metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(O-*n*-butyl dithiocarbonato- $\kappa^2 S, S'$)-bis(pyridine- κN)manganese(II)

Naveed Alam,^a Muhammad Ali Ehsan,^b Matthias Zeller,^c Muhammad Mazhar^b and Zainudin Arifin^b*

^aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cDepartment of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, Ohio 44555, USA

Correspondence e-mail: zainudin@um.edu.my

Received 19 May 2011; accepted 4 July 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.025; wR factor = 0.064; data-to-parameter ratio = 19.0.

The structure of the title manganese complex, $[Mn(C_5H_9OS_2)_2(C_5H_5N)_2]$ or $[Mn(S_2CO-n-Bu)_2(C_5H_5N)_2]$, consists of discrete monomeric entities with Mn²⁺ ions located on centres of inversion. The metal atom is coordinated by a six-coordinate *trans*-N₂S₄ donor set with the pyridyl N atoms located in the apical positions. The observed slight deviations from octahedral geometry are caused by the bite angle of the bidentate κ^2 -S₂CO-*n*-Bu ligands [69.48 (1)°]. The $O(CH_2)_3(CH_3)$ chains of the *O-n*-butyl dithiocarbonate units are disordered over two sets of sites with an occupancy ratio of 0.589 (2):0.411 (2).

Related literature

For general background to the title complex, see: Alam *et al.* (2008); Tahir *et al.* (2010); Klevtsova & Glinskaya (1997); Câmpian *et al.* (2010); Kirichenko *et al.* (1994).

Experimental

Crystal data

 $\begin{bmatrix} Mn(C_{5}H_{9}OS_{2})_{2}(C_{5}H_{5}N)_{2} \end{bmatrix}$ $M_{r} = 511.66$ Monoclinic, $P2_{1}/c$ a = 10.9189 (17) Å b = 6.0853 (9) Å c = 17.650 (3) Å $\beta = 97.536$ (3)°

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2003) $T_{min} = 0.630, T_{max} = 0.782$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.064$ S = 1.122871 reflections 151 parameters $V = 1162.6 (3) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.95 \text{ mm}^{-1}$ T = 100 K $0.50 \times 0.37 \times 0.26 \text{ mm}$

11354 measured reflections 2871 independent reflections 2797 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.028$

 $\begin{array}{l} 1 \mbox{ restraint} \\ H\mbox{-atom parameters constrained} \\ \Delta \rho_{max} = 0.34 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.50 \mbox{ e } \mbox{ Å}^{-3} \end{array}$

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT-Plus* (Bruker, 2002); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *publCIF* (Westrip, 2010).

We are thankful to HIR project No. UM·C/625/1/HIR/035 and UMRG project No. RG097-10AET for funding. The X-ray diffractometer was funded by NSF grant 0087210, Ohio Board of Regents grant CAP-491 and Youngstown State University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2277).

References

Alam, N., Hill, M. S., Kociok-Köhn, G., Zeller, M., Mazhar, M. & Molloy, K. C. (2008). Chem. Mater. 20, 6157–6162.

Bruker (2002). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Câmpian, M. V., Haiduc, I. & Tiekink, E. R. T. (2010). J. Chem. Crystallogr. 40, 1029–1034.

Kirichenko, V. N., Glinskaya, L. A., Klevtsova, R. F., Leonova, T. G. & Larionov, S. V. (1994). J. Struct. Chem. 35, 242–247.

Klevtsova, R. F. & Glinskaya, L. A. (1997). Zh. Strukt. Khim. 38, 960-966.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tahir, A. A., Ehsan, M. A., Mazhar, M., Upul Wijayantha, K. G., Zeller, M. & Hunter, A. D. (2010). *Chem. Mater.* 22, 5084–5092.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, m1064 [doi:10.1107/S1600536811026523]

Bis(O-*n*-butyl dithiocarbonato- $\kappa^2 S$, S')bis(pyridine- κN)manganese(II)

Naveed Alam, Muhammad Ali Ehsan, Matthias Zeller, Muhammad Mazhar and Zainudin Arifin

S1. Comment

As a part of our ongoing studies on the development of single source precursors for the fabrication of pure manganese sulfide thin films through aerosol-assisted chemical vapour deposition (AACVD) (Alam *et al.*, 2008; Tahir *et al.*, 2010) the monomeric title complex [Mn(S₂CO-*n*-*Bu*)₂(C₅H₅N)₂] was synthesized and its crystal structure, one of just four manganese dithiocarbonates (Klevtsova & Glinskaya, 1997; Câmpian *et al.*, 2010; Kirichenko *et al.*, 1994), is reported here.

The structure of the manganese compound consists of centrosymmetric monomeric entities. Fig. 1 shows a perspective view of the monomeric unit with the atomic numbering scheme. The Mn(II) atom is in a distorted octahedral environment surrounded by two chelating xanthate ligands and two pyridines ligands. All managanese dithiocarbonato compounds structurally described so far are also octahedral complexes with an N_2S_4 donor set (Klevtsova & Glinskaya, 1997; Câmpian et al., 2010; Kirichenko et al., 1994), but the other four such compounds are all bipyridine derivative complexes and the title compound is the only one in which the two none-sulfur donor atoms occupy the apical sites. The four sulfur atoms and the manganese atom are almost coplanar. The bond angles around the manganese atom are in the range of 69.48 (1)° to 180°. The Mn—S bond lengths involving the xanthate ligands range are 2.5862 (4) and 2.6556 (5)Å and are in good agreement with those reported for other analogous Mn-dithiocarbonato complexes. The variation of the Mn-S bond distances in the complex of ca 0.07Å is not very pronounced and the bidentate κ^2 -S₂CO-*n*-Bu ligands may thus be considered to be chelating in a symmetric (isobidentate) mode. The resulting N₂S₄ donor set defines an approximately octahedral geometry with distortions arising from the steric constraints imposed by the restricted bite distances of the chelating xanthate ligands. The two S atoms forming the longer Mn-S bonds are approximately trans to each other. The short value of 1.333 (8)Å for the C6—O1 bond lengths is consistent with a significant contribution of the resonance form of the xanthate anion that features a formal C=O bond and negative charges on each of the S atoms. The two pyridine rings are coplanar and almost perfectly perpendicular to the $O1/S1/S2/O1^i/S1^i/S2^i$ plane. Symmetry code: (i) -x+1, -y+1, z+2.

Packing of the title compound is facilitated mostly by shape recognition through van der Waals forces. A small number of C—H \cdots O interactions (originating from the alkyl and aromatic C—H groups) can be observed (Fig. 2), and close contacts are present between sulfur atoms of neighboring complexes. These close contacts weakly connect the MnS₄ units of the complexes along the direction of the *b*-axis to form infinite (MnS₄)_n chains as shown in Fig. 2.

S2. Experimental

Sodium hydroxide (3.99 g, 0.1 mol) was dissolved in 250 ml *n*-butanol placed in a 500 ml oven dried round bottom flask fitted with reflux condenser, magnetic stirrer and vaccum line. Carbon disulfide (7.6 ml, 0.1 mol) was added dropwise to the saturated solution of sodium hydroxide over a period of 90 minutes. After stirring for one hour a clear yellow solution was formed. $Mn(NO_3)_2$:3H₂O (11.64 g, 0.05 mole) was added directly into the reaction flask. The contents were stirred to

dissolve the salt completely. About 30 ml of pyridine were added to give a light yellow solution and stirring was continued for another hour. Any insoluble matter was removed by filtration and slow evaporation of the reaction mixture at room temperature yielded 70% of the title compound in the form of yellow crystals. M.p. = 368 K. Elemental analyses: Found (Calc.) for: C 46.02 (46.99); H 5.33 (5.51); N 4.58 (5.47).

S3. Refinement

Reflections 1 0 0 and 0 0 2 were partially obstructed by the beam stop and were omitted from the refinement. The $O(CH_2)_3(CH_3)$ chain of the *O-n*-butyldithiocarbonato group is disordered over two positions with an occupancy ratio of 0.589 (2) to 0.411 (2). The C—O bond distance was restrained to be the same within a standard deviation of 0.02, and the ADPs of equivalent atoms were set to be identical. Hydrogen atoms were placed in calculated positions with C—H distances of 0.95, 0.99 and 0.99Å for aromatic, methyl and methylene H atoms, respectively, and were refined with an isotropic displacement parameter U_{iso} of 1.5 (methyl) or 1.2 times (aromatic) that of U_{eq} of the adjacent carbon atom. Methyl H atoms were allowed to rotate around the C—C bond axis at a fixed angle to best fit with the experimental electron density.

Figure 1

Perspective view of the monomeric unit with the atomic numbering scheme. Displacement ellipsoids are drawn at with 50% probability level. The minor disordered alkyl chain is shown for one half of the molecule. Hydrogen atom lables, labels of less than 50% occupied atoms and of symmetry created atoms are omitted for clarity.

Figure 2

Packing plot, view down the *b* axis (displacement ellipsoids for non-H atoms). Less than 50% occupied atoms are omitted for clarity. Blue dashed lines represent close contacts (less than the sum of the van der Waals radii of the respective atoms) such as C—H···O and S···S contacts.

Bis(O-n-butyl dithiocarbonato-κ²S,S')bis(pyridine-κN)manganese(II)

Crystal data	
$[Mn(C_{5}H_{9}OS_{2})_{2}(C_{5}H_{5}N)_{2}]$	F(000) = 534
$M_{r} = 511.66$	$D_{\rm x} = 1.462 \text{ Mg m}^{-3}$
Monoclinic, $P2_{1}/c$	Melting point: 368 K
Hall symbol: -P 2ybc	Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$
a = 10.9189 (17) Å	Cell parameters from 6031 reflections
b = 6.0853 (9) Å	$\theta = 2.8-30.7^{\circ}$
c = 17.650 (3) Å	$\mu = 0.95 \text{ mm}^{-1}$
$\beta = 97.536 (3)^{\circ}$	T = 100 K
$V = 1162.6 (3) Å^{3}$	Block, yellow
Z = 2	$0.50 \times 0.37 \times 0.26 \text{ mm}$
Data collection	Absorption correction: multi-scan
Bruker SMART APEX CCD	(<i>SADABS</i> ; Bruker, 2003)
diffractometer	$T_{min} = 0.630, T_{max} = 0.782$
Radiation source: fine-focus sealed tube	11354 measured reflections
Graphite monochromator	2871 independent reflections
ω scans	2797 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.028$	$k = -8 \rightarrow 8$
$\theta_{\rm max} = 28.3^{\circ}, \theta_{\rm min} = 2.8^{\circ}$	$l = -23 \rightarrow 23$
$h = -14 \rightarrow 14$	

5	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.025$	Hydrogen site location: inferred from
$wR(F^2) = 0.064$	neighbouring sites
S = 1.12	H-atom parameters constrained
2871 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0232P)^2 + 0.6054P]$
151 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.34 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.50 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.57264 (12)	0.6534 (2)	1.17119 (7)	0.0219 (3)	
H1A	0.5302	0.7817	1.1516	0.026*	
C2	0.61621 (13)	0.6439 (2)	1.24896 (7)	0.0261 (3)	
H2A	0.6034	0.7634	1.2817	0.031*	
C3	0.67842 (14)	0.4574 (3)	1.27770 (7)	0.0282 (3)	
H3A	0.7083	0.4460	1.3306	0.034*	
C4	0.69638 (13)	0.2874 (2)	1.22795 (8)	0.0271 (3)	
H4A	0.7397	0.1585	1.2462	0.033*	
C5	0.65016 (12)	0.3084 (2)	1.15104 (7)	0.0224 (3)	
H5A	0.6627	0.1916	1.1172	0.027*	
C6	0.72640 (11)	0.6918 (2)	0.95170 (6)	0.0183 (2)	
01	0.8259 (9)	0.7831 (13)	0.9285 (10)	0.0169 (10)	0.589 (2)
C7	0.9256 (16)	0.674 (3)	0.9020 (10)	0.0235 (7)	0.589 (2)
H7A	0.8944	0.5470	0.8700	0.028*	0.589 (2)
H7B	0.9824	0.6178	0.9460	0.028*	0.589 (2)
C8	0.9949 (2)	0.8301 (4)	0.85523 (13)	0.0212 (3)	0.589 (2)
H8A	1.0637	0.7495	0.8364	0.025*	0.589 (2)
H8B	0.9383	0.8804	0.8101	0.025*	0.589 (2)
C9	1.0467 (2)	1.0298 (4)	0.90058 (13)	0.0232 (4)	0.589 (2)
H9A	0.9792	1.1045	0.9228	0.028*	0.589 (2)
H9B	1.1088	0.9809	0.9432	0.028*	0.589 (2)
C10	1.1062 (15)	1.191 (2)	0.8511 (9)	0.0263 (14)	0.589 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H10A	1.1392	1.3158	0.8823	0.039*	0.589 (2)
H10B	1.0444	1.2426	0.8097	0.039*	0.589 (2)
H10C	1.1736	1.1174	0.8294	0.039*	0.589 (2)
O1B	0.8163 (14)	0.819 (2)	0.9292 (15)	0.0169 (10)	0.411 (2)
C7B	0.920 (2)	0.683 (4)	0.9022 (14)	0.0235 (7)	0.411 (2)
H7BA	0.9431	0.5589	0.9372	0.028*	0.411 (2)
H7BB	0.8949	0.6257	0.8500	0.028*	0.411 (2)
C8B	1.0250 (3)	0.8474 (5)	0.90349 (19)	0.0212 (3)	0.411 (2)
H8BA	1.0947	0.7751	0.8827	0.025*	0.411 (2)
H8BB	1.0537	0.8874	0.9573	0.025*	0.411 (2)
C9B	0.9920 (3)	1.0572 (6)	0.85830 (19)	0.0232 (4)	0.411 (2)
H9BA	0.9239	1.1321	0.8798	0.028*	0.411 (2)
H9BB	0.9617	1.0177	0.8047	0.028*	0.411 (2)
C10B	1.102 (2)	1.219 (3)	0.8590 (13)	0.0263 (14)	0.411 (2)
H10D	1.0730	1.3545	0.8324	0.039*	0.411 (2)
H10E	1.1663	1.1515	0.8331	0.039*	0.411 (2)
H10F	1.1351	1.2532	0.9119	0.039*	0.411 (2)
Mn1	0.5000	0.5000	1.0000	0.01767 (8)	
N1	0.58831 (10)	0.48802 (18)	1.12286 (6)	0.0197 (2)	
S1	0.61548 (3)	0.86094 (5)	0.978244 (17)	0.01905 (8)	
S2	0.71689 (3)	0.41428 (5)	0.953823 (19)	0.02316 (9)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0267 (6)	0.0216 (6)	0.0180 (6)	-0.0082 (5)	0.0053 (5)	-0.0013 (5)
C2	0.0331 (7)	0.0287 (7)	0.0171 (6)	-0.0124 (6)	0.0062 (5)	-0.0053 (5)
C3	0.0327 (7)	0.0350 (7)	0.0159 (6)	-0.0152 (6)	-0.0006 (5)	0.0009 (5)
C4	0.0289 (7)	0.0272 (7)	0.0236 (6)	-0.0073 (6)	-0.0031 (5)	0.0034 (5)
C5	0.0248 (6)	0.0224 (6)	0.0200 (6)	-0.0068 (5)	0.0025 (5)	-0.0012 (5)
C6	0.0209 (6)	0.0196 (6)	0.0137 (5)	-0.0060 (5)	-0.0001 (4)	0.0020 (4)
01	0.0140 (14)	0.005 (3)	0.0317 (5)	0.0019 (17)	0.0048 (12)	0.006 (2)
C7	0.0200 (14)	0.0205 (13)	0.0304 (7)	-0.0033 (11)	0.0055 (8)	0.0032 (8)
C8	0.0172 (8)	0.0231 (8)	0.0237 (8)	-0.0035 (7)	0.0040 (7)	0.0021 (8)
C9	0.0226 (9)	0.0233 (8)	0.0232 (9)	-0.0059 (7)	0.0008 (6)	0.0035 (7)
C10	0.0269 (13)	0.022 (3)	0.031 (3)	-0.007 (2)	0.0053 (16)	0.003 (2)
O1B	0.0140 (14)	0.005 (3)	0.0317 (5)	0.0019 (17)	0.0048 (12)	0.006 (2)
C7B	0.0200 (14)	0.0205 (13)	0.0304 (7)	-0.0033 (11)	0.0055 (8)	0.0032 (8)
C8B	0.0172 (8)	0.0231 (8)	0.0237 (8)	-0.0035 (7)	0.0040 (7)	0.0021 (8)
C9B	0.0226 (9)	0.0233 (8)	0.0232 (9)	-0.0059 (7)	0.0008 (6)	0.0035 (7)
C10B	0.0269 (13)	0.022 (3)	0.031 (3)	-0.007 (2)	0.0053 (16)	0.003 (2)
Mn1	0.02238 (14)	0.01829 (14)	0.01273 (12)	-0.00792 (10)	0.00374 (9)	-0.00022 (9)
N1	0.0229 (5)	0.0207 (5)	0.0157 (5)	-0.0079 (4)	0.0037 (4)	-0.0008 (4)
S1	0.02207 (16)	0.01559 (14)	0.01983 (15)	-0.00504 (11)	0.00407 (11)	0.00058 (11)
S2	0.02738 (17)	0.01555 (15)	0.02887 (17)	-0.00708 (12)	0.01235 (13)	-0.00299 (12)

Geometric parameters (Å, °)

C1—N1	1.3447 (17)	С9—Н9В	0.9900
C1—C2	1.3937 (17)	C10—H10A	0.9800
C1—H1A	0.9500	C10—H10B	0.9800
C2—C3	1.384 (2)	C10—H10C	0.9800
C2—H2A	0.9500	O1B—C7B	1.52 (3)
C3—C4	1.387 (2)	C7B—C8B	1.52 (2)
С3—НЗА	0.9500	C7B—H7BA	0.9900
C4—C5	1.3906 (18)	C7B—H7BB	0.9900
C4—H4A	0.9500	C8B—C9B	1.523 (5)
C5—N1	1.3454 (18)	C8B—H8BA	0.9900
C5—H5A	0.9500	C8B—H8BB	0.9900
C6—O1	1.332 (8)	C9B—C10B	1.55 (2)
C6—O1B	1.349 (11)	С9В—Н9ВА	0.9900
C6—S2	1.6925 (13)	C9B—H9BB	0.9900
C6—S1	1.7014 (13)	C10B—H10D	0.9800
O1—C7	1.41 (2)	C10B—H10E	0.9800
C7—C8	1.524 (16)	C10B—H10F	0.9800
C7—H7A	0.9900	Mn1—N1 ⁱ	2.2558 (11)
С7—Н7В	0.9900	Mn1—N1	2.2558 (11)
C8—C9	1.523 (3)	Mn1—S1	2.5863 (4)
C8—H8A	0.9900	Mn1—S1 ⁱ	2.5863 (4)
C8—H8B	0.9900	Mn1—S2	2.6554 (5)
C9—C10	1.513 (16)	$Mn1$ — $S2^{i}$	2.6554 (5)
С9—Н9А	0.9900		
N1—C1—C2	122.57 (13)	O1B—C7B—H7BA	111.1
N1—C1—H1A	118.7	C8B—C7B—H7BB	111.1
C2—C1—H1A	118.7	O1B—C7B—H7BB	111.1
C3—C2—C1	118.86 (13)	H7BA—C7B—H7BB	109.1
C3—C2—H2A	120.6	C7B—C8B—C9B	114.6 (9)
C1—C2—H2A	120.6	C7B—C8B—H8BA	108.6
C2—C3—C4	118.85 (12)	C9B—C8B—H8BA	108.6
С2—С3—НЗА	120.6	C7B—C8B—H8BB	108.6
С4—С3—НЗА	120.6	C9B—C8B—H8BB	108.6
C3—C4—C5	119.09 (14)	H8BA—C8B—H8BB	107.6
C3—C4—H4A	120.5	C8B—C9B—C10B	113.5 (9)
C5—C4—H4A	120.5	C8B—C9B—H9BA	108.9
N1—C5—C4	122.39 (13)	C10B—C9B—H9BA	108.9
N1—C5—H5A	118.8	C8B—C9B—H9BB	108.9
С4—С5—Н5А	118.8	C10B—C9B—H9BB	108.9
O1—C6—S2	118.6 (4)	Н9ВА—С9В—Н9ВВ	107.7
O1B—C6—S2	128.8 (6)	C9B—C10B—H10D	109.5
O1—C6—S1	118.1 (4)	C9B—C10B—H10E	109.5
O1B—C6—S1	107.9 (6)	H10D—C10B—H10E	109.5
S2—C6—S1	123.34 (7)	C9B—C10B—H10F	109.5
C6—O1—C7	127.1 (9)	H10D—C10B—H10F	109.5

O1—C7—C8	110.3 (11)	H10E—C10B—H10F	109.5
O1—C7—H7A	109.6	N1 ⁱ —Mn1—N1	180.0
С8—С7—Н7А	109.6	N1 ⁱ —Mn1—S1	89.15 (3)
O1—C7—H7B	109.6	N1—Mn1—S1	90.85 (3)
С8—С7—Н7В	109.6	$N1^{i}$ — $Mn1$ — $S1^{i}$	90.86 (3)
H7A—C7—H7B	108.1	N1—Mn1—S1 ⁱ	89.15 (3)
C9—C8—C7	112.9 (7)	$S1$ — $Mn1$ — $S1^i$	180.0
С9—С8—Н8А	109.0	N1 ⁱ —Mn1—S2	89.85 (3)
С7—С8—Н8А	109.0	N1—Mn1—S2	90.15 (3)
С9—С8—Н8В	109.0	S1—Mn1—S2	69.478 (12)
С7—С8—Н8В	109.0	S1 ⁱ —Mn1—S2	110.523 (12)
H8A—C8—H8B	107.8	$N1^{i}$ — $Mn1$ — $S2^{i}$	90.16 (3)
C10—C9—C8	111.8 (5)	N1—Mn1—S2 ⁱ	89.84 (3)
С10—С9—Н9А	109.3	$S1$ — $Mn1$ — $S2^{i}$	110.521 (12)
С8—С9—Н9А	109.3	$S1^{i}$ — $Mn1$ — $S2^{i}$	69.477 (12)
С10—С9—Н9В	109.3	$S2-Mn1-S2^{i}$	180.0
С8—С9—Н9В	109.3	C1—N1—C5	118.23 (11)
Н9А—С9—Н9В	107.9	C1—N1—Mn1	120.78 (9)
C6—O1B—C7B	112.4 (12)	C5—N1—Mn1	120.81 (8)
C8B—C7B—O1B	103.3 (16)	C6—S1—Mn1	84.58 (4)
C8B—C7B—H7BA	111.1	C6—S2—Mn1	82.56 (4)
N1-C1-C2-C3	0.2 (2)	S1 ⁱ —Mn1—N1—C1	-121.11 (9)
C1—C2—C3—C4	0.7 (2)	S2—Mn1—N1—C1	128.36 (9)
C2—C3—C4—C5	-0.8 (2)	S2 ⁱ —Mn1—N1—C1	-51.64 (9)
C3-C4-C5-N1	0.0 (2)	S1—Mn1—N1—C5	-126.13 (9)
O1B-C6-O1-C7	-171 (12)	S1 ⁱ —Mn1—N1—C5	53.87 (9)
S2—C6—O1—C7	3 (2)	S2—Mn1—N1—C5	-56.65 (9)
S1—C6—O1—C7	-177.8 (13)	S2 ⁱ —Mn1—N1—C5	123.35 (9)
C6—O1—C7—C8	159.6 (13)	O1-C6-S1-Mn1	178.4 (9)
O1—C7—C8—C9	59.6 (13)	O1B—C6—S1—Mn1	177.2 (12)
C7—C8—C9—C10	-175.5 (10)	S2—C6—S1—Mn1	-1.95 (7)
O1—C6—O1B—C7B	7 (9)	N1 ⁱ —Mn1—S1—C6	-89.05 (5)
S2—C6—O1B—C7B	0 (3)	N1—Mn1—S1—C6	90.95 (5)
S1—C6—O1B—C7B	-178.7 (15)	S2—Mn1—S1—C6	1.11 (4)
C6—O1B—C7B—C8B	-163.2 (16)	S2 ⁱ —Mn1—S1—C6	-178.89 (4)
O1B-C7B-C8B-C9B	-54.0 (18)	O1—C6—S2—Mn1	-178.5 (9)
C7B-C8B-C9B-C10B	-178.7 (15)	O1B—C6—S2—Mn1	-177.1 (14)
C2-C1-N1-C5	-0.99 (19)	S1—C6—S2—Mn1	1.91 (7)
C2-C1-N1-Mn1	174.12 (10)	N1 ⁱ —Mn1—S2—C6	88.03 (5)
C4—C5—N1—C1	0.90 (19)	N1—Mn1—S2—C6	-91.97 (5)
C4—C5—N1—Mn1	-174.21 (10)	S1—Mn1—S2—C6	-1.12 (4)
S1—Mn1—N1—C1	58.88 (9)	S1 ⁱ —Mn1—S2—C6	178.88 (4)

Symmetry code: (i) -x+1, -y+1, -z+2.