organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy-N-(2-hy­dr­oxy­eth­yl)benzamide

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 12 July 2011; accepted 19 July 2011; online 23 July 2011)

In the title compound, C9H11NO3, a derivative of salicyl­amide, the intra­cyclic C—C—C angles span the range 117.96 (13)–121.56 (14)°. An intra­molecular O—H⋯O hydro­gen bond occurs. In the crystal, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds occur and C—H⋯O contacts connect the mol­ecules into a three-dimensional network. The closest inter­centroid distance between two π-systems is 3.8809 (10) Å.

Related literature

For the crystal structure of N-acetyl­salicyl­amide, see: Vyas et al. (1987[Vyas, K., Mohan Rao, V. & Manohar, H. (1987). Acta Cryst. C43, 1201-1204.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). Structures containing similar dihedral angles were retrieved from the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the use of chelating ligands in coordination chemistry, see: Gade (1998[Gade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley-VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11NO3

  • Mr = 181.19

  • Monoclinic, P 21 /c

  • a = 8.5852 (5) Å

  • b = 12.1716 (7) Å

  • c = 9.1113 (4) Å

  • β = 115.682 (2)°

  • V = 858.04 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 200 K

  • 0.39 × 0.14 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 7333 measured reflections

  • 2063 independent reflections

  • 1561 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.113

  • S = 1.04

  • 2063 reflections

  • 130 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H82⋯O1 0.90 (2) 1.73 (2) 2.5570 (15) 150 (2)
O3—H83⋯O1i 0.90 (2) 1.93 (2) 2.8197 (15) 168.3 (19)
N1—H71⋯O3ii 0.874 (18) 2.113 (19) 2.9697 (16) 166.6 (17)
C4—H4⋯O2iii 0.95 2.54 3.4864 (19) 173
C7—H7⋯O3ii 0.95 2.57 3.4496 (19) 155
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y, -z; (iii) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to coordination compounds exclusively applying comparable monodentate ligands (Gade, 1998). Combining different donor atoms, a molecular set-up to accomodate a large variety of metal centers of variable Lewis acidity is at hand. In this aspect, N-(2-hydroxyethyl)-salicylamide seemed of interest due to its possible use as a strictly neutral or, depending on the pH value, as an anionic or cationic ligand. In addition, due to the set-up of its functional groups, it may act as mono-, bi-, tri- or even tetradentate ligand offering the possibility to create chelate rings of various size. The intriguing combination of a secondary amino group, a keto group as well as an aliphatic and an aromatic hydroxyl group classifies the title compound as a highly versatile ligand. To enable comparative studies in terms of bond lengths and angles in envisioned coordination compounds, we determined the molecular and crystal structure of the title compound. Information about the crystal structure of N-acetylsalicylamide (Vyas et al., 1987) is available in the literature.

Due to the possible resonance between the amide group and the aromatic system, a projection of the molecule shows nearly all atoms to reside in the same plane. The only marked exception from this finding is the aliphatic hydroxyl group which adopts a staggered conformation with respect to the plane of the phenyl moiety. Intracyclic C–C–C angles span a range from 117.96 (13)–121.56 (14) °. The least-squares planes defined by the carbon atoms of the aromatic system on the one hand and the CON-motif of the amide group on the other hand intersect at an angle of 11.71 (20) ° (Fig. 1). This finding is in good agreement with values reported for other salicylic acid-derived amides whose crystal structural data have been deposited with the Cambridge Structural Database (Allen, 2002; Fig. 2).

In the crystal structure, intra- as well as intermolecular hydrogen bonds are obvious. The intramolecular hydrogen bond is formed between the hydrogen atom of the hydroxyl group bonded to the aromatic system and the oxygen atom of the keto group, with the latter one also serving as acceptor for one intermolecular hydrogen bond stemming from the aliphatic hydroxyl group. The amino group acts as donor in a hydrogen bond applying the aliphatic hydroxyl group's oxygen atom as acceptor. Apart from these classical hydrogen bonds, C–H···O contacts are observed whose range falls by more than 0.1 below the sum of van-der-Waals radii of the atoms participating. These contacts are manifest between the CH group in ortho position to the hydroxyl group on the aromatic system and the O atom of this hydroxyl group in the neighbouring molecule thus connecting the molecules to centrosymmetric dimers. A second C–H···O contact can be observed between one of the aromatic CH groups and the O atom of the aliphatic hydroxyl group (Fig. 2). In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the classical hydrogen bonds is S(6)C11(7)R22(10) on the unitary level while a description of the C–H···O contatcs necessitates a C11(8)R22(8) descriptor on the same level. In total, the molecules are connected to a three-dimensional network. The closest intercentroid distance between two π-systems was found at 3.8809 (10) Å.

The packing of the title compound is shown in Figure 4.

Related literature top

For the crystal structure of N-acetylsalicylamide, see: Vyas et al. (1987). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). Structures containing similar dihedral angles were retrieved from the Cambridge Structural Database (Allen, 2002). For the use of chelate ligands in coordination chemistry, see: Gade (1998).

Experimental top

The compound was obtained commercially (Aldrich). Crystals suitable for the X-ray diffraction study were taken directly from the provided compound.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic C atoms and C—H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the hydroxyl groups as well as the amine group were located on a difference Fourier map and refined with individual thermal parameters.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Statistical distribution of Car–Car–C=O dihedral angles in salicylic acid-derived amides (data based on CSD search including all structures up to November 2010).
[Figure 3] Fig. 3. Intermolecular contacts, viewed along [-1 - 1 0] (green dashed lines: C–H···O contacts, yellow dashed lines: intramolecular hydrogen bonds, blue dashed lines: intermolecular hydrogen bonds). Symmetry operators: i -x + 1, -y, -z + 2; ii x, -y + 1/2, z + 1/2; iii -x, -y, -z.
[Figure 4] Fig. 4. Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
2-Hydroxy-N-(2-hydroxyethyl)benzamide top
Crystal data top
C9H11NO3F(000) = 384
Mr = 181.19Dx = 1.403 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3230 reflections
a = 8.5852 (5) Åθ = 2.6–28.2°
b = 12.1716 (7) ŵ = 0.11 mm1
c = 9.1113 (4) ÅT = 200 K
β = 115.682 (2)°Rod, colourless
V = 858.04 (8) Å30.39 × 0.14 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1561 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
Graphite monochromatorθmax = 28.0°, θmin = 2.6°
ϕ and ω scansh = 711
7333 measured reflectionsk = 1516
2063 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.2715P]
where P = (Fo2 + 2Fc2)/3
2063 reflections(Δ/σ)max < 0.001
130 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C9H11NO3V = 858.04 (8) Å3
Mr = 181.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5852 (5) ŵ = 0.11 mm1
b = 12.1716 (7) ÅT = 200 K
c = 9.1113 (4) Å0.39 × 0.14 × 0.13 mm
β = 115.682 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1561 reflections with I > 2σ(I)
7333 measured reflectionsRint = 0.061
2063 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.26 e Å3
2063 reflectionsΔρmin = 0.21 e Å3
130 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12173 (15)0.16491 (9)0.50668 (12)0.0345 (3)
O20.30777 (16)0.07953 (10)0.78461 (13)0.0385 (3)
H820.234 (3)0.1262 (18)0.709 (3)0.059 (6)*
O30.01603 (15)0.12074 (9)0.05944 (13)0.0320 (3)
H830.031 (3)0.188 (2)0.050 (3)0.064 (7)*
N10.05024 (16)0.06865 (10)0.27683 (15)0.0265 (3)
H710.055 (2)0.0087 (15)0.226 (2)0.040 (5)*
C10.14136 (19)0.08091 (11)0.43613 (17)0.0245 (3)
C20.26991 (18)0.00403 (11)0.53026 (17)0.0240 (3)
C30.35056 (19)0.00197 (12)0.70163 (17)0.0272 (3)
C40.4777 (2)0.07369 (13)0.79138 (19)0.0325 (4)
H40.53030.07000.90690.039*
C50.5277 (2)0.15370 (13)0.7143 (2)0.0341 (4)
H50.61550.20450.77680.041*
C60.4508 (2)0.16085 (12)0.54536 (19)0.0317 (4)
H60.48560.21620.49230.038*
C70.3235 (2)0.08696 (12)0.45544 (18)0.0283 (3)
H70.27080.09230.34000.034*
C80.0703 (2)0.15326 (12)0.17864 (18)0.0280 (3)
H8A0.00980.22480.19760.034*
H8B0.16550.16030.21180.034*
C90.1441 (2)0.12462 (13)0.00029 (18)0.0310 (3)
H9A0.20210.05230.01790.037*
H9B0.23240.17990.06330.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0439 (7)0.0284 (5)0.0239 (6)0.0066 (5)0.0079 (5)0.0031 (4)
O20.0498 (8)0.0381 (6)0.0212 (6)0.0072 (6)0.0093 (5)0.0028 (5)
O30.0442 (7)0.0261 (5)0.0238 (5)0.0026 (5)0.0131 (5)0.0015 (4)
N10.0295 (7)0.0247 (6)0.0211 (6)0.0024 (5)0.0068 (5)0.0005 (5)
C10.0269 (8)0.0251 (7)0.0214 (7)0.0029 (6)0.0103 (6)0.0004 (6)
C20.0243 (7)0.0233 (7)0.0221 (7)0.0043 (6)0.0078 (6)0.0001 (5)
C30.0297 (8)0.0274 (7)0.0222 (7)0.0051 (6)0.0092 (6)0.0009 (6)
C40.0325 (9)0.0352 (8)0.0224 (7)0.0026 (7)0.0049 (6)0.0048 (6)
C50.0284 (8)0.0325 (8)0.0341 (9)0.0014 (6)0.0067 (7)0.0075 (7)
C60.0320 (9)0.0275 (7)0.0335 (8)0.0018 (6)0.0122 (7)0.0013 (6)
C70.0303 (8)0.0278 (7)0.0233 (7)0.0021 (6)0.0082 (6)0.0016 (6)
C80.0299 (8)0.0271 (7)0.0240 (7)0.0047 (6)0.0089 (6)0.0026 (6)
C90.0293 (8)0.0315 (8)0.0231 (7)0.0030 (6)0.0029 (6)0.0005 (6)
Geometric parameters (Å, º) top
O1—C11.2573 (17)C4—C51.374 (2)
O2—C31.3559 (18)C4—H40.9500
O2—H820.90 (2)C5—C61.390 (2)
O3—C91.4193 (19)C5—H50.9500
O3—H830.90 (2)C6—C71.378 (2)
N1—C11.3255 (18)C6—H60.9500
N1—C81.4594 (18)C7—H70.9500
N1—H710.874 (18)C8—C91.512 (2)
C1—C21.484 (2)C8—H8A0.9900
C2—C71.402 (2)C8—H8B0.9900
C2—C31.4092 (19)C9—H9A0.9900
C3—C41.391 (2)C9—H9B0.9900
C3—O2—H82106.2 (13)C6—C5—H5119.8
C9—O3—H83109.0 (13)C7—C6—C5119.45 (14)
C1—N1—C8121.13 (12)C7—C6—H6120.3
C1—N1—H71122.0 (12)C5—C6—H6120.3
C8—N1—H71116.8 (12)C6—C7—C2121.56 (14)
O1—C1—N1120.34 (13)C6—C7—H7119.2
O1—C1—C2120.13 (13)C2—C7—H7119.2
N1—C1—C2119.51 (12)N1—C8—C9110.64 (12)
C7—C2—C3117.96 (13)N1—C8—H8A109.5
C7—C2—C1122.61 (13)C9—C8—H8A109.5
C3—C2—C1119.30 (12)N1—C8—H8B109.5
O2—C3—C4117.80 (13)C9—C8—H8B109.5
O2—C3—C2122.16 (13)H8A—C8—H8B108.1
C4—C3—C2120.04 (13)O3—C9—C8112.70 (13)
C5—C4—C3120.54 (14)O3—C9—H9A109.1
C5—C4—H4119.7C8—C9—H9A109.1
C3—C4—H4119.7O3—C9—H9B109.1
C4—C5—C6120.44 (14)C8—C9—H9B109.1
C4—C5—H5119.8H9A—C9—H9B107.8
C8—N1—C1—O12.0 (2)O2—C3—C4—C5179.44 (14)
C8—N1—C1—C2176.53 (12)C2—C3—C4—C51.0 (2)
O1—C1—C2—C7166.39 (14)C3—C4—C5—C60.7 (2)
N1—C1—C2—C712.2 (2)C4—C5—C6—C70.0 (2)
O1—C1—C2—C39.4 (2)C5—C6—C7—C20.3 (2)
N1—C1—C2—C3172.01 (13)C3—C2—C7—C60.1 (2)
C7—C2—C3—O2179.76 (13)C1—C2—C7—C6175.95 (13)
C1—C2—C3—O23.8 (2)C1—N1—C8—C9174.38 (13)
C7—C2—C3—C40.7 (2)N1—C8—C9—O363.35 (16)
C1—C2—C3—C4176.74 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H82···O10.90 (2)1.73 (2)2.5570 (15)150 (2)
O3—H83···O1i0.90 (2)1.93 (2)2.8197 (15)168.3 (19)
N1—H71···O3ii0.874 (18)2.113 (19)2.9697 (16)166.6 (17)
C4—H4···O2iii0.952.543.4864 (19)173
C7—H7···O3ii0.952.573.4496 (19)155
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z; (iii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC9H11NO3
Mr181.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)8.5852 (5), 12.1716 (7), 9.1113 (4)
β (°) 115.682 (2)
V3)858.04 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.39 × 0.14 × 0.13
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7333, 2063, 1561
Rint0.061
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.113, 1.04
No. of reflections2063
No. of parameters130
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.21

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H82···O10.90 (2)1.73 (2)2.5570 (15)150 (2)
O3—H83···O1i0.90 (2)1.93 (2)2.8197 (15)168.3 (19)
N1—H71···O3ii0.874 (18)2.113 (19)2.9697 (16)166.6 (17)
C4—H4···O2iii0.952.543.4864 (19)173.3
C7—H7···O3ii0.952.573.4496 (19)154.6
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z; (iii) x+1, y, z+2.
 

Acknowledgements

The authors thank Ms Brogan Neale-Shutte for helpful discussions.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley–VCH.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVyas, K., Mohan Rao, V. & Manohar, H. (1987). Acta Cryst. C43, 1201–1204.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds