organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

14-Meth­oxy-2,16-dioxa­penta­cyclo[7.7.5.01,21.03,8.010,15]henicosa-3(8),10,12,14-tetra­ene-7,20-dione

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: yulinzhu2002@yahoo.com.cn

(Received 30 June 2011; accepted 18 July 2011; online 23 July 2011)

The title compound, C20H20O5, was synthesized from the reaction between 3-methoxysalicaldehyde and 1,3–cyclo­hexa­nedione in the presence of palladium(II) chloride. The two fused xanthene rings and one of the six-membered cyclo­hexane rings adopt envelope conformations, while the other six-membered cyclo­hexane ring is in a chair conformation. The mol­ecular packing is stabilized by weak inter­molecular C—H⋯O inter­actions.

Related literature

For applications of xanthene derivatives, see: Banerjee & Mukherjee (1981[Banerjee, A. & Mukherjee, A. K. (1981). Stain Technol. 56, 83-85.]); Lambert et al. (1997[Lambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B. & Thomas, G. J. (1997). PCT Int. Appl. WO 9 706 178.]); Hideo (1981[Hideo, T. (1981). Jpn Patent No. 56005480 (Kokai Tokkyo Koho).]); Poupelin et al. (1978[Poupelin, J. P., Saint-Ruft, G., Foussard-Blanpin, O., Narcisse, G., Uchida-Ernouf, G. & Lacroix, R. (1978). Eur. J. Med. Chem. 13, 67-71.]); Menchen et al. (2003[Menchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. (2003). US Patent 6 583 168.]); Ravindranath & Seshadri (1973[Ravindranath, B. & Seshadri, T. R. (1973). Phytochemistry 12, 2781-2788.]); Bigdeli et al. (2007[Bigdeli, M. A., Mahdavinia, G. H. & Amani, V. (2007). Acta Cryst. E63, o3493.]). For the construction of xanthene derivatives, see: Fan et al. (2005[Fan, X. S., Li, Y. Z., Zhang, X. Y., Hu, X. Y. & Wang, J. J. (2005). Chin. Chem. Lett. 16, 897-899.]); Jin et al. (2004[Jin, T. S., Zhang, J. S., Xiao, J. C., Wang, A. Q. & Li, T. S. (2004). Synlett. 5, 866-870.], 2005[Jin, T. S., Zang, J. S., Wang, A. Q. & Li, T. S. (2005). Synth. Commun. 35, 2339-2345.]); Srihari et al. (2008[Srihari, P., Mandal, S. S. & Reddy, J. S. S. (2008). Chin. Chem. Lett. 19, 771-774.]); Wang & Harvey (2002[Wang, J. Q. & Harvey, R. G. (2002). Tetrahedron 58, 5927-5931.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20O5

  • Mr = 340.36

  • Monoclinic, P 21 /n

  • a = 11.0939 (15) Å

  • b = 12.5918 (17) Å

  • c = 12.2982 (16) Å

  • β = 104.846 (2)°

  • V = 1660.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.32 × 0.28 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.976

  • 10066 measured reflections

  • 3882 independent reflections

  • 2361 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.162

  • S = 1.06

  • 3882 reflections

  • 231 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O5i 0.97 2.57 3.538 (4) 175
C10—H10B⋯O3ii 0.97 2.59 3.466 (4) 151
C10—H10A⋯O1iii 0.97 2.40 3.367 (3) 175
C3—H3A⋯O3ii 0.97 2.52 3.389 (3) 149
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Xanthenes and benzoxanthenes are important biologically active heterocyclic compounds, which possess antiviral, anti–inflammatory and antibacterial activities (Banerjee & Mukherjee 1981; Lambert et al., 1997; Hideo 1981; Poupelin et al., 1978; Menchen et al., 2003; Ravindranath & Seshadri 1973). They are also implicated in photodynamic therapy, examples including myrtucommulone–E, chromenes, rhodomyrtone (Bigdeli et al., 2007). Various literature procedures are available to synthesis xanthenes (Fan et al., 2005; Jin et al., 2004, 2005; Srihari et al., 2008; Wang & Harvey 2002). In the presence of palladium(II) chloride, the reaction between 3–methoxysalicyladehyde and 1,3–cyclohexanedione proceeded to give the title compound (Fig. 1). The molecular structure of the title compound is illustrated in Fig. 2. There are no unusual bond lengths and angles in the compound. The title molecule is built up from five fused rings via phenyl, xanthene, and cyclohexane. The two fused xanthene rings adopt envelope conformations, one of the six–membered cyclohexane rings is also in an envelope conformation and the other is in chair conformations. In addition, the molecules in the structure are linked via paired C18—H2A, O3—H10B, O1—H20B et al. short–contaction force.

Related literature top

For applications of xanthene derivatives, see: Banerjee & Mukherjee (1981); Lambert et al. (1997); Hideo (1981); Poupelin et al. (1978); Menchen et al. (2003); Ravindranath & Seshadri (1973); Bigdeli et al. (2007). For the construction of xanthene derivatives, see: Fan et al. (2005); Jin et al. (2004, 2005); Srihari et al. (2008); Wang & Harvey (2002).

Experimental top

A mixture of 3–methoxysalicyladehyde (0.76 g, 5 mmol), 1,3–cyclohexanedione (1.12 g, 10 mmol), and palladium(II) chloride (0.002 g) was refluxed in acetonitrile (12 ml) at 353 K for 12 h. After being cooled to room temperature, the reaction mixture was poured into water. The white precipitate was filtered off with a silica pad, washed twice with cool water, and the filtrate was then dried under vacuum to yield the product in yield of 90%. Single crystals of the title compound were obtained by slow evaporation from ethanol at room temperature to yield colourless, block–shaped crystal.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98Å and Uiso = 1.2 or 1.5Ueq(C). Atom H7 was refined isotropically. The Δρmax 0.76 (5) e.Å-3 with coordinates: 0.3847, 0.2207, 0.4643 and distance 1.09Å from C11.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Palladium(II) chloride catalyzed synthesis of the title compound.
[Figure 2] Fig. 2. View of the title compound showing the atom–labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
14-Methoxy-2,16-dioxapentacyclo[7.7.5.01,21.03,8.010,15]henicosa- 3(8),10,12,14-tetraene-7,20-dione top
Crystal data top
C20H20O5Z = 4
Mr = 340.36F(000) = 720
Monoclinic, P21/nDx = 1.361 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.0939 (15) Åθ = 2.2–21.6°
b = 12.5918 (17) ŵ = 0.10 mm1
c = 12.2982 (16) ÅT = 298 K
β = 104.846 (2)°Block, colourless
V = 1660.6 (4) Å30.32 × 0.28 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
3882 independent reflections
Radiation source: fine–focus sealed tube2361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ–and ω–scansθmax = 27.8°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1414
Tmin = 0.970, Tmax = 0.976k = 1611
10066 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0697P)2 + 0.3859P]
where P = (Fo2 + 2Fc2)/3
3882 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.17 e Å3
13 restraintsΔρmin = 0.19 e Å3
Crystal data top
C20H20O5V = 1660.6 (4) Å3
Mr = 340.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.0939 (15) ŵ = 0.10 mm1
b = 12.5918 (17) ÅT = 298 K
c = 12.2982 (16) Å0.32 × 0.28 × 0.25 mm
β = 104.846 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3882 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2361 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.976Rint = 0.035
10066 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05713 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.17 e Å3
3882 reflectionsΔρmin = 0.19 e Å3
231 parameters
Special details top

Geometry. All s.u.'s (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.96704 (13)0.21956 (12)0.70094 (11)0.0371 (4)
O41.10467 (13)0.31569 (12)0.62388 (13)0.0395 (4)
O51.33022 (14)0.38986 (14)0.66951 (15)0.0513 (5)
O10.66507 (16)0.34312 (19)0.54126 (17)0.0729 (6)
O30.7943 (3)0.52298 (18)0.8256 (2)0.0935 (8)
C60.88270 (19)0.35355 (18)0.55948 (17)0.0342 (5)
H60.90020.39060.49510.041*
C50.98380 (18)0.27078 (17)0.59972 (16)0.0327 (5)
C80.87449 (19)0.37404 (19)0.75482 (18)0.0359 (5)
C141.0240 (2)0.48114 (17)0.68106 (17)0.0338 (5)
C40.9797 (2)0.18260 (18)0.51593 (18)0.0391 (5)
H4A1.04580.13200.54620.047*
H4B0.99360.21180.44710.047*
C151.12077 (19)0.41893 (17)0.66481 (16)0.0322 (5)
C90.90857 (18)0.27250 (19)0.77017 (16)0.0342 (5)
C161.2428 (2)0.45815 (18)0.68901 (18)0.0365 (5)
C191.0504 (2)0.58235 (19)0.72677 (19)0.0445 (6)
H190.98650.62440.73970.053*
C70.8944 (2)0.43368 (19)0.65409 (18)0.0356 (5)
H70.830 (2)0.4882 (19)0.6303 (19)0.046 (7)*
C10.7546 (2)0.3018 (2)0.52006 (19)0.0448 (6)
C100.8860 (2)0.2028 (2)0.86036 (19)0.0461 (6)
H10A0.96400.19060.91640.055*
H10B0.85450.13470.82860.055*
C171.2662 (2)0.55933 (19)0.73272 (18)0.0429 (6)
H171.34680.58660.74870.051*
C181.1706 (3)0.6203 (2)0.75290 (19)0.0477 (6)
H181.18770.68760.78440.057*
C20.7457 (2)0.2024 (2)0.4510 (2)0.0528 (7)
H2A0.73980.22210.37360.063*
H2B0.66940.16550.45250.063*
C30.8546 (2)0.1262 (2)0.4899 (2)0.0464 (6)
H3A0.84610.08930.55680.056*
H3B0.85200.07360.43170.056*
C130.8222 (3)0.4294 (2)0.8364 (2)0.0585 (7)
C120.8086 (4)0.3653 (3)0.9354 (3)0.0895 (12)
H12A0.88160.37690.99730.107*
H12B0.73680.39140.95870.107*
C201.4536 (2)0.4297 (3)0.6828 (3)0.0754 (9)
H20A1.45200.48690.63080.113*
H20B1.50630.37380.66820.113*
H20C1.48560.45510.75830.113*
C110.7939 (4)0.2525 (3)0.9151 (3)0.0989 (13)
H11A0.71070.23960.86790.119*
H11B0.80010.21710.98640.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0418 (9)0.0381 (9)0.0328 (8)0.0064 (7)0.0117 (6)0.0029 (7)
O40.0262 (8)0.0316 (9)0.0604 (10)0.0017 (6)0.0108 (7)0.0086 (7)
O50.0303 (8)0.0486 (11)0.0760 (12)0.0051 (8)0.0157 (8)0.0052 (9)
O10.0302 (9)0.1070 (18)0.0784 (14)0.0033 (10)0.0081 (9)0.0151 (12)
O30.144 (2)0.0657 (15)0.0981 (17)0.0468 (15)0.0806 (17)0.0133 (13)
C60.0312 (11)0.0402 (13)0.0317 (11)0.0022 (10)0.0087 (8)0.0055 (10)
C50.0298 (11)0.0353 (12)0.0333 (11)0.0017 (9)0.0086 (8)0.0006 (9)
C80.0303 (11)0.0427 (14)0.0371 (12)0.0049 (10)0.0131 (9)0.0012 (10)
C140.0410 (12)0.0317 (12)0.0303 (10)0.0014 (10)0.0124 (9)0.0031 (9)
C40.0431 (13)0.0389 (13)0.0385 (12)0.0052 (11)0.0161 (10)0.0053 (10)
C150.0371 (12)0.0286 (12)0.0304 (10)0.0025 (10)0.0077 (8)0.0013 (9)
C90.0272 (10)0.0448 (13)0.0300 (10)0.0004 (10)0.0062 (8)0.0009 (10)
C160.0359 (12)0.0381 (13)0.0347 (11)0.0023 (10)0.0075 (9)0.0033 (10)
C190.0607 (16)0.0334 (13)0.0428 (13)0.0032 (12)0.0194 (11)0.0011 (11)
C70.0326 (11)0.0385 (13)0.0367 (11)0.0082 (10)0.0105 (9)0.0031 (10)
C10.0342 (12)0.0618 (17)0.0355 (12)0.0007 (12)0.0038 (9)0.0083 (11)
C100.0445 (13)0.0553 (16)0.0393 (12)0.0009 (12)0.0124 (10)0.0111 (11)
C170.0480 (14)0.0404 (14)0.0368 (12)0.0133 (12)0.0047 (10)0.0017 (10)
C180.0706 (18)0.0333 (13)0.0397 (13)0.0099 (13)0.0152 (12)0.0059 (11)
C20.0446 (14)0.0626 (18)0.0461 (14)0.0180 (13)0.0021 (11)0.0013 (13)
C30.0536 (15)0.0446 (15)0.0402 (13)0.0148 (12)0.0106 (11)0.0061 (11)
C130.0661 (18)0.0611 (19)0.0597 (17)0.0173 (15)0.0371 (14)0.0048 (14)
C120.134 (3)0.085 (3)0.077 (2)0.027 (2)0.078 (2)0.0141 (19)
C200.0366 (15)0.081 (2)0.112 (3)0.0147 (15)0.0260 (16)0.014 (2)
C110.127 (3)0.102 (3)0.090 (3)0.030 (3)0.075 (2)0.040 (2)
Geometric parameters (Å, º) top
O2—C91.369 (2)C19—C181.375 (3)
O2—C51.456 (2)C19—H190.9300
O4—C151.389 (3)C7—H70.98 (2)
O4—C51.415 (2)C1—C21.502 (4)
O5—C161.362 (3)C10—C111.497 (4)
O5—C201.427 (3)C10—H10A0.9700
O1—C11.207 (3)C10—H10B0.9700
O3—C131.217 (3)C17—C181.383 (3)
C6—C51.518 (3)C17—H170.9300
C6—C71.520 (3)C18—H180.9300
C6—C11.525 (3)C2—C31.520 (4)
C6—H60.9800C2—H2A0.9700
C5—C41.508 (3)C2—H2B0.9700
C8—C91.333 (3)C3—H3A0.9700
C8—C131.459 (3)C3—H3B0.9700
C8—C71.512 (3)C13—C121.501 (4)
C14—C151.385 (3)C12—C111.445 (5)
C14—C191.393 (3)C12—H12A0.9700
C14—C71.513 (3)C12—H12B0.9700
C4—C31.519 (3)C20—H20A0.9600
C4—H4A0.9700C20—H20B0.9600
C4—H4B0.9700C20—H20C0.9600
C15—C161.400 (3)C11—H11A0.9700
C9—C101.485 (3)C11—H11B0.9700
C16—C171.381 (3)
C9—O2—C5120.06 (17)C2—C1—C6117.2 (2)
C15—O4—C5118.50 (16)C9—C10—C11110.7 (2)
C16—O5—C20117.6 (2)C9—C10—H10A109.5
C5—C6—C7107.17 (17)C11—C10—H10A109.5
C5—C6—C1111.14 (19)C9—C10—H10B109.5
C7—C6—C1114.61 (18)C11—C10—H10B109.5
C5—C6—H6107.9H10A—C10—H10B108.1
C7—C6—H6107.9C16—C17—C18120.4 (2)
C1—C6—H6107.9C16—C17—H17119.8
O4—C5—O2108.62 (15)C18—C17—H17119.8
O4—C5—C4107.38 (16)C19—C18—C17120.5 (2)
O2—C5—C4105.67 (17)C19—C18—H18119.7
O4—C5—C6112.04 (17)C17—C18—H18119.7
O2—C5—C6109.72 (16)C1—C2—C3114.61 (19)
C4—C5—C6113.11 (18)C1—C2—H2A108.6
C9—C8—C13120.6 (2)C3—C2—H2A108.6
C9—C8—C7119.78 (19)C1—C2—H2B108.6
C13—C8—C7119.5 (2)C3—C2—H2B108.6
C15—C14—C19119.0 (2)H2A—C2—H2B107.6
C15—C14—C7118.26 (19)C4—C3—C2112.4 (2)
C19—C14—C7122.7 (2)C4—C3—H3A109.1
C5—C4—C3110.74 (18)C2—C3—H3A109.1
C5—C4—H4A109.5C4—C3—H3B109.1
C3—C4—H4A109.5C2—C3—H3B109.1
C5—C4—H4B109.5H3A—C3—H3B107.9
C3—C4—H4B109.5O3—C13—C8121.5 (2)
H4A—C4—H4B108.1O3—C13—C12122.3 (2)
C14—C15—O4123.32 (19)C8—C13—C12116.2 (3)
C14—C15—C16120.9 (2)C11—C12—C13114.8 (3)
O4—C15—C16115.78 (19)C11—C12—H12A108.6
C8—C9—O2122.79 (19)C13—C12—H12A108.6
C8—C9—C10125.2 (2)C11—C12—H12B108.6
O2—C9—C10112.0 (2)C13—C12—H12B108.6
O5—C16—C17125.4 (2)H12A—C12—H12B107.6
O5—C16—C15115.7 (2)O5—C20—H20A109.5
C17—C16—C15118.9 (2)O5—C20—H20B109.5
C18—C19—C14120.2 (2)H20A—C20—H20B109.5
C18—C19—H19119.9O5—C20—H20C109.5
C14—C19—H19119.9H20A—C20—H20C109.5
C8—C7—C14110.26 (17)H20B—C20—H20C109.5
C8—C7—C6107.20 (19)C12—C11—C10115.4 (3)
C14—C7—C6108.63 (17)C12—C11—H11A108.4
C8—C7—H7110.3 (13)C10—C11—H11A108.4
C14—C7—H7111.4 (14)C12—C11—H11B108.4
C6—C7—H7108.9 (13)C10—C11—H11B108.4
O1—C1—C2122.9 (2)H11A—C11—H11B107.5
O1—C1—C6119.9 (2)
C15—O4—C5—O289.0 (2)C9—C8—C7—C1486.9 (3)
C15—O4—C5—C4157.18 (18)C13—C8—C7—C1490.9 (3)
C15—O4—C5—C632.4 (2)C9—C8—C7—C631.1 (3)
C9—O2—C5—O496.3 (2)C13—C8—C7—C6151.0 (2)
C9—O2—C5—C4148.79 (18)C15—C14—C7—C886.9 (2)
C9—O2—C5—C626.5 (2)C19—C14—C7—C889.8 (2)
C7—C6—C5—O461.2 (2)C15—C14—C7—C630.4 (3)
C1—C6—C5—O4172.89 (16)C19—C14—C7—C6153.0 (2)
C7—C6—C5—O259.6 (2)C5—C6—C7—C860.8 (2)
C1—C6—C5—O266.4 (2)C1—C6—C7—C863.0 (2)
C7—C6—C5—C4177.27 (17)C5—C6—C7—C1458.3 (2)
C1—C6—C5—C451.3 (2)C1—C6—C7—C14177.87 (18)
O4—C5—C4—C3177.08 (18)C5—C6—C1—O1140.7 (2)
O2—C5—C4—C361.3 (2)C7—C6—C1—O119.0 (3)
C6—C5—C4—C358.8 (2)C5—C6—C1—C242.0 (3)
C19—C14—C15—O4177.46 (19)C7—C6—C1—C2163.7 (2)
C7—C14—C15—O40.7 (3)C8—C9—C10—C1113.6 (4)
C19—C14—C15—C162.8 (3)O2—C9—C10—C11165.0 (3)
C7—C14—C15—C16179.54 (18)O5—C16—C17—C18177.6 (2)
C5—O4—C15—C141.4 (3)C15—C16—C17—C180.5 (3)
C5—O4—C15—C16178.88 (17)C14—C19—C18—C170.9 (3)
C13—C8—C9—O2174.7 (2)C16—C17—C18—C191.9 (3)
C7—C8—C9—O23.1 (3)O1—C1—C2—C3142.9 (2)
C13—C8—C9—C106.9 (4)C6—C1—C2—C339.8 (3)
C7—C8—C9—C10175.3 (2)C5—C4—C3—C254.5 (3)
C5—O2—C9—C85.9 (3)C1—C2—C3—C445.3 (3)
C5—O2—C9—C10172.67 (17)C9—C8—C13—O3177.6 (3)
C20—O5—C16—C177.7 (3)C7—C8—C13—O30.2 (4)
C20—O5—C16—C15174.2 (2)C9—C8—C13—C120.6 (4)
C14—C15—C16—O5179.88 (18)C7—C8—C13—C12178.4 (3)
O4—C15—C16—O50.1 (3)O3—C13—C12—C11154.9 (4)
C14—C15—C16—C171.9 (3)C8—C13—C12—C1126.9 (5)
O4—C15—C16—C17178.37 (19)C13—C12—C11—C1048.7 (5)
C15—C14—C19—C181.4 (3)C9—C10—C11—C1241.1 (4)
C7—C14—C19—C18178.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O5i0.972.573.538 (4)175
C10—H10B···O3ii0.972.593.466 (4)151
C10—H10A···O1iii0.972.403.367 (3)175
C3—H3A···O3ii0.972.523.389 (3)149
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H20O5
Mr340.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.0939 (15), 12.5918 (17), 12.2982 (16)
β (°) 104.846 (2)
V3)1660.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.28 × 0.25
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.970, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
10066, 3882, 2361
Rint0.035
(sin θ/λ)max1)0.656
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.162, 1.06
No. of reflections3882
No. of parameters231
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O5i0.972.573.538 (4)174.5
C10—H10B···O3ii0.972.593.466 (4)150.8
C10—H10A···O1iii0.972.403.367 (3)174.8
C3—H3A···O3ii0.972.523.389 (3)148.5
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank South China Normal University for financial support (grant SCNUG21096).

References

First citationBanerjee, A. & Mukherjee, A. K. (1981). Stain Technol. 56, 83–85.  CAS PubMed Web of Science Google Scholar
First citationBigdeli, M. A., Mahdavinia, G. H. & Amani, V. (2007). Acta Cryst. E63, o3493.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, X. S., Li, Y. Z., Zhang, X. Y., Hu, X. Y. & Wang, J. J. (2005). Chin. Chem. Lett. 16, 897–899.  CAS Google Scholar
First citationHideo, T. (1981). Jpn Patent No. 56005480 (Kokai Tokkyo Koho).  Google Scholar
First citationJin, T. S., Zang, J. S., Wang, A. Q. & Li, T. S. (2005). Synth. Commun. 35, 2339–2345.  Web of Science CrossRef CAS Google Scholar
First citationJin, T. S., Zhang, J. S., Xiao, J. C., Wang, A. Q. & Li, T. S. (2004). Synlett. 5, 866–870.  Web of Science CrossRef Google Scholar
First citationLambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B. & Thomas, G. J. (1997). PCT Int. Appl. WO 9 706 178.  Google Scholar
First citationMenchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. (2003). US Patent 6 583 168.  Google Scholar
First citationPoupelin, J. P., Saint–Ruft, G., Foussard-Blanpin, O., Narcisse, G., Uchida-Ernouf, G. & Lacroix, R. (1978). Eur. J. Med. Chem. 13, 67–71.  CAS Google Scholar
First citationRavindranath, B. & Seshadri, T. R. (1973). Phytochemistry 12, 2781–2788.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrihari, P., Mandal, S. S. & Reddy, J. S. S. (2008). Chin. Chem. Lett. 19, 771–774.  Web of Science CrossRef CAS Google Scholar
First citationWang, J. Q. & Harvey, R. G. (2002). Tetrahedron 58, 5927–5931.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds