organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(2-Meth­­oxy­benzyl­­idene)-3-nitro­benzohydrazide

aChemical Engineering & Pharmaceutics College, Henan University of Science and Technology, Luoyang Henan 471003, People's Republic of China
*Correspondence e-mail: junying_ma@163.com

(Received 22 June 2011; accepted 28 June 2011; online 2 July 2011)

In the title compound, C15H13N3O4, the two substituted benzene rings form a dihedral angle of 10.9 (3)°. In the crystal, inter­molecular C—H⋯O and N—H⋯O hydrogen bonds link mol­ecules into chains running parallel to [101].

Related literature

For background to the binding properties and biological activity of condensation products of aldehydes with benzohydrazides, see: Sanchez-Lozano et al. (2011[Sanchez-Lozano, M., Vazquez-Lopez, E. M., Hermida-Ramon, J. M. & Estevez, C. M. (2011). Polyhedron, 30, 953-962.]); Wang (2011[Wang, N. (2011). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 41, 378-383.]); Cui et al. (2011[Cui, Y.-M., Cai, Y.-J. & Chen, W. (2011). J. Coord. Chem. 64, 1385-1392.]); Zhu (2011[Zhu, H.-Y. (2011). Chin. J. Struct. Chem. 30, 724-730.]); Peng (2011[Peng, S.-J. (2011). J. Chem. Crystallogr. 41, 280-285.]). For related structures, see: Hashemian et al. (2011[Hashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171.]); Shalash et al. (2010[Shalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126-o3127.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O4

  • Mr = 299.28

  • Monoclinic, P 21 /n

  • a = 6.9886 (13) Å

  • b = 29.543 (3) Å

  • c = 7.4163 (14) Å

  • β = 109.229 (2)°

  • V = 1445.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.20 × 0.17 × 0.13 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.987

  • 11773 measured reflections

  • 3140 independent reflections

  • 1547 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.160

  • S = 1.02

  • 3140 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.86 2.03 2.856 (3) 162
C8—H8⋯O2i 0.93 2.47 3.231 (3) 139
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The compounds derived from the condensation reaction of aldehydes with benzohydrazides play a vital role in coordination chemistry due to their metal binding property (Sanchez-Lozano et al., 2011; Wang, 2011; Cui et al., 2011). Moreover, most of such compounds possess effective biological activity (Zhu, 2011; Peng, 2011). In recent years, a number of such compounds have been reported (Hashemian et al., 2011; Shalash et al., 2010). In this paper, the title new comound, (E)-N'-(2-Methoxybenzylidene)-3-nitrobenzohydrazide, (I), is reported.

The molecular structure of (I) is shown in Fig. 1. The bond lengths in (I) are normal and comparable with those observed in the reported structures cited above. The two substituted benzene rings form a dihedral angle of 10.9 (3)°. In the crystal, intermolecular C–H···O and N–H···O hydrogen bonds link molecules into one-dimensional chains parallel to the [101] direction (Fig. 2, Table 1).

Related literature top

For background to the binding properties and biological activity of the condensation products of aldehydes with benzohydrazides, see: Sanchez-Lozano et al. (2011); Wang (2011); Cui et al. (2011); Zhu (2011); Peng (2011). For related structures, see: Hashemian et al. (2011); Shalash et al. (2010).

Experimental top

2-Methoxybenzaldehyde (0.136 g, 1 mmol), 3-nitrobenzohydrazide (0.181 g, 1 mmol), and a few drops of acetic acid were mixed in methanol (30 ml). The solution was magnetic stirred at ambient temperature for 10 min until it turns to yellow. The solution was slowly evaporated in open air to give needle-shaped pale yellow single crystals.

Refinement top

H atoms were placed in idealized positions (C–H = 0.93-0.96 Å, N–H = 0.86 Å), and refined as riding, with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids shown at 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed along the c axis. Hydrogen bonds are indicated by dashed lines.
(E)-N'-(2-Methoxybenzylidene)-3-nitrobenzohydrazide top
Crystal data top
C15H13N3O4F(000) = 624
Mr = 299.28Dx = 1.375 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1029 reflections
a = 6.9886 (13) Åθ = 2.7–24.6°
b = 29.543 (3) ŵ = 0.10 mm1
c = 7.4163 (14) ÅT = 298 K
β = 109.229 (2)°Needle fragment, pale yellow
V = 1445.8 (4) Å30.20 × 0.17 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3140 independent reflections
Radiation source: fine-focus sealed tube1547 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ω scansθmax = 27.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 78
Tmin = 0.980, Tmax = 0.987k = 3737
11773 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.2817P]
where P = (Fo2 + 2Fc2)/3
3140 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H13N3O4V = 1445.8 (4) Å3
Mr = 299.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9886 (13) ŵ = 0.10 mm1
b = 29.543 (3) ÅT = 298 K
c = 7.4163 (14) Å0.20 × 0.17 × 0.13 mm
β = 109.229 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3140 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1547 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.987Rint = 0.066
11773 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.02Δρmax = 0.27 e Å3
3140 reflectionsΔρmin = 0.20 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1106 (3)0.28532 (7)0.7046 (3)0.0472 (6)
N20.1501 (3)0.25598 (7)0.8592 (3)0.0484 (6)
H20.23050.26390.96980.058*
N30.1869 (5)0.06220 (10)1.1044 (6)0.0779 (10)
O10.2305 (4)0.41464 (7)0.8421 (3)0.0717 (7)
O20.0564 (3)0.20220 (6)0.6790 (3)0.0594 (6)
O30.1521 (5)0.04907 (9)0.9404 (5)0.1073 (11)
O40.2330 (5)0.03803 (9)1.2447 (5)0.1236 (12)
C10.1507 (4)0.35973 (8)0.6012 (4)0.0422 (7)
C20.1822 (4)0.40543 (9)0.6509 (5)0.0521 (8)
C30.1630 (5)0.43806 (11)0.5128 (6)0.0696 (10)
H30.18130.46850.54630.084*
C40.1166 (5)0.42509 (13)0.3260 (6)0.0775 (11)
H40.10300.44710.23290.093*
C50.0895 (5)0.38036 (13)0.2730 (5)0.0694 (10)
H50.06130.37200.14600.083*
C60.1050 (4)0.34806 (10)0.4110 (4)0.0534 (8)
H60.08430.31780.37560.064*
C70.2868 (6)0.45963 (11)0.9068 (6)0.0987 (14)
H7A0.38850.47030.85610.148*
H7B0.33990.46001.04380.148*
H7C0.17010.47900.86410.148*
C80.1739 (4)0.32553 (9)0.7488 (4)0.0438 (7)
H80.23560.33320.87650.053*
C90.0617 (4)0.21543 (9)0.8337 (4)0.0424 (7)
C100.1119 (4)0.18579 (9)1.0065 (4)0.0408 (7)
C110.1229 (4)0.13972 (9)0.9798 (4)0.0471 (7)
H110.10080.12810.85800.057*
C120.1664 (4)0.11134 (10)1.1332 (5)0.0555 (8)
C130.1935 (5)0.12710 (13)1.3129 (5)0.0705 (10)
H130.22240.10711.41520.085*
C140.1779 (5)0.17262 (13)1.3418 (4)0.0679 (10)
H140.19270.18361.46320.082*
C150.1397 (4)0.20246 (10)1.1875 (4)0.0519 (8)
H150.13310.23351.20660.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0486 (15)0.0407 (13)0.0443 (14)0.0023 (11)0.0043 (11)0.0050 (11)
N20.0522 (15)0.0401 (13)0.0404 (13)0.0071 (11)0.0018 (11)0.0035 (11)
N30.058 (2)0.053 (2)0.120 (3)0.0095 (15)0.026 (2)0.032 (2)
O10.0983 (19)0.0453 (13)0.0778 (16)0.0138 (12)0.0374 (14)0.0101 (11)
O20.0711 (15)0.0427 (11)0.0449 (12)0.0095 (10)0.0074 (10)0.0009 (9)
O30.120 (3)0.0580 (17)0.148 (3)0.0149 (16)0.051 (2)0.0044 (18)
O40.118 (3)0.0780 (19)0.170 (3)0.0217 (17)0.040 (2)0.071 (2)
C10.0329 (16)0.0424 (16)0.0473 (17)0.0009 (12)0.0080 (13)0.0055 (13)
C20.0479 (19)0.0468 (18)0.063 (2)0.0025 (14)0.0205 (16)0.0043 (15)
C30.069 (2)0.051 (2)0.092 (3)0.0039 (17)0.030 (2)0.0190 (19)
C40.074 (3)0.078 (3)0.082 (3)0.012 (2)0.026 (2)0.037 (2)
C50.064 (2)0.089 (3)0.052 (2)0.010 (2)0.0146 (17)0.0144 (19)
C60.0457 (19)0.0603 (19)0.0484 (18)0.0025 (15)0.0076 (14)0.0078 (15)
C70.132 (4)0.062 (2)0.120 (3)0.031 (2)0.065 (3)0.037 (2)
C80.0397 (17)0.0452 (17)0.0424 (16)0.0018 (13)0.0081 (13)0.0014 (13)
C90.0427 (18)0.0387 (15)0.0400 (16)0.0026 (13)0.0056 (14)0.0001 (12)
C100.0312 (16)0.0437 (16)0.0414 (16)0.0002 (12)0.0037 (12)0.0041 (13)
C110.0372 (17)0.0478 (18)0.0529 (18)0.0002 (13)0.0102 (14)0.0055 (14)
C120.0377 (18)0.0513 (19)0.074 (2)0.0027 (14)0.0143 (16)0.0158 (17)
C130.053 (2)0.078 (3)0.071 (3)0.0061 (18)0.0075 (18)0.034 (2)
C140.059 (2)0.099 (3)0.0434 (18)0.014 (2)0.0130 (16)0.0054 (18)
C150.0441 (19)0.0610 (19)0.0466 (17)0.0066 (14)0.0096 (14)0.0014 (15)
Geometric parameters (Å, º) top
N1—C81.272 (3)C5—C61.377 (4)
N1—N21.390 (3)C5—H50.9300
N2—C91.332 (3)C6—H60.9300
N2—H20.8600C7—H7A0.9600
N3—O41.215 (4)C7—H7B0.9600
N3—O31.223 (4)C7—H7C0.9600
N3—C121.481 (4)C8—H80.9300
O1—C21.373 (3)C9—C101.496 (3)
O1—C71.424 (3)C10—C111.381 (4)
O2—C91.235 (3)C10—C151.382 (4)
C1—C61.384 (4)C11—C121.364 (4)
C1—C21.397 (4)C11—H110.9300
C1—C81.459 (3)C12—C131.365 (4)
C2—C31.380 (4)C13—C141.372 (4)
C3—C41.369 (5)C13—H130.9300
C3—H30.9300C14—C151.399 (4)
C4—C51.374 (4)C14—H140.9300
C4—H40.9300C15—H150.9300
C8—N1—N2114.3 (2)H7A—C7—H7B109.5
C9—N2—N1119.1 (2)O1—C7—H7C109.5
C9—N2—H2120.4H7A—C7—H7C109.5
N1—N2—H2120.4H7B—C7—H7C109.5
O4—N3—O3125.1 (4)N1—C8—C1120.7 (2)
O4—N3—C12117.6 (4)N1—C8—H8119.7
O3—N3—C12117.2 (3)C1—C8—H8119.7
C2—O1—C7118.7 (3)O2—C9—N2123.6 (2)
C6—C1—C2118.2 (3)O2—C9—C10120.4 (2)
C6—C1—C8121.6 (2)N2—C9—C10116.0 (2)
C2—C1—C8120.2 (3)C11—C10—C15119.6 (3)
O1—C2—C3124.0 (3)C11—C10—C9117.6 (2)
O1—C2—C1115.3 (2)C15—C10—C9122.8 (2)
C3—C2—C1120.7 (3)C12—C11—C10119.6 (3)
C4—C3—C2119.2 (3)C12—C11—H11120.2
C4—C3—H3120.4C10—C11—H11120.2
C2—C3—H3120.4C11—C12—C13121.7 (3)
C3—C4—C5121.5 (3)C11—C12—N3119.2 (3)
C3—C4—H4119.2C13—C12—N3119.1 (3)
C5—C4—H4119.2C12—C13—C14119.6 (3)
C4—C5—C6119.0 (3)C12—C13—H13120.2
C4—C5—H5120.5C14—C13—H13120.2
C6—C5—H5120.5C13—C14—C15119.6 (3)
C5—C6—C1121.3 (3)C13—C14—H14120.2
C5—C6—H6119.3C15—C14—H14120.2
C1—C6—H6119.3C10—C15—C14119.9 (3)
O1—C7—H7A109.5C10—C15—H15120.1
O1—C7—H7B109.5C14—C15—H15120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.032.856 (3)162
C8—H8···O2i0.932.473.231 (3)139
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13N3O4
Mr299.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)6.9886 (13), 29.543 (3), 7.4163 (14)
β (°) 109.229 (2)
V3)1445.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.17 × 0.13
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.980, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
11773, 3140, 1547
Rint0.066
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.160, 1.02
No. of reflections3140
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.20

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.032.856 (3)162
C8—H8···O2i0.932.473.231 (3)139
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

Financial support from Henan University of Science and Technology is gratefully acknowledged.

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, Y.-M., Cai, Y.-J. & Chen, W. (2011). J. Coord. Chem. 64, 1385–1392.  Web of Science CSD CrossRef CAS Google Scholar
First citationHashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPeng, S.-J. (2011). J. Chem. Crystallogr. 41, 280–285.  Web of Science CSD CrossRef CAS Google Scholar
First citationSanchez-Lozano, M., Vazquez-Lopez, E. M., Hermida-Ramon, J. M. & Estevez, C. M. (2011). Polyhedron, 30, 953–962.  CAS Google Scholar
First citationShalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126–o3127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, N. (2011). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 41, 378–383.  CrossRef CAS Google Scholar
First citationZhu, H.-Y. (2011). Chin. J. Struct. Chem. 30, 724–730.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds