organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Morpholin-4-ium morpholine-4-carbo­di­thio­ate

aInstituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador Sãocarlense, 400, Caixa Postal 780, 13560-970, São Carlos SP, Brazil
*Correspondence e-mail: mafud@iqsc.usp.br

(Received 14 June 2011; accepted 1 July 2011; online 13 July 2011)

The title compound, C4H10NO+·C5H8NOS2, is built up of a morpholinium cation and a dithio­carbamate anion. In the crystal, two structurally independent formula units are linked via N—H⋯S hydrogen bonds, forming an inversion dimer, with graph-set motif R44(12).

Related literature

For the crystal structures of similar compounds, see: Wahlberg (1979[Wahlberg, A. (1979). Acta Cryst. B35, 485-487.], 1980[Wahlberg, A. (1980). Acta Cryst. B36, 2099-2103.], 1981[Wahlberg, A. (1981). Acta Cryst. B37, 1240-1244.]); Mafud & Gambardella (2011a[Mafud, A. C. & Gambardella, M. T. P. (2011a). Acta Cryst. E67, o879.],b[Mafud, A. C. & Gambardella, M. T. P. (2011b). Acta Cryst. E67, m942.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C4H10NO+·C5H8NOS2

  • Mr = 250.37

  • Monoclinic, P 21 /c

  • a = 7.938 (5) Å

  • b = 18.3232 (15) Å

  • c = 8.8260 (5) Å

  • β = 110.021 (5)°

  • V = 1206.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 290 K

  • 0.3 × 0.15 × 0.15 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.795, Tmax = 0.902

  • 3705 measured reflections

  • 3487 independent reflections

  • 2021 reflections with I > 2σ(I)

  • Rint = 0.041

  • 3 standard reflections every 120 min intensity decay: 5%

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.145

  • S = 1.00

  • 3487 reflections

  • 190 parameters

  • All H-atom parameters refined

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯S1 0.86 (4) 2.47 (4) 3.284 (3) 158 (3)
N2—H2N⋯S1i 0.91 (4) 2.75 (4) 3.453 (2) 135 (3)
N2—H2N⋯S2i 0.91 (4) 2.39 (3) 3.221 (2) 151 (3)
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989)[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]; cell refinement: CAD-4 EXPRESS[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The first thiocarbamic acid-ammonium salt, pyrrolidinedithiocarbamic acid-pyrrolidineammonium salt, was reported on previously by (Wahlberg, 1979; 1980; 1981). Our group have recently described the synthesis and crystal structures of ammonium piperidine-1-carbodithioate and sodium piperidine-1-carbodithioate dihydrate (Mafud & Gambardella, 2011a,b). Continuing our research on this subject, we report herein on the synthesis and crystal structure of the title salt, 1-Morpholinedithiocarbamic Acid-morpholineammonium Salt.

In the molecular structure of the title compound (Fig. 1) there is an intramolecular hydrogen bond involving the cation, via the nitrogen atom from amine group, and the anion, via the sulfur atom of dithiocarbamate (Table 1). The six membered rings have chair conformations, with puckering parameters are Q=0.554 (3) Å, θ = 177.4 (3)°, ϕ2 = 168 (6)° for the anion and Q = 0.566 (3) Å, θ = 1.4 (4)°, ϕ2 = 60 (14)° for the cation (Cremer & Pople, 1975).

In the crystal two structurally independent formula units are linked via N—H···S hydrogen bonds (Fig. 2, Table 1), to form a dimer arrangement centered about an inversion center, with graph-set R44(12) [Bernstein et al., 1995].

Related literature top

For the crystal structures of similar compounds, see: Wahlberg (1979, 1980, 1981); Mafud & Gambardella (2011a,b). For graph-set analysis, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The RNH2+ salt of the morpholinedithiocarbamate was prepared by slow addition of 0.1 mol of CS2 to a cold solution (ice bath) containing 0.2 mol of the morpholien amine dissolved in 30 ml of ethanol-water 1:1 (v/v) medium. The obtained solid was recrystallized from ethanol-water 1:1 (v/v) and dried in a vacuum oven at 323 K for 8 h. Colourless single crystals, suitable for X-ray diffraction analysis, were obtained. On heating they sublimed and decomposed.

Refinement top

All H-atom positions were located in a difference Fourier map and were freely refined.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecular structure of the title salt, with numering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of the N-H···S hydrogen bonded (dashed cyan lines) dimer in the title salt, with graph-set R44(12).
Morpholin-4-ium morpholine-4-carbodithioate top
Crystal data top
C4H10NO+·C5H8NOS2F(000) = 536
Mr = 250.37Dx = 1.379 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15 reflections
a = 7.938 (5) Åθ = 5.5–15.9°
b = 18.3232 (15) ŵ = 0.43 mm1
c = 8.8260 (5) ÅT = 290 K
β = 110.021 (5)°Prism, colourless
V = 1206.2 (8) Å30.3 × 0.15 × 0.15 mm
Z = 4
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.041
Graphite monochromatorθmax = 30.0°, θmin = 2.7°
non–profiled ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 025
Tmin = 0.795, Tmax = 0.902l = 1211
3705 measured reflections3 standard reflections every 120 min
3487 independent reflections intensity decay: 5%
2021 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145All H-atom parameters refined
S = 1.00 w = 1/[σ2(Fo2) + (0.0759P)2]
where P = (Fo2 + 2Fc2)/3
3487 reflections(Δ/σ)max = 0.004
190 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C4H10NO+·C5H8NOS2V = 1206.2 (8) Å3
Mr = 250.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.938 (5) ŵ = 0.43 mm1
b = 18.3232 (15) ÅT = 290 K
c = 8.8260 (5) Å0.3 × 0.15 × 0.15 mm
β = 110.021 (5)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
2021 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.041
Tmin = 0.795, Tmax = 0.9023 standard reflections every 120 min
3705 measured reflections intensity decay: 5%
3487 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.145All H-atom parameters refined
S = 1.00Δρmax = 0.56 e Å3
3487 reflectionsΔρmin = 0.39 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20657 (9)0.07843 (4)0.84253 (7)0.03827 (19)
S20.34115 (10)0.02991 (4)0.66044 (8)0.0448 (2)
O20.7186 (3)0.20279 (12)0.8050 (3)0.0558 (5)
O10.1390 (3)0.19488 (11)0.2852 (2)0.0547 (6)
N10.1685 (3)0.09147 (11)0.5323 (2)0.0344 (5)
N20.6455 (3)0.09075 (12)0.9933 (3)0.0352 (5)
C10.2314 (3)0.04987 (13)0.6648 (3)0.0301 (5)
C20.1739 (4)0.06872 (15)0.3746 (3)0.0425 (6)
C30.2422 (4)0.13083 (16)0.2981 (4)0.0458 (7)
C40.0698 (4)0.15994 (15)0.5227 (3)0.0390 (6)
C50.1441 (5)0.21801 (15)0.4412 (4)0.0472 (7)
C60.7585 (5)0.07751 (17)0.8933 (4)0.0478 (7)
C70.7033 (5)0.12905 (18)0.7531 (4)0.0506 (7)
C80.6555 (5)0.16802 (17)1.0443 (4)0.0515 (7)
C90.6074 (5)0.21637 (17)0.8988 (4)0.0556 (8)
H1N0.537 (5)0.079 (2)0.936 (4)0.067*
H2N0.681 (4)0.063 (2)1.085 (4)0.067*
H2A0.050 (4)0.053 (2)0.304 (4)0.067*
H2B0.248 (4)0.027 (2)0.394 (4)0.067*
H3A0.368 (4)0.1441 (19)0.369 (4)0.067*
H3B0.229 (4)0.1177 (19)0.187 (4)0.067*
H4A0.053 (5)0.1527 (19)0.457 (4)0.067*
H4B0.088 (5)0.1751 (18)0.628 (4)0.067*
H5A0.274 (5)0.2265 (19)0.512 (4)0.067*
H5B0.073 (4)0.261 (2)0.419 (4)0.067*
H6A0.887 (5)0.0884 (19)0.966 (4)0.067*
H6B0.748 (4)0.031 (2)0.863 (4)0.067*
H7A0.582 (5)0.1189 (19)0.685 (4)0.067*
H7B0.786 (4)0.125 (2)0.697 (4)0.067*
H8A0.791 (5)0.1709 (19)1.118 (4)0.067*
H8B0.590 (5)0.1737 (19)1.108 (4)0.067*
H9A0.481 (5)0.2048 (19)0.826 (4)0.067*
H9B0.628 (5)0.265 (2)0.933 (4)0.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0437 (4)0.0446 (4)0.0318 (3)0.0029 (3)0.0197 (3)0.0001 (3)
S20.0620 (5)0.0378 (4)0.0438 (4)0.0134 (3)0.0300 (3)0.0079 (3)
O20.0626 (14)0.0449 (12)0.0676 (13)0.0052 (10)0.0324 (11)0.0156 (10)
O10.0774 (15)0.0474 (12)0.0479 (11)0.0132 (10)0.0324 (10)0.0173 (9)
N10.0462 (13)0.0290 (10)0.0307 (10)0.0011 (8)0.0165 (9)0.0002 (8)
N20.0395 (12)0.0350 (11)0.0336 (10)0.0027 (9)0.0157 (9)0.0043 (8)
C10.0302 (11)0.0313 (11)0.0309 (11)0.0057 (9)0.0131 (9)0.0006 (9)
C20.0670 (19)0.0366 (14)0.0269 (12)0.0020 (13)0.0199 (12)0.0014 (10)
C30.0606 (19)0.0446 (16)0.0388 (14)0.0013 (14)0.0254 (13)0.0046 (12)
C40.0445 (16)0.0373 (14)0.0382 (13)0.0062 (11)0.0180 (12)0.0031 (11)
C50.0602 (19)0.0332 (14)0.0537 (17)0.0073 (13)0.0267 (14)0.0094 (12)
C60.0612 (19)0.0389 (15)0.0571 (17)0.0089 (14)0.0379 (15)0.0054 (13)
C70.0625 (19)0.0549 (18)0.0460 (16)0.0029 (15)0.0336 (15)0.0057 (13)
C80.071 (2)0.0428 (16)0.0476 (16)0.0035 (14)0.0285 (15)0.0029 (12)
C90.071 (2)0.0342 (15)0.069 (2)0.0078 (15)0.0329 (17)0.0062 (14)
Geometric parameters (Å, º) top
S1—C11.728 (2)C3—H3B0.98 (4)
S2—C11.709 (2)C4—C51.512 (4)
O2—C71.418 (4)C4—H4A0.96 (3)
O2—C91.423 (4)C4—H4B0.93 (3)
O1—C31.414 (3)C5—H5A1.02 (3)
O1—C51.428 (3)C5—H5B0.94 (4)
N1—C11.341 (3)C6—C71.498 (4)
N1—C41.466 (3)C6—H6A1.02 (3)
N1—C21.468 (3)C6—H6B0.89 (4)
N2—C61.478 (3)C7—H7A0.96 (3)
N2—C81.480 (4)C7—H7B0.95 (4)
N2—H1N0.86 (4)C8—C91.498 (4)
N2—H2N0.91 (4)C8—H8A1.05 (3)
C2—C31.515 (4)C8—H8B0.90 (3)
C2—H2A1.01 (3)C9—H9A1.01 (3)
C2—H2B0.94 (4)C9—H9B0.94 (4)
C3—H3A1.01 (3)
C7—O2—C9110.7 (2)H4A—C4—H4B115 (3)
C3—O1—C5110.1 (2)O1—C5—C4111.3 (2)
C1—N1—C4124.7 (2)O1—C5—H5A108.8 (19)
C1—N1—C2122.8 (2)C4—C5—H5A107.2 (19)
C4—N1—C2112.2 (2)O1—C5—H5B103 (2)
C6—N2—C8111.0 (2)C4—C5—H5B112 (2)
C6—N2—H1N107 (2)H5A—C5—H5B114 (3)
C8—N2—H1N111 (2)N2—C6—C7108.9 (2)
C6—N2—H2N112 (2)N2—C6—H6A106.0 (19)
C8—N2—H2N107 (2)C7—C6—H6A109.9 (19)
H1N—N2—H2N109 (3)N2—C6—H6B109 (2)
N1—C1—S2120.49 (17)C7—C6—H6B113 (2)
N1—C1—S1119.70 (18)H6A—C6—H6B110 (3)
S2—C1—S1119.79 (13)O2—C7—C6111.4 (3)
N1—C2—C3109.9 (2)O2—C7—H7A110 (2)
N1—C2—H2A109.1 (19)C6—C7—H7A110 (2)
C3—C2—H2A111 (2)O2—C7—H7B104 (2)
N1—C2—H2B106 (2)C6—C7—H7B109 (2)
C3—C2—H2B113 (2)H7A—C7—H7B112 (3)
H2A—C2—H2B108 (3)N2—C8—C9109.5 (2)
O1—C3—C2111.9 (2)N2—C8—H8A100.0 (19)
O1—C3—H3A106 (2)C9—C8—H8A114.1 (19)
C2—C3—H3A109.6 (19)N2—C8—H8B109 (2)
O1—C3—H3B105 (2)C9—C8—H8B116 (2)
C2—C3—H3B109 (2)H8A—C8—H8B107 (3)
H3A—C3—H3B115 (3)O2—C9—C8111.6 (3)
N1—C4—C5110.0 (2)O2—C9—H9A105.6 (19)
N1—C4—H4A109 (2)C8—C9—H9A109.2 (19)
C5—C4—H4A107 (2)O2—C9—H9B106 (2)
N1—C4—H4B107 (2)C8—C9—H9B109 (2)
C5—C4—H4B108 (2)H9A—C9—H9B116 (3)
C4—N1—C1—S2178.8 (2)C2—N1—C4—C553.1 (3)
C2—N1—C1—S25.9 (3)C3—O1—C5—C460.0 (3)
C4—N1—C1—S13.0 (3)N1—C4—C5—O156.4 (3)
C2—N1—C1—S1175.9 (2)C8—N2—C6—C755.7 (4)
C1—N1—C2—C3133.9 (3)C9—O2—C7—C660.0 (4)
C4—N1—C2—C352.4 (3)N2—C6—C7—O258.1 (4)
C5—O1—C3—C259.7 (3)C6—N2—C8—C954.9 (4)
N1—C2—C3—O155.7 (3)C7—O2—C9—C859.0 (4)
C1—N1—C4—C5133.4 (3)N2—C8—C9—O256.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···S10.86 (4)2.47 (4)3.284 (3)158 (3)
N2—H2N···S1i0.91 (4)2.75 (4)3.453 (2)135 (3)
N2—H2N···S2i0.91 (4)2.39 (3)3.221 (2)151 (3)
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC4H10NO+·C5H8NOS2
Mr250.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)7.938 (5), 18.3232 (15), 8.8260 (5)
β (°) 110.021 (5)
V3)1206.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.3 × 0.15 × 0.15
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.795, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
3705, 3487, 2021
Rint0.041
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.145, 1.00
No. of reflections3487
No. of parameters190
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.56, 0.39

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···S10.86 (4)2.47 (4)3.284 (3)158 (3)
N2—H2N···S1i0.91 (4)2.75 (4)3.453 (2)135 (3)
N2—H2N···S2i0.91 (4)2.39 (3)3.221 (2)151 (3)
Symmetry code: (i) x+1, y, z+2.
 

Acknowledgements

We are grateful to the Instituto de Química de São Carlos and the Universidade de São Paulo for supporting this study.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMafud, A. C. & Gambardella, M. T. P. (2011a). Acta Cryst. E67, o879.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMafud, A. C. & Gambardella, M. T. P. (2011b). Acta Cryst. E67, m942.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWahlberg, A. (1979). Acta Cryst. B35, 485–487.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWahlberg, A. (1980). Acta Cryst. B36, 2099–2103.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWahlberg, A. (1981). Acta Cryst. B37, 1240–1244.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds