organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-tert-Butyl-2-(4-tert-butyl­pyridin-2-yl)pyridinium nitrate

aSchool of Chemistry and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, People's Republic of China
*Correspondence e-mail: zqwswu@163.com

(Received 3 July 2011; accepted 13 July 2011; online 16 July 2011)

In the title compound, C18H25N2+·NO3, the dihedral angle between the pyridine rings is 19.06 (10)°. In the crystal, the ions are linked into a three-dimensional network by N—H⋯O and C—H⋯O hydrogen-bonding inter­actions.

Related literature

For background to the coordination chemistry and applications of bipyridine and its derivatives, see: Duan et al. (2010[Duan, L. L., Xu, Y. H., Zhang, P., Wang, M. & Sun, L. C. (2010). Inorg. Chem. 49, 209-215.]); Morrow & Trogler (1989[Morrow, J. R. & Trogler, W. C. (1989). Inorg. Chem. 28, 1330-2333.]); Noro et al. (2000[Noro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. 39, 2081-2084.]); Yaghi et al. (1998[Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]); Huertas et al. (2001[Huertas, S., Hissler, M., McGarrah, J. E., Lachicotte, R. J. & Eisenberg, R. (2001). Inorg. Chem. 40, 1183-1188.]); Qin et al. (2002[Qin, Z. Q., Jennings, M. C. & Puddephatt, R. J. (2002). Inorg. Chem. 41, 3967-3974.]).

[Scheme 1]

Experimental

Crystal data
  • C18H25N2+·NO3

  • Mr = 331.41

  • Orthorhombic, P n a 21

  • a = 11.606 (5) Å

  • b = 9.770 (4) Å

  • c = 16.199 (7) Å

  • V = 1836.8 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 273 K

  • 0.29 × 0.24 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.978

  • 11773 measured reflections

  • 1705 independent reflections

  • 1314 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.112

  • S = 1.06

  • 1705 reflections

  • 227 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 1.00 (3) 1.89 (3) 2.716 (4) 137 (3)
C4—H4⋯O3ii 0.93 2.58 3.480 (4) 164
C7—H7⋯O3ii 0.93 2.49 3.389 (4) 163
C9—H9⋯O3iii 0.93 2.60 3.385 (4) 143
Symmetry codes: (i) [-x+1, -y+1, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Metal complexes of bipyridine and its derivatives have been extensively studied because of their potential applications in catalysis (Morrow & Trogler, 1989; Noro et al., 2000) and visible light driven water oxidation (Duan et al., 2010). One of these compounds, 4,4'-di-tert-butyl-2,2'-bipyridine, has recently been used as ligand in coordination chemistry (Huertas et al., 2001; Qin et al., 2002). As a contribution to this research field, the crystal structure of the title complex containing a bipyridyl ligand is reported herein.

The asymmetric unit of the title compound (Fig. 1) consists of one 4-tert-butyl-2-(4-tert-butylpyridin-2-yl)pyridinium cation and one nitrate anion. In the cation, the dihedral angle between the planes of two pyridine rings is 19.06 (10)°. In the crystal, cations and anions are linked into a three-dimensional network by N—H···O and C—H···O hydrogen bonds (Table 1).

Related literature top

For background to coordination chemistry and applications of bipyridine and its derivatives, see: Duan et al. (2010); Morrow & Trogler (1989); Noro et al. (2000); Yaghi et al. (1998); Huertas et al. (2001); Qin et al. (2002).

Experimental top

4,4'-Di-tert-butyl-2,2'-bipyridine (0.15 g, 0.56 mmol) and nitric acid (30%, 50 ml) were stirred for 20 min at 313 K.The solution was then filtered and left to evaporate slowly at room temperature. After three weeks, colourless laths and prisms of the title compound were isolated.

Refinement top

The H1N atom was located in a difference Fourier map and refined freely. All othe H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.96 Å and Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. 1456 Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with displacement ellipsoids drawn at the 50% probability level.
4-tert-Butyl-2-(4-tert-butylpyridin-2-yl)pyridinium nitrate top
Crystal data top
C18H25N2+·NO3F(000) = 712.0
Mr = 331.41Dx = 1.198 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1686 reflections
a = 11.606 (5) Åθ = 2.4–25.1°
b = 9.770 (4) ŵ = 0.08 mm1
c = 16.199 (7) ÅT = 273 K
V = 1836.8 (13) Å3Block, colourless
Z = 40.29 × 0.24 × 0.19 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1705 independent reflections
Radiation source: fine-focus sealed tube1314 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 25.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.962, Tmax = 0.978k = 1111
11773 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.064P)2 + 0.0558P]
where P = (Fo2 + 2Fc2)/3
1705 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.13 e Å3
Crystal data top
C18H25N2+·NO3V = 1836.8 (13) Å3
Mr = 331.41Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 11.606 (5) ŵ = 0.08 mm1
b = 9.770 (4) ÅT = 273 K
c = 16.199 (7) Å0.29 × 0.24 × 0.19 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1705 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1314 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.978Rint = 0.042
11773 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.14 e Å3
1705 reflectionsΔρmin = 0.13 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6857 (3)0.6853 (3)1.06496 (18)0.0996 (11)
O30.6436 (2)0.5517 (3)0.96612 (17)0.0845 (9)
O20.7322 (3)0.7406 (4)0.9424 (2)0.1063 (11)
N10.2126 (2)0.0984 (3)0.64095 (16)0.0490 (7)
H1N0.280 (3)0.143 (3)0.613 (2)0.059 (9)*
N20.4248 (2)0.1079 (3)0.70159 (18)0.0570 (8)
N30.6866 (2)0.6606 (3)0.9902 (2)0.0628 (8)
C10.4700 (3)0.1084 (3)0.8731 (2)0.0484 (8)
C20.5555 (3)0.1325 (4)0.8155 (2)0.0626 (10)
H20.63060.14930.83270.075*
C30.5294 (3)0.1316 (5)0.7323 (3)0.0669 (10)
H30.58880.14860.69520.080*
C40.3599 (3)0.0832 (3)0.8416 (2)0.0455 (7)
H40.29880.06600.87730.055*
C50.3418 (3)0.0838 (3)0.7571 (2)0.0438 (7)
C60.2263 (3)0.0558 (3)0.71989 (17)0.0424 (7)
C70.1355 (2)0.0087 (3)0.7586 (2)0.0438 (7)
H70.14400.03850.81280.053*
C80.1142 (3)0.0787 (4)0.5994 (2)0.0569 (9)
H80.10780.10910.54520.068*
C90.0233 (3)0.0144 (3)0.6360 (2)0.0530 (8)
H90.04430.00010.60640.064*
C100.0312 (3)0.0301 (3)0.71786 (19)0.0458 (8)
C110.4935 (3)0.1032 (4)0.9658 (2)0.0592 (9)
C120.6147 (4)0.1546 (7)0.9880 (3)0.119 (2)
H12A0.67130.09670.96250.178*
H12B0.62450.15241.04680.178*
H12C0.62410.24670.96850.178*
C130.4872 (5)0.0481 (5)0.9912 (3)0.1001 (15)
H13A0.41170.08310.97940.150*
H13B0.50250.05621.04920.150*
H13C0.54360.09940.96080.150*
C140.4034 (5)0.1836 (6)1.0136 (3)0.1090 (18)
H14A0.40910.27880.99960.163*
H14B0.41630.17211.07170.163*
H14C0.32800.15050.99960.163*
C150.0693 (3)0.0977 (3)0.7623 (2)0.0533 (8)
C160.0320 (4)0.2367 (4)0.7949 (3)0.0861 (13)
H16A0.00950.29410.74960.129*
H16B0.09500.27850.82390.129*
H16C0.03190.22540.83180.129*
C170.1034 (4)0.0060 (4)0.8356 (3)0.0831 (13)
H17A0.03930.00270.87270.125*
H17B0.16740.04630.86430.125*
H17C0.12490.08290.81560.125*
C180.1747 (4)0.1165 (6)0.7074 (4)0.1001 (17)
H18A0.19790.02940.68550.150*
H18B0.23660.15470.73920.150*
H18C0.15610.17720.66270.150*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.136 (3)0.107 (2)0.0558 (18)0.0491 (19)0.0177 (17)0.0289 (16)
O30.097 (2)0.094 (2)0.0625 (18)0.0245 (17)0.0054 (16)0.0279 (16)
O20.092 (2)0.118 (2)0.109 (3)0.0007 (19)0.033 (2)0.042 (2)
N10.0528 (17)0.0565 (16)0.0379 (15)0.0017 (12)0.0009 (13)0.0075 (12)
N20.0457 (16)0.075 (2)0.0502 (17)0.0018 (14)0.0053 (14)0.0172 (14)
N30.0545 (17)0.074 (2)0.060 (2)0.0000 (15)0.0104 (15)0.0011 (18)
C10.048 (2)0.0409 (17)0.056 (2)0.0002 (13)0.0028 (16)0.0012 (14)
C20.046 (2)0.071 (2)0.071 (3)0.0058 (16)0.0048 (19)0.0067 (18)
C30.052 (2)0.085 (3)0.064 (3)0.0027 (18)0.0098 (19)0.0224 (19)
C40.0428 (17)0.0480 (17)0.0458 (19)0.0006 (13)0.0009 (14)0.0000 (13)
C50.0462 (17)0.0414 (16)0.0437 (18)0.0007 (12)0.0028 (14)0.0045 (13)
C60.0483 (18)0.0458 (15)0.0332 (17)0.0039 (13)0.0003 (13)0.0019 (13)
C70.0480 (17)0.0488 (16)0.0344 (15)0.0007 (14)0.0008 (15)0.0043 (13)
C80.071 (2)0.062 (2)0.0369 (18)0.0006 (18)0.0048 (17)0.0062 (15)
C90.0532 (19)0.0607 (19)0.0450 (18)0.0029 (15)0.0106 (16)0.0019 (16)
C100.0502 (19)0.0437 (17)0.0434 (19)0.0016 (13)0.0011 (14)0.0014 (14)
C110.056 (2)0.067 (2)0.055 (2)0.0018 (16)0.0107 (17)0.0088 (18)
C120.086 (3)0.193 (6)0.077 (3)0.036 (4)0.022 (3)0.022 (4)
C130.131 (4)0.106 (4)0.063 (3)0.003 (3)0.032 (3)0.015 (3)
C140.112 (4)0.147 (5)0.068 (3)0.044 (3)0.019 (3)0.039 (3)
C150.0503 (19)0.058 (2)0.052 (2)0.0104 (15)0.0007 (17)0.0003 (16)
C160.089 (3)0.061 (2)0.109 (3)0.014 (2)0.012 (3)0.017 (2)
C170.072 (3)0.084 (3)0.093 (3)0.014 (2)0.025 (2)0.011 (2)
C180.072 (3)0.140 (5)0.088 (3)0.037 (3)0.014 (3)0.006 (3)
Geometric parameters (Å, º) top
O1—N31.235 (4)C11—C141.520 (6)
O3—N31.239 (4)C11—C131.536 (6)
O2—N31.221 (4)C11—C121.536 (6)
N1—C81.340 (4)C12—H12A0.9600
N1—C61.354 (4)C12—H12B0.9600
N1—H1N1.00 (4)C12—H12C0.9600
N2—C31.332 (5)C13—H13A0.9600
N2—C51.339 (4)C13—H13B0.9600
C1—C21.383 (5)C13—H13C0.9600
C1—C41.398 (4)C14—H14A0.9600
C1—C111.527 (5)C14—H14B0.9600
C2—C31.382 (6)C14—H14C0.9600
C2—H20.9300C15—C161.519 (5)
C3—H30.9300C15—C181.524 (5)
C4—C51.384 (5)C15—C171.540 (6)
C4—H40.9300C16—H16A0.9600
C5—C61.495 (4)C16—H16B0.9600
C6—C71.378 (4)C16—H16C0.9600
C7—C101.395 (4)C17—H17A0.9600
C7—H70.9300C17—H17B0.9600
C8—C91.364 (5)C17—H17C0.9600
C8—H80.9300C18—H18A0.9600
C9—C101.398 (4)C18—H18B0.9600
C9—H90.9300C18—H18C0.9600
C10—C151.521 (5)
C8—N1—C6122.0 (3)C11—C12—H12A109.5
C8—N1—H1N119 (2)C11—C12—H12B109.5
C6—N1—H1N118 (2)H12A—C12—H12B109.5
C3—N2—C5115.8 (3)C11—C12—H12C109.5
O2—N3—O1120.1 (4)H12A—C12—H12C109.5
O2—N3—O3121.6 (4)H12B—C12—H12C109.5
O1—N3—O3118.3 (3)C11—C13—H13A109.5
C2—C1—C4116.1 (3)C11—C13—H13B109.5
C2—C1—C11122.8 (3)H13A—C13—H13B109.5
C4—C1—C11121.1 (3)C11—C13—H13C109.5
C3—C2—C1120.0 (3)H13A—C13—H13C109.5
C3—C2—H2120.0H13B—C13—H13C109.5
C1—C2—H2120.0C11—C14—H14A109.5
N2—C3—C2124.4 (3)C11—C14—H14B109.5
N2—C3—H3117.8H14A—C14—H14B109.5
C2—C3—H3117.8C11—C14—H14C109.5
C5—C4—C1119.9 (3)H14A—C14—H14C109.5
C5—C4—H4120.0H14B—C14—H14C109.5
C1—C4—H4120.0C16—C15—C10109.6 (3)
N2—C5—C4123.7 (3)C16—C15—C18108.9 (3)
N2—C5—C6114.0 (3)C10—C15—C18113.0 (3)
C4—C5—C6122.3 (3)C16—C15—C17109.0 (4)
N1—C6—C7118.7 (3)C10—C15—C17108.0 (3)
N1—C6—C5115.5 (3)C18—C15—C17108.3 (3)
C7—C6—C5125.9 (3)C15—C16—H16A109.5
C6—C7—C10121.1 (3)C15—C16—H16B109.5
C6—C7—H7119.4H16A—C16—H16B109.5
C10—C7—H7119.4C15—C16—H16C109.5
N1—C8—C9120.5 (3)H16A—C16—H16C109.5
N1—C8—H8119.8H16B—C16—H16C109.5
C9—C8—H8119.8C15—C17—H17A109.5
C8—C9—C10120.3 (3)C15—C17—H17B109.5
C8—C9—H9119.8H17A—C17—H17B109.5
C10—C9—H9119.8C15—C17—H17C109.5
C7—C10—C9117.3 (3)H17A—C17—H17C109.5
C7—C10—C15120.4 (3)H17B—C17—H17C109.5
C9—C10—C15122.3 (3)C15—C18—H18A109.5
C14—C11—C1111.2 (3)C15—C18—H18B109.5
C14—C11—C13109.1 (4)H18A—C18—H18B109.5
C1—C11—C13106.7 (3)C15—C18—H18C109.5
C14—C11—C12110.0 (4)H18A—C18—H18C109.5
C1—C11—C12112.5 (3)H18B—C18—H18C109.5
C13—C11—C12107.2 (4)
C4—C1—C2—C30.4 (5)C6—N1—C8—C90.2 (5)
C11—C1—C2—C3177.9 (4)N1—C8—C9—C100.9 (5)
C5—N2—C3—C20.1 (6)C6—C7—C10—C91.1 (4)
C1—C2—C3—N20.3 (7)C6—C7—C10—C15178.2 (3)
C2—C1—C4—C50.2 (4)C8—C9—C10—C71.5 (5)
C11—C1—C4—C5177.7 (3)C8—C9—C10—C15177.8 (3)
C3—N2—C5—C40.3 (5)C2—C1—C11—C14135.0 (4)
C3—N2—C5—C6179.1 (3)C4—C1—C11—C1447.6 (5)
C1—C4—C5—N20.2 (5)C2—C1—C11—C13106.1 (4)
C1—C4—C5—C6179.2 (3)C4—C1—C11—C1371.3 (4)
C8—N1—C6—C70.6 (4)C2—C1—C11—C1211.1 (5)
C8—N1—C6—C5179.2 (3)C4—C1—C11—C12171.5 (4)
N2—C5—C6—N119.3 (4)C7—C10—C15—C1656.6 (4)
C4—C5—C6—N1161.3 (3)C9—C10—C15—C16124.1 (4)
N2—C5—C6—C7160.5 (3)C7—C10—C15—C18178.2 (3)
C4—C5—C6—C719.0 (5)C9—C10—C15—C182.5 (5)
N1—C6—C7—C100.1 (4)C7—C10—C15—C1762.0 (4)
C5—C6—C7—C10179.8 (3)C9—C10—C15—C17117.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i1.00 (3)1.89 (3)2.716 (4)137 (3)
C4—H4···O3ii0.932.583.480 (4)164
C7—H7···O3ii0.932.493.389 (4)163
C9—H9···O3iii0.932.603.385 (4)143
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x1/2, y+1/2, z; (iii) x+1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H25N2+·NO3
Mr331.41
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)273
a, b, c (Å)11.606 (5), 9.770 (4), 16.199 (7)
V3)1836.8 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.29 × 0.24 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.962, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
11773, 1705, 1314
Rint0.042
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.112, 1.06
No. of reflections1705
No. of parameters227
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.13

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i1.00 (3)1.89 (3)2.716 (4)137 (3)
C4—H4···O3ii0.932.583.480 (4)164
C7—H7···O3ii0.932.493.389 (4)163
C9—H9···O3iii0.932.603.385 (4)143
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x1/2, y+1/2, z; (iii) x+1/2, y1/2, z1/2.
 

Acknowledgements

The author gratefully acknowledges the Natural Science Foundation of Guangdong Province of China (No. 10452606101004869) and the Natural Science Foundation of Zhaoqing University (No. 0933) for financial support.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuan, L. L., Xu, Y. H., Zhang, P., Wang, M. & Sun, L. C. (2010). Inorg. Chem. 49, 209–215.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHuertas, S., Hissler, M., McGarrah, J. E., Lachicotte, R. J. & Eisenberg, R. (2001). Inorg. Chem. 40, 1183–1188.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMorrow, J. R. & Trogler, W. C. (1989). Inorg. Chem. 28, 1330–2333.  Google Scholar
First citationNoro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. 39, 2081–2084.  CrossRef Google Scholar
First citationQin, Z. Q., Jennings, M. C. & Puddephatt, R. J. (2002). Inorg. Chem. 41, 3967–3974.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds