromatic—H = 0.93 Å and Cmethyl—H = 0.96 Å and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) for aromatic & Uiso(H) = 1.5 Ueq(C) for methyl carbon atoms. The reflection 0 0 1 has been omitted in final refinement. An absolute structure was determined (Flack, 1983) using 1771 Friedel pairs.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The ORTEP diagram of the title molecule showing the thermal ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. A unit cell diagram of the title compound showing C—H···O type interactions using dashed lines.
6-Bromo-1-methyl-4-[2-(4-methylbenzylidene)hydrazinylidene]- 3H-2λ6,1-benzothiazine-2,2-dione top
Crystal data top
C17H16BrN3O2SF(000) = 412
Mr = 406.30Dx = 1.540 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3801 reflections
a = 9.1077 (6) Åθ = 2.3–23.7°
b = 6.8328 (4) ŵ = 2.48 mm1
c = 14.1765 (9) ÅT = 296 K
β = 96.807 (3)°Needle, yellow
V = 876.00 (10) Å30.32 × 0.12 × 0.10 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4119 independent reflections
Radiation source: fine-focus sealed tube2881 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1212
Tmin = 0.504, Tmax = 0.790k = 89
10166 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0256P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.018
4119 reflectionsΔρmax = 0.29 e Å3
220 parametersΔρmin = 0.36 e Å3
1 restraintAbsolute structure: Flack (1983), 1771 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (8)
Crystal data top
C17H16BrN3O2SV = 876.00 (10) Å3
Mr = 406.30Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.1077 (6) ŵ = 2.48 mm1
b = 6.8328 (4) ÅT = 296 K
c = 14.1765 (9) Å0.32 × 0.12 × 0.10 mm
β = 96.807 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4119 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2881 reflections with I > 2σ(I)
Tmin = 0.504, Tmax = 0.790Rint = 0.026
10166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.29 e Å3
S = 0.97Δρmin = 0.36 e Å3
4119 reflectionsAbsolute structure: Flack (1983), 1771 Friedel pairs
220 parametersAbsolute structure parameter: 0.004 (8)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.13358 (4)1.44957 (7)0.45270 (2)0.08174 (14)
S10.72100 (10)1.11072 (10)0.03233 (5)0.0611 (2)
O10.8404 (3)0.9855 (3)0.02125 (18)0.0855 (8)
O20.6089 (3)1.1379 (5)0.04538 (16)0.0999 (9)
N10.7821 (3)1.3277 (3)0.06656 (16)0.0589 (6)
N20.7702 (3)0.9100 (3)0.28328 (17)0.0519 (6)
N30.6650 (3)0.7615 (3)0.26789 (18)0.0556 (6)
C10.8667 (3)1.3470 (4)0.1553 (2)0.0464 (6)
C20.9579 (4)1.5101 (4)0.1724 (2)0.0590 (8)
H20.96541.59980.12380.071*
C31.0369 (4)1.5402 (4)0.2599 (2)0.0625 (8)
H31.09591.65090.27070.075*
C41.0285 (3)1.4062 (4)0.3312 (2)0.0539 (7)
C50.9427 (3)1.2426 (4)0.31626 (19)0.0472 (7)
H50.94051.15160.36480.057*
C60.8585 (3)1.2109 (4)0.22905 (18)0.0422 (6)
C70.7585 (3)1.0412 (4)0.21833 (19)0.0430 (6)
C80.6452 (3)1.0352 (4)0.13283 (19)0.0529 (7)
H8A0.56301.11980.14300.063*
H8B0.60770.90290.12350.063*
C90.6761 (3)0.6340 (4)0.3337 (2)0.0497 (7)
H90.74940.64830.38470.060*
C100.5776 (3)0.4669 (4)0.33129 (17)0.0448 (6)
C110.4620 (3)0.4417 (5)0.25878 (18)0.0513 (6)
H110.44570.53560.21120.062*
C120.3723 (4)0.2815 (4)0.2565 (2)0.0572 (8)
H120.29440.26890.20820.069*
C130.3960 (4)0.1366 (4)0.3257 (2)0.0607 (8)
C140.5088 (4)0.1620 (4)0.3977 (2)0.0614 (8)
H140.52440.06810.44540.074*
C150.5999 (3)0.3245 (4)0.4010 (2)0.0562 (7)
H150.67630.33820.45030.067*
C160.2981 (4)0.0437 (6)0.3201 (3)0.0892 (11)
H16A0.35860.15890.32780.134*
H16B0.23890.04760.25940.134*
H16C0.23470.03870.36950.134*
C170.7742 (4)1.4824 (6)0.0046 (3)0.0913 (12)
H17A0.74551.60280.02300.137*
H17B0.70251.44800.05720.137*
H17C0.86931.49840.02640.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0823 (2)0.0930 (2)0.0655 (2)0.0207 (2)0.00971 (15)0.02718 (19)
S10.0823 (6)0.0609 (4)0.0395 (4)0.0132 (4)0.0050 (4)0.0079 (3)
O10.1165 (19)0.0679 (16)0.0801 (16)0.0059 (15)0.0453 (14)0.0163 (13)
O20.135 (2)0.106 (2)0.0500 (14)0.0347 (17)0.0242 (15)0.0036 (13)
N10.0768 (18)0.0526 (13)0.0453 (13)0.0107 (13)0.0011 (12)0.0057 (11)
N20.0566 (14)0.0422 (13)0.0553 (14)0.0149 (11)0.0005 (11)0.0018 (11)
N30.0606 (16)0.0462 (13)0.0585 (15)0.0122 (11)0.0003 (12)0.0013 (11)
C10.0480 (17)0.0447 (14)0.0479 (16)0.0029 (12)0.0112 (13)0.0047 (12)
C20.069 (2)0.0496 (17)0.0604 (19)0.0148 (15)0.0168 (16)0.0001 (13)
C30.063 (2)0.0513 (16)0.074 (2)0.0220 (14)0.0096 (17)0.0113 (16)
C40.0504 (16)0.0603 (19)0.0498 (16)0.0115 (14)0.0015 (12)0.0193 (14)
C50.0506 (17)0.0493 (15)0.0419 (15)0.0055 (12)0.0064 (13)0.0036 (12)
C60.0419 (16)0.0429 (13)0.0422 (14)0.0058 (12)0.0077 (12)0.0066 (11)
C70.0435 (16)0.0438 (13)0.0420 (14)0.0043 (12)0.0063 (12)0.0083 (12)
C80.0521 (18)0.0549 (15)0.0515 (17)0.0131 (13)0.0055 (14)0.0046 (13)
C90.0485 (16)0.0483 (15)0.0516 (16)0.0026 (13)0.0036 (13)0.0007 (13)
C100.0486 (15)0.0410 (13)0.0463 (14)0.0012 (14)0.0120 (11)0.0020 (13)
C110.0622 (17)0.0427 (13)0.0493 (14)0.0018 (17)0.0083 (13)0.0008 (15)
C120.060 (2)0.0536 (16)0.0583 (17)0.0074 (15)0.0075 (15)0.0110 (15)
C130.064 (2)0.0451 (15)0.076 (2)0.0061 (15)0.0235 (18)0.0048 (15)
C140.067 (2)0.0470 (16)0.073 (2)0.0025 (15)0.0199 (18)0.0145 (15)
C150.0551 (19)0.0550 (16)0.0592 (18)0.0025 (15)0.0101 (14)0.0057 (15)
C160.088 (2)0.0594 (18)0.123 (3)0.027 (2)0.025 (2)0.007 (3)
C170.094 (3)0.085 (3)0.089 (3)0.005 (2)0.015 (2)0.034 (2)
Geometric parameters (Å, º) top
Br1—C41.892 (3)C8—H8A0.9700
S1—O11.407 (3)C8—H8B0.9700
S1—O21.423 (3)C9—C101.450 (4)
S1—N11.637 (3)C9—H90.9300
S1—C81.734 (3)C10—C151.384 (4)
N1—C11.402 (4)C10—C111.392 (4)
N1—C171.457 (4)C11—C121.364 (4)
N2—C71.281 (3)C11—H110.9300
N2—N31.394 (3)C12—C131.392 (4)
N3—C91.271 (3)C12—H120.9300
C1—C21.394 (4)C13—C141.371 (5)
C1—C61.408 (4)C13—C161.518 (5)
C2—C31.374 (4)C14—C151.384 (4)
C2—H20.9300C14—H140.9300
C3—C41.373 (4)C15—H150.9300
C3—H30.9300C16—H16A0.9600
C4—C51.366 (4)C16—H16B0.9600
C5—C61.392 (4)C16—H16C0.9600
C5—H50.9300C17—H17A0.9600
C6—C71.471 (4)C17—H17B0.9600
C7—C81.496 (4)C17—H17C0.9600
O1—S1—O2119.10 (17)S1—C8—H8B109.5
O1—S1—N1110.09 (15)H8A—C8—H8B108.1
O2—S1—N1107.38 (15)N3—C9—C10121.9 (3)
O1—S1—C8107.40 (14)N3—C9—H9119.1
O2—S1—C8110.87 (15)C10—C9—H9119.1
N1—S1—C8100.39 (13)C15—C10—C11118.3 (3)
C1—N1—C17122.0 (3)C15—C10—C9119.9 (3)
C1—N1—S1118.89 (18)C11—C10—C9121.7 (3)
C17—N1—S1117.7 (2)C12—C11—C10121.0 (3)
C7—N2—N3113.6 (2)C12—C11—H11119.5
C9—N3—N2113.0 (2)C10—C11—H11119.5
C2—C1—N1118.9 (3)C11—C12—C13120.7 (3)
C2—C1—C6118.8 (3)C11—C12—H12119.6
N1—C1—C6122.2 (2)C13—C12—H12119.6
C3—C2—C1120.9 (3)C14—C13—C12118.4 (3)
C3—C2—H2119.5C14—C13—C16121.7 (3)
C1—C2—H2119.5C12—C13—C16119.9 (3)
C2—C3—C4119.7 (3)C13—C14—C15121.3 (3)
C2—C3—H3120.1C13—C14—H14119.3
C4—C3—H3120.1C15—C14—H14119.3
C5—C4—C3120.8 (3)C14—C15—C10120.2 (3)
C5—C4—Br1119.2 (2)C14—C15—H15119.9
C3—C4—Br1120.0 (2)C10—C15—H15119.9
C4—C5—C6120.7 (3)C13—C16—H16A109.5
C4—C5—H5119.7C13—C16—H16B109.5
C6—C5—H5119.7H16A—C16—H16B109.5
C5—C6—C1119.0 (2)C13—C16—H16C109.5
C5—C6—C7118.9 (2)H16A—C16—H16C109.5
C1—C6—C7122.0 (2)H16B—C16—H16C109.5
N2—C7—C6118.7 (2)N1—C17—H17A109.5
N2—C7—C8123.6 (2)N1—C17—H17B109.5
C6—C7—C8117.7 (2)H17A—C17—H17B109.5
C7—C8—S1110.75 (19)N1—C17—H17C109.5
C7—C8—H8A109.5H17A—C17—H17C109.5
S1—C8—H8A109.5H17B—C17—H17C109.5
C7—C8—H8B109.5
O1—S1—N1—C164.2 (3)N3—N2—C7—C6177.0 (2)
O2—S1—N1—C1164.7 (2)N3—N2—C7—C81.1 (4)
C8—S1—N1—C148.8 (2)C5—C6—C7—N211.9 (4)
O1—S1—N1—C17102.5 (3)C1—C6—C7—N2171.1 (3)
O2—S1—N1—C1728.6 (3)C5—C6—C7—C8166.3 (2)
C8—S1—N1—C17144.5 (3)C1—C6—C7—C810.6 (4)
C7—N2—N3—C9178.8 (2)N2—C7—C8—S1139.9 (2)
C17—N1—C1—C26.8 (4)C6—C7—C8—S141.9 (3)
S1—N1—C1—C2159.2 (2)O1—S1—C8—C758.5 (2)
C17—N1—C1—C6170.8 (3)O2—S1—C8—C7169.9 (2)
S1—N1—C1—C623.1 (4)N1—S1—C8—C756.6 (2)
N1—C1—C2—C3176.7 (3)N2—N3—C9—C10179.8 (2)
C6—C1—C2—C31.1 (4)N3—C9—C10—C15175.6 (3)
C1—C2—C3—C41.3 (5)N3—C9—C10—C112.7 (4)
C2—C3—C4—C50.2 (5)C15—C10—C11—C120.3 (4)
C2—C3—C4—Br1178.6 (2)C9—C10—C11—C12178.6 (3)
C3—C4—C5—C61.8 (4)C10—C11—C12—C131.4 (4)
Br1—C4—C5—C6177.0 (2)C11—C12—C13—C142.1 (4)
C4—C5—C6—C12.0 (4)C11—C12—C13—C16178.0 (3)
C4—C5—C6—C7175.1 (2)C12—C13—C14—C151.7 (4)
C2—C1—C6—C50.5 (4)C16—C13—C14—C15178.4 (3)
N1—C1—C6—C5178.2 (2)C13—C14—C15—C100.6 (4)
C2—C1—C6—C7176.5 (2)C11—C10—C15—C140.1 (4)
N1—C1—C6—C71.2 (4)C9—C10—C15—C14178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17C···O1i0.962.643.546 (5)158
Symmetry code: (i) x+2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC17H16BrN3O2S
Mr406.30
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)9.1077 (6), 6.8328 (4), 14.1765 (9)
β (°) 96.807 (3)
V3)876.00 (10)
Z2
Radiation typeMo Kα
µ (mm1)2.48
Crystal size (mm)0.32 × 0.12 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.504, 0.790
No. of measured, independent and
observed [I > 2σ(I)] reflections
10166, 4119, 2881
Rint0.026
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.078, 0.97
No. of reflections4119
No. of parameters220
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.36
Absolute structureFlack (1983), 1771 Friedel pairs
Absolute structure parameter0.004 (8)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17C···O1i0.962.643.546 (5)158.0
Symmetry code: (i) x+2, y+1/2, z.
 

Footnotes

Materials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan.

Acknowledgements

MS and MNA acknowledge the Higher Education commission of Pakistan for providing sholarships under its indigenous and IRSIP schemes.

References

First citationArshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009). Acta Cryst. E65, o3077.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhan, I. U., Shafiq, M. & Arshad, M. N. (2010). Acta Cryst. E66, o2839.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Safdar, M. (2009). Acta Cryst. E65, o393.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Zia-ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011). J. Chil. Chem. Soc. 56, 527–531.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds