organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Benzoyl­phen­yl)(3,4-di­methyl­phen­yl)methanone

aDepartment of Physics, Dr MGR Educational and Research Institute University, Chennai 600 095, India, bDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 18 July 2011; accepted 25 July 2011; online 30 July 2011)

In the title compound, C22H18O2, the central benzene ring forms dihedral angles of 76.0 (1) and 73.1 (1)° with the phenyl ring and dimethyl-substituted benzene ring, respectively. The carbonyl-group O atoms deviate significantly from the phenyl ring and the dimethyl-substituted benzene ring [−0.582 (12) and 0.546 (12) Å, respectively]. The crystal packing is stabilized by C—H⋯π inter­actions.

Related literature

For the synthesis of heterocyclic compounds, see: Hirsch & Bailey (1978[Hirsch, S. S. & Bailey, W. J. (1978). J. Org. Chem. 43, 4090-4094.]). For chelating reagents of metallic systems, see: Liang et al. (2003[Liang, F. S., Zhou, Q. G., Cheng, Y. X., Wang, L. X., Ma, D. G., Jing, X. B. & Wang, F. S. (2003). Chem. Mater. 15, 193-1937.]). For related bond-length and angle values, see: Judaš & Kaitner (2005)[Judaš, N. & Kaitner, B. (2005). Acta Cryst. E61, o4008-o4010.]. For related structures, see: Khan et al. (2009[Khan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2745.]); Narayanan et al. (2011[Narayanan, P., Sethusankar, K., Nandakumar, M. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o2120.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18O2

  • Mr = 314.36

  • Monoclinic, P 21 /c

  • a = 17.8606 (14) Å

  • b = 7.7590 (6) Å

  • c = 11.9722 (11) Å

  • β = 93.942 (3)°

  • V = 1655.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 17270 measured reflections

  • 3862 independent reflections

  • 2827 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.129

  • S = 1.01

  • 3862 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring and Cg3 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cg1i 0.93 2.86 3.747 (2) 159
C21—H21ACg3ii 0.96 2.91 3.8144 (17) 157
C22—H22CCg3iii 0.96 2.78 3.6484 (17) 152
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{5\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Diketones are important synthetic intermediates and starting materials in the synthesis of many heterocyclic compounds (Hirsch & Bailey, 1978) and also employed as effective chelating reagents for a large number of metallic systems (Liang et al., 2003).

X-ray analysis confirms the molecular structure and atom connectivity of the title compound as illustrated in the Fig. 1. The bond lengths and bond angles are normal and correspond to those observed in 2-benzyl-1,3-diphenylpropane-1,3-dione (Judaš & Kaitner, 2005). The central phenyl ring (C8–C13) of the compound forms dihedral angles of 76.0 (1)° and 73.1 (1)° with the other phenyl rings (C1–C6) and (C15–C20), respectively. The central phenyl ring (C8–C13) forms dihedral angles of 53.3 (6)° and 58.8 (6)° with the mean plane of the ketone groups (C13–C15/O1) and (C6–C8/O2), respectively.

In the dimethyl substituted phenyl ring (C15–C20) the deviation of atoms C21 and C22 are -0.014 (2) Å and -0.049 (2) Å, respectively. The atom O1 deviates by -0.582 (1) Å from the plane of the phenyl ring (C1–C6). Also the atom O2 deviate by 0.546 (1) Å from the plane of the phenyl ring (C15–C20). The title compound exhibits the structural similarities with the already reported related structures (Khan et al., 2009; Narayanan et al., 2011).

The molecular structure is stabilized by C—H···Cg interactions - look Table 1. The Cg1 is center of gravity of (C1–C6) ring and Cg3 is center of gravity of (C15–C20) ring. Symmetry codes: (i) -x, y - 1/2, -z + 5/2; (ii) -x + 1, y - 1/2, -z + 3/2; (iii) -x + 1, -y + 1, -z + 2.

Related literature top

For the synthesis of heterocyclic compounds, see: Hirsch & Bailey (1978). For chelating reagents of metallic systems, see: Liang et al. (2003). For related bond-length and angle values, see: Judaš & Kaitner (2005). For related structures, see: Khan et al. (2009); Narayanan et al. (2011).

Experimental top

To a stirred suspension of 1-(3,4-dimethylphenyl)-3-phenyl-2-benzofuran (1 g, 3.22 mmol) in dry THF (20 ml), lead tetraacetate (1.52 g, 3.42 mmol) was added and refluxed at 343 K for half an hour. The reaction mixture was then poured into water (200 ml) and extracted with ethyl acetate (2 × 20 ml), washed with brine solution and dried (Na2SO4). The removal of solvent in vacuo afforded crude product. The crude product upon crystallization from methanol furnished the title compound as a colourless solid.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.93 Å and 0.96 Å refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for methyl atoms and Uiso(H) = 1.2Ueq(C) for aryl atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
(2-Benzoylphenyl)(3,4-dimethylphenyl)methanone top
Crystal data top
C22H18O2F(000) = 664
Mr = 314.36Dx = 1.262 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3862 reflections
a = 17.8606 (14) Åθ = 2.3–27.7°
b = 7.7590 (6) ŵ = 0.08 mm1
c = 11.9722 (11) ÅT = 295 K
β = 93.942 (3)°Block, colourless
V = 1655.2 (2) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2827 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 27.7°, θmin = 2.3°
ω scansh = 2321
17270 measured reflectionsk = 1010
3862 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.4044P]
where P = (Fo2 + 2Fc2)/3
3862 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C22H18O2V = 1655.2 (2) Å3
Mr = 314.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.8606 (14) ŵ = 0.08 mm1
b = 7.7590 (6) ÅT = 295 K
c = 11.9722 (11) Å0.30 × 0.25 × 0.20 mm
β = 93.942 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2827 reflections with I > 2σ(I)
17270 measured reflectionsRint = 0.030
3862 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
3862 reflectionsΔρmin = 0.18 e Å3
219 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.05252 (9)0.7620 (2)1.04279 (14)0.0501 (4)
H10.06690.83840.98840.060*
C20.02238 (9)0.7235 (3)1.04997 (17)0.0655 (5)
H20.05820.77290.99980.079*
C30.04421 (11)0.6128 (3)1.1308 (2)0.0731 (6)
H30.09480.58711.13540.088*
C40.00862 (12)0.5398 (3)1.20492 (18)0.0722 (6)
H40.00640.46591.26030.087*
C50.08396 (10)0.5754 (2)1.19788 (14)0.0555 (4)
H50.11960.52451.24770.067*
C60.10627 (8)0.68748 (18)1.11613 (12)0.0397 (3)
C70.18732 (8)0.71909 (18)1.10391 (11)0.0375 (3)
C80.20890 (7)0.88500 (17)1.05002 (12)0.0361 (3)
C90.19085 (8)1.04058 (19)1.09856 (14)0.0481 (4)
H90.16281.04141.16120.058*
C100.21426 (9)1.1940 (2)1.05444 (17)0.0579 (5)
H100.20321.29771.08870.070*
C110.25395 (9)1.1945 (2)0.95989 (18)0.0607 (5)
H110.26781.29840.92850.073*
C120.27318 (8)1.04049 (19)0.91177 (15)0.0516 (4)
H120.30101.04120.84890.062*
C130.25147 (7)0.88492 (17)0.95623 (12)0.0377 (3)
C140.26870 (7)0.71987 (17)0.89837 (11)0.0364 (3)
C150.34810 (7)0.68460 (16)0.87551 (11)0.0338 (3)
C160.40683 (7)0.74660 (17)0.94594 (11)0.0343 (3)
H160.39610.81631.00600.041*
C170.48140 (7)0.70753 (16)0.92943 (11)0.0343 (3)
C180.49709 (8)0.60617 (17)0.83744 (11)0.0363 (3)
C190.43783 (8)0.54581 (18)0.76678 (11)0.0412 (3)
H190.44820.47910.70520.049*
C200.36435 (8)0.58169 (18)0.78516 (11)0.0395 (3)
H200.32570.53750.73750.047*
C210.57643 (9)0.5594 (2)0.81499 (14)0.0500 (4)
H21A0.57600.47960.75370.075*
H21B0.60070.50730.88060.075*
H21C0.60320.66150.79640.075*
C220.54257 (9)0.7725 (2)1.00999 (13)0.0472 (4)
H22A0.52110.83711.06820.071*
H22B0.57560.84540.97120.071*
H22C0.57030.67671.04230.071*
O10.21870 (6)0.61966 (14)0.87004 (10)0.0530 (3)
O20.23523 (6)0.61759 (14)1.13704 (10)0.0545 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0392 (8)0.0533 (9)0.0576 (9)0.0033 (7)0.0023 (7)0.0058 (7)
C20.0382 (9)0.0726 (12)0.0846 (13)0.0041 (8)0.0035 (9)0.0008 (10)
C30.0435 (10)0.0785 (14)0.0991 (15)0.0173 (9)0.0185 (10)0.0055 (12)
C40.0656 (13)0.0712 (13)0.0830 (13)0.0172 (10)0.0288 (11)0.0111 (11)
C50.0547 (10)0.0568 (10)0.0560 (9)0.0037 (8)0.0110 (8)0.0100 (8)
C60.0370 (7)0.0390 (7)0.0436 (7)0.0022 (6)0.0066 (6)0.0025 (6)
C70.0367 (7)0.0368 (7)0.0390 (7)0.0029 (6)0.0020 (6)0.0020 (6)
C80.0263 (6)0.0331 (7)0.0485 (8)0.0009 (5)0.0004 (6)0.0019 (6)
C90.0377 (8)0.0434 (8)0.0630 (9)0.0063 (6)0.0033 (7)0.0088 (7)
C100.0392 (8)0.0334 (8)0.1004 (14)0.0050 (7)0.0008 (9)0.0130 (8)
C110.0389 (8)0.0320 (8)0.1117 (15)0.0032 (7)0.0077 (9)0.0111 (9)
C120.0362 (8)0.0408 (8)0.0791 (11)0.0023 (6)0.0132 (8)0.0099 (8)
C130.0254 (6)0.0340 (7)0.0537 (8)0.0008 (5)0.0035 (6)0.0017 (6)
C140.0319 (7)0.0358 (7)0.0419 (7)0.0028 (6)0.0048 (6)0.0031 (6)
C150.0323 (7)0.0313 (6)0.0382 (7)0.0011 (5)0.0046 (5)0.0030 (5)
C160.0369 (7)0.0321 (7)0.0347 (6)0.0004 (5)0.0074 (5)0.0017 (5)
C170.0343 (7)0.0320 (6)0.0365 (7)0.0009 (5)0.0027 (5)0.0047 (5)
C180.0370 (7)0.0336 (7)0.0394 (7)0.0045 (6)0.0091 (6)0.0066 (5)
C190.0477 (8)0.0401 (8)0.0366 (7)0.0035 (6)0.0080 (6)0.0057 (6)
C200.0397 (8)0.0404 (7)0.0381 (7)0.0031 (6)0.0009 (6)0.0031 (6)
C210.0418 (8)0.0538 (9)0.0557 (9)0.0106 (7)0.0122 (7)0.0022 (7)
C220.0397 (8)0.0523 (9)0.0489 (8)0.0027 (7)0.0023 (6)0.0010 (7)
O10.0388 (6)0.0506 (7)0.0701 (7)0.0122 (5)0.0088 (5)0.0117 (5)
O20.0459 (6)0.0471 (6)0.0703 (7)0.0103 (5)0.0029 (5)0.0112 (5)
Geometric parameters (Å, º) top
C1—C21.379 (2)C12—C131.3853 (19)
C1—C61.382 (2)C12—H120.9300
C1—H10.9300C13—C141.4980 (19)
C2—C31.371 (3)C14—O11.2146 (16)
C2—H20.9300C14—C151.4880 (18)
C3—C41.372 (3)C15—C161.3861 (19)
C3—H30.9300C15—C201.3911 (18)
C4—C51.382 (3)C16—C171.3932 (18)
C4—H40.9300C16—H160.9300
C5—C61.388 (2)C17—C181.3973 (18)
C5—H50.9300C17—C221.494 (2)
C6—C71.4854 (19)C18—C191.390 (2)
C7—O21.2095 (17)C18—C211.5046 (19)
C7—C81.5020 (19)C19—C201.374 (2)
C8—C91.3873 (19)C19—H190.9300
C8—C131.399 (2)C20—H200.9300
C9—C101.379 (2)C21—H21A0.9600
C9—H90.9300C21—H21B0.9600
C10—C111.376 (3)C21—H21C0.9600
C10—H100.9300C22—H22A0.9600
C11—C121.380 (2)C22—H22B0.9600
C11—H110.9300C22—H22C0.9600
C2—C1—C6120.27 (16)C12—C13—C8119.34 (13)
C2—C1—H1119.9C12—C13—C14119.69 (13)
C6—C1—H1119.9C8—C13—C14120.79 (12)
C3—C2—C1120.25 (18)O1—C14—C15121.51 (12)
C3—C2—H2119.9O1—C14—C13120.39 (12)
C1—C2—H2119.9C15—C14—C13118.09 (11)
C2—C3—C4119.92 (17)C16—C15—C20118.85 (12)
C2—C3—H3120.0C16—C15—C14121.02 (12)
C4—C3—H3120.0C20—C15—C14120.07 (12)
C3—C4—C5120.49 (18)C15—C16—C17121.94 (12)
C3—C4—H4119.8C15—C16—H16119.0
C5—C4—H4119.8C17—C16—H16119.0
C4—C5—C6119.76 (17)C16—C17—C18118.67 (12)
C4—C5—H5120.1C16—C17—C22119.91 (12)
C6—C5—H5120.1C18—C17—C22121.41 (13)
C1—C6—C5119.30 (14)C19—C18—C17118.93 (12)
C1—C6—C7120.48 (13)C19—C18—C21119.81 (13)
C5—C6—C7120.13 (14)C17—C18—C21121.26 (13)
O2—C7—C6122.17 (13)C20—C19—C18122.01 (13)
O2—C7—C8120.16 (12)C20—C19—H19119.0
C6—C7—C8117.67 (12)C18—C19—H19119.0
C9—C8—C13119.44 (13)C19—C20—C15119.57 (13)
C9—C8—C7119.47 (13)C19—C20—H20120.2
C13—C8—C7120.94 (11)C15—C20—H20120.2
C10—C9—C8120.37 (15)C18—C21—H21A109.5
C10—C9—H9119.8C18—C21—H21B109.5
C8—C9—H9119.8H21A—C21—H21B109.5
C11—C10—C9120.26 (15)C18—C21—H21C109.5
C11—C10—H10119.9H21A—C21—H21C109.5
C9—C10—H10119.9H21B—C21—H21C109.5
C10—C11—C12119.89 (15)C17—C22—H22A109.5
C10—C11—H11120.1C17—C22—H22B109.5
C12—C11—H11120.1H22A—C22—H22B109.5
C11—C12—C13120.64 (15)C17—C22—H22C109.5
C11—C12—H12119.7H22A—C22—H22C109.5
C13—C12—H12119.7H22B—C22—H22C109.5
C6—C1—C2—C30.8 (3)C7—C8—C13—C12177.13 (13)
C1—C2—C3—C40.0 (3)C9—C8—C13—C14176.94 (13)
C2—C3—C4—C50.8 (3)C7—C8—C13—C147.6 (2)
C3—C4—C5—C60.8 (3)C12—C13—C14—O1124.06 (16)
C2—C1—C6—C50.8 (2)C8—C13—C14—O151.2 (2)
C2—C1—C6—C7175.82 (15)C12—C13—C14—C1555.03 (18)
C4—C5—C6—C10.0 (3)C8—C13—C14—C15129.72 (14)
C4—C5—C6—C7176.65 (16)O1—C14—C15—C16150.17 (14)
C1—C6—C7—O2153.93 (15)C13—C14—C15—C1630.75 (18)
C5—C6—C7—O222.7 (2)O1—C14—C15—C2027.0 (2)
C1—C6—C7—C827.09 (19)C13—C14—C15—C20152.12 (13)
C5—C6—C7—C8156.27 (14)C20—C15—C16—C170.6 (2)
O2—C7—C8—C9118.70 (16)C14—C15—C16—C17176.55 (12)
C6—C7—C8—C960.30 (17)C15—C16—C17—C181.55 (19)
O2—C7—C8—C1356.75 (19)C15—C16—C17—C22177.87 (13)
C6—C7—C8—C13124.25 (14)C16—C17—C18—C190.98 (19)
C13—C8—C9—C100.4 (2)C22—C17—C18—C19178.44 (13)
C7—C8—C9—C10175.91 (14)C16—C17—C18—C21179.98 (12)
C8—C9—C10—C111.8 (2)C22—C17—C18—C210.6 (2)
C9—C10—C11—C122.8 (3)C17—C18—C19—C200.5 (2)
C10—C11—C12—C131.5 (3)C21—C18—C19—C20178.50 (13)
C11—C12—C13—C80.8 (2)C18—C19—C20—C151.5 (2)
C11—C12—C13—C14176.08 (15)C16—C15—C20—C190.9 (2)
C9—C8—C13—C121.7 (2)C14—C15—C20—C19178.09 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring and Cg3 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg1i0.932.863.747 (2)159
C21—H21A···Cg3ii0.962.913.8144 (17)157
C22—H22C···Cg3iii0.962.783.6484 (17)152
Symmetry codes: (i) x, y1/2, z+5/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC22H18O2
Mr314.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)17.8606 (14), 7.7590 (6), 11.9722 (11)
β (°) 93.942 (3)
V3)1655.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17270, 3862, 2827
Rint0.030
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.129, 1.01
No. of reflections3862
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.18

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring and Cg3 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg1i0.932.863.747 (2)159
C21—H21A···Cg3ii0.962.913.8144 (17)157
C22—H22C···Cg3iii0.962.783.6484 (17)152
Symmetry codes: (i) x, y1/2, z+5/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1, z+2.
 

Acknowledgements

GJ and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection, and Dr V. Murugan, HOD, Department of Physics, for providing facilities in the department to carry out this work.

References

First citationBruker (2008). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHirsch, S. S. & Bailey, W. J. (1978). J. Org. Chem. 43, 4090-4094.  CrossRef CAS Web of Science Google Scholar
First citationJudaš, N. & Kaitner, B. (2005). Acta Cryst. E61, o4008–o4010.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2745.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiang, F. S., Zhou, Q. G., Cheng, Y. X., Wang, L. X., Ma, D. G., Jing, X. B. & Wang, F. S. (2003). Chem. Mater. 15, 193–1937.  Google Scholar
First citationNarayanan, P., Sethusankar, K., Nandakumar, M. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o2120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds