organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2079-o2080

1-(2-Hy­dr­oxy­eth­yl)-4-[3-(2-tri­fluoro­methyl-9H-thioxanthen-9-yl­­idene)prop­yl]piperazine-1,4-diium dichloride: the di­hydro­chloride salt of flupentixol

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 27 June 2011; accepted 13 July 2011; online 23 July 2011)

In the title compound, C23H27F3N2OS+·2Cl, the piperazinediium ring adopts a chair conformation. The dihedral angle between the two outer aromatic rings of the 9H-thioxanthene unit is 40.35 (18)°. The F atoms in the trifluoro­methyl group are disordered over two sets of sites with occupancies of 0.803 (6) and 0.197 (6). In the crystal, mol­ecules are connected by N—H⋯Cl, O—H⋯Cl C—H⋯O and C—H⋯Cl hydrogen bonds, forming chains propagating along [001]. There are also C—H⋯π inter­actions present in the crystal structure.

Related literature

For the anti­depressant action of flupentixol, see: Robertson & Trimble (1981[Robertson, M. M. & Trimble, M. R. (1981). Practitioner, 225, 761-763.]). For related structures, see: Post et al. (1975a[Post, M. L., Kennard, O. & Horn, A. S. (1975a). Acta Cryst. B31, 2724-2726.],b[Post, M. L., Kennard, O., Sheldrick, G. M. & Horn, A. S. (1975b). Acta Cryst. B31, 2366-2368.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C23H27F3N2OS2+·2Cl

  • Mr = 507.44

  • Monoclinic, C 2/c

  • a = 34.1750 (17) Å

  • b = 7.1613 (3) Å

  • c = 22.6351 (11) Å

  • β = 115.307 (6)°

  • V = 5008.0 (5) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 3.46 mm−1

  • T = 295 K

  • 0.43 × 0.34 × 0.21 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.430, Tmax = 1.000

  • 9840 measured reflections

  • 5032 independent reflections

  • 3792 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.230

  • S = 1.05

  • 5032 reflections

  • 289 parameters

  • 48 restraints

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C8–C13 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.91 2.10 2.997 (3) 168
O1—H1B⋯Cl1 0.82 2.27 3.030 (4) 155
N2—H2A⋯Cl2 0.91 2.13 3.035 (3) 175
C17—H17A⋯Cl1ii 0.97 2.64 3.600 (4) 169
C18—H18A⋯Cl1iii 0.97 2.64 3.561 (3) 159
C20—H20B⋯O1 0.97 2.34 2.999 (6) 125
C21—H21A⋯O1ii 0.97 2.35 3.153 (6) 140
C22—H22A⋯Cl2iv 0.97 2.77 3.690 (4) 160
C19—H19ACg2v 0.97 2.65 3.618 (4) 176
C23—H23BCg1i 0.97 2.69 3.658 (5) 174
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) x, y-1, z; (v) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Flupentixol (formally called flupenthixol), 2-(4-(3-(2-(trifluoromethyl)-9H-thioxanthen-9-yl)propyl) piperazin-1-yl)ethanol, is a typical antipsychotic drug of the thioxanthene class. In addition to single drug preparations, it is also available as a deanxit; a combination product containing both melitracen and flupentixol. The antidepressant action of flupentixol has been described by (Robertson & Trimble, 1981). The crystal structures of α-flupenthixol (Post et al., 1975a) and β-flupenthixol (Post et al., 1975b) have been reported. In view of the importance of flupentixol, herein we report on the crystal structure of its Dihydrochloride salt.

In the molecule of the title compound, (Fig. 1), the piperazinediium ring exhibits a chair conformation, with puckering parameters QT = 0.584 (4) Å, θ = 5.5 (3) ° and ϕ = 175 (4) ° (Cremer & Pople, 1975). The two aromatic rings of the 9H-thioxanthene unit make a dihedral angle of 40.35 (18)°.

The crystal structure of the title compound is stabilized by N—H···Cl, O—H···Cl, C—H···O and C—H···Cl hydrogen bonds, forming chains propagating along the c axis direction (Table 1, Fig. 2). There are also C—H···π interactions present (Table 1).

Related literature top

For the antidepressant action of flupentixol, see: Robertson & Trimble (1981). For related structures, see: Post et al. (1975a,b). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was a gift sample from R. L. Fine Chemicals, Bangalore, India. X-ray quality crystals were obtained from a 1:1 mixture of ethanol and methanol by slow evaporation (m.p.: 510–512 K).

Refinement top

All the H atoms were placed in calculated positions and treated as riding atoms: N—H(amino) = 0.91 Å, O—H(hydroxyl) = 0.82 Å, C—H = 0.93

and 0.97 Å for aromatic and methylene H-atoms, respectively, with Uiso(H) = k × Ueq(O,C,N), where k = 1.5 for OH(hydroxyl) and k = 1.2 for all other H-atoms. Atoms F1, F2 and F3 of the CF3 group are disordered over two sets of sites, with refined occupancy factors in the ratio 0.803 (6):0.197 (6). 14 reflections with bad agreement between Fo and Fc were omitted from the last cycles of least-squares refinement.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title molecule, showing the atom labeling scheme and the displacement ellipsoids drawn at the 30% probability level. Only the major components of the disordered CF3 group are shown.
[Figure 2] Fig. 2. Crystal packing diagram, with the hydrogen bonding (dashed lines), of the title compound viewed along the b axis. Only the major components of the disordered CF3 group are shown.
1-(2-Hydroxyethyl)-4-[3-(2-trifluoromethyl-9H-thioxanthen-9- ylidene)propyl]piperazine-1,4-diium dichloride top
Crystal data top
C23H27F3N2OS2+·2ClF(000) = 2112
Mr = 507.44Dx = 1.346 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2ycCell parameters from 3191 reflections
a = 34.1750 (17) Åθ = 5.2–75.3°
b = 7.1613 (3) ŵ = 3.46 mm1
c = 22.6351 (11) ÅT = 295 K
β = 115.307 (6)°Prism, colourless
V = 5008.0 (5) Å30.43 × 0.34 × 0.21 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
5032 independent reflections
Radiation source: Enhance (Cu) X-ray Source3792 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.5081 pixels mm-1θmax = 75.4°, θmin = 5.5°
ω scansh = 4241
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 88
Tmin = 0.430, Tmax = 1.000l = 2817
9840 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.230H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1341P)2 + 2.8648P]
where P = (Fo2 + 2Fc2)/3
5032 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 1.02 e Å3
48 restraintsΔρmin = 0.43 e Å3
Crystal data top
C23H27F3N2OS2+·2ClV = 5008.0 (5) Å3
Mr = 507.44Z = 8
Monoclinic, C2/cCu Kα radiation
a = 34.1750 (17) ŵ = 3.46 mm1
b = 7.1613 (3) ÅT = 295 K
c = 22.6351 (11) Å0.43 × 0.34 × 0.21 mm
β = 115.307 (6)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
5032 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
3792 reflections with I > 2σ(I)
Tmin = 0.430, Tmax = 1.000Rint = 0.028
9840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06948 restraints
wR(F2) = 0.230H-atom parameters constrained
S = 1.05Δρmax = 1.02 e Å3
5032 reflectionsΔρmin = 0.43 e Å3
289 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S0.57461 (4)1.14222 (16)0.35221 (7)0.0884 (4)
F1B0.57123 (16)0.4027 (6)0.17114 (19)0.1148 (16)0.803 (6)
F2B0.5404 (2)0.6060 (7)0.0960 (2)0.153 (2)0.803 (6)
F3B0.50494 (14)0.4598 (8)0.1387 (3)0.156 (2)0.803 (6)
O10.81039 (14)0.4005 (6)0.22005 (15)0.1096 (15)
N10.74387 (7)0.4815 (4)0.39823 (12)0.0526 (7)
N20.81206 (8)0.4717 (4)0.35317 (11)0.0554 (8)
C10.60586 (9)0.7385 (5)0.38628 (16)0.0576 (9)
C20.58158 (6)0.7828 (3)0.31479 (8)0.0575 (9)
C30.57390 (7)0.6452 (2)0.26781 (10)0.0638 (10)
C40.55139 (7)0.6884 (3)0.20190 (9)0.0691 (11)
C50.53658 (8)0.8693 (4)0.18297 (8)0.0803 (14)
C60.54426 (8)1.0069 (3)0.22994 (12)0.0813 (16)
C70.56677 (7)0.9636 (3)0.29585 (11)0.0675 (11)
C80.57315 (10)1.0114 (6)0.41747 (19)0.0704 (11)
C90.55696 (12)1.0993 (8)0.4577 (2)0.0892 (18)
C100.55546 (13)1.0009 (10)0.5087 (2)0.098 (2)
C110.56923 (16)0.8215 (10)0.5202 (2)0.098 (2)
C120.58549 (13)0.7320 (7)0.48050 (19)0.0804 (14)
C130.58772 (10)0.8272 (6)0.42855 (17)0.0639 (10)
C140.54294 (13)0.5409 (7)0.15137 (18)0.0959 (18)
C150.64145 (11)0.6333 (5)0.41210 (17)0.0631 (10)
C160.66663 (10)0.5476 (5)0.37845 (17)0.0623 (10)
C170.71416 (10)0.5881 (5)0.41901 (15)0.0574 (9)
C180.78999 (10)0.5299 (6)0.44121 (14)0.0654 (12)
C190.82119 (10)0.4273 (6)0.42243 (15)0.0669 (12)
C200.76719 (10)0.4095 (5)0.31076 (15)0.0609 (10)
C210.73502 (9)0.5109 (5)0.32828 (14)0.0585 (9)
C220.84554 (11)0.3868 (6)0.33492 (18)0.0703 (13)
C230.84521 (12)0.4698 (7)0.27293 (19)0.0754 (14)
F3A0.5493 (6)0.3669 (14)0.1704 (10)0.156 (2)0.197 (6)
F1A0.5709 (4)0.581 (2)0.1264 (8)0.1148 (16)0.197 (6)
F2A0.5040 (3)0.556 (3)0.1030 (6)0.153 (2)0.197 (6)
Cl10.78205 (5)0.58962 (13)0.08841 (5)0.0878 (4)
Cl20.81966 (4)0.89329 (16)0.34901 (7)0.0992 (4)
H1B0.801700.479200.191000.1640*
H5A0.521500.898200.138900.0960*
H2A0.813200.597900.349500.0670*
H3A0.583800.524200.280500.0770*
H1A0.740200.357900.403700.0630*
H11A0.567900.757200.555000.1180*
H12A0.594800.608700.488900.0960*
H15A0.652000.610100.456700.0760*
H16A0.657300.600300.335100.0750*
H6A0.534301.127900.217300.0980*
H9A0.547401.222400.450000.1070*
H10A0.544801.058200.535700.1170*
H18A0.796200.500200.486200.0790*
H18B0.794100.663200.438600.0790*
H19A0.850600.463500.451100.0800*
H19B0.818400.293900.427100.0800*
H20A0.764800.276200.315900.0730*
H20B0.760800.433600.265400.0730*
H21A0.736200.643400.320300.0700*
H21B0.706100.466900.300500.0700*
H22A0.840500.253500.328900.0840*
H22B0.873900.405200.370600.0840*
H23A0.843300.604800.274000.0900*
H23B0.871800.437800.269700.0900*
H16B0.661800.413800.374200.0750*
H17A0.719100.720700.416500.0690*
H17B0.721400.558600.464300.0690*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0929 (7)0.0654 (6)0.1139 (8)0.0122 (5)0.0508 (6)0.0065 (5)
F1B0.132 (3)0.112 (3)0.093 (2)0.009 (2)0.041 (2)0.020 (2)
F2B0.246 (6)0.139 (3)0.070 (2)0.015 (4)0.064 (3)0.007 (2)
F3B0.129 (3)0.150 (4)0.156 (4)0.058 (3)0.030 (3)0.033 (3)
O10.124 (3)0.129 (3)0.0652 (16)0.048 (2)0.0302 (17)0.0017 (17)
N10.0480 (12)0.0530 (13)0.0522 (13)0.0016 (10)0.0169 (10)0.0101 (10)
N20.0478 (12)0.0677 (15)0.0464 (12)0.0014 (11)0.0159 (9)0.0046 (11)
C10.0474 (14)0.0607 (17)0.0644 (16)0.0007 (13)0.0237 (12)0.0043 (14)
C20.0438 (13)0.0623 (17)0.0693 (18)0.0024 (12)0.0269 (12)0.0100 (15)
C30.0514 (15)0.0686 (19)0.0668 (18)0.0023 (14)0.0208 (13)0.0109 (16)
C40.0506 (16)0.085 (2)0.0688 (19)0.0043 (16)0.0227 (14)0.0097 (18)
C50.0608 (19)0.106 (3)0.075 (2)0.014 (2)0.0298 (17)0.032 (2)
C60.077 (2)0.085 (3)0.094 (3)0.027 (2)0.048 (2)0.037 (2)
C70.0565 (17)0.072 (2)0.083 (2)0.0091 (15)0.0385 (16)0.0152 (18)
C80.0448 (14)0.084 (2)0.079 (2)0.0041 (15)0.0231 (14)0.0116 (19)
C90.0517 (18)0.114 (4)0.091 (3)0.011 (2)0.0202 (17)0.025 (3)
C100.0555 (19)0.153 (5)0.083 (3)0.001 (3)0.0279 (18)0.033 (3)
C110.078 (3)0.149 (5)0.073 (2)0.024 (3)0.037 (2)0.011 (3)
C120.072 (2)0.102 (3)0.068 (2)0.010 (2)0.0307 (17)0.002 (2)
C130.0429 (13)0.081 (2)0.0644 (18)0.0036 (14)0.0198 (12)0.0025 (16)
C140.096 (3)0.108 (4)0.067 (2)0.014 (3)0.019 (2)0.004 (2)
C150.0567 (16)0.0662 (19)0.0625 (17)0.0038 (14)0.0217 (14)0.0051 (15)
C160.0529 (16)0.0620 (18)0.0651 (18)0.0104 (14)0.0185 (13)0.0022 (15)
C170.0579 (16)0.0559 (17)0.0552 (15)0.0031 (13)0.0212 (13)0.0033 (13)
C180.0523 (15)0.095 (3)0.0416 (14)0.0110 (16)0.0130 (11)0.0023 (15)
C190.0426 (14)0.102 (3)0.0483 (15)0.0018 (15)0.0119 (11)0.0122 (16)
C200.0485 (15)0.075 (2)0.0498 (15)0.0028 (14)0.0119 (12)0.0014 (14)
C210.0493 (14)0.0712 (19)0.0456 (14)0.0073 (14)0.0112 (11)0.0058 (13)
C220.0511 (16)0.091 (3)0.0645 (18)0.0055 (16)0.0207 (14)0.0011 (17)
C230.0643 (19)0.097 (3)0.072 (2)0.0101 (19)0.0360 (16)0.010 (2)
F3A0.129 (3)0.150 (4)0.156 (4)0.058 (3)0.030 (3)0.033 (3)
F1A0.132 (3)0.112 (3)0.093 (2)0.009 (2)0.041 (2)0.020 (2)
F2A0.246 (6)0.139 (3)0.070 (2)0.015 (4)0.064 (3)0.007 (2)
Cl10.1424 (10)0.0536 (5)0.0658 (5)0.0110 (5)0.0430 (6)0.0025 (4)
Cl20.0772 (6)0.0709 (6)0.1183 (9)0.0076 (5)0.0121 (6)0.0168 (6)
Geometric parameters (Å, º) top
S—C71.745 (3)C11—C121.398 (7)
S—C81.768 (4)C12—C131.389 (6)
F1A—C141.333 (16)C15—C161.503 (5)
F1B—C141.321 (7)C16—C171.513 (5)
F2A—C141.318 (13)C18—C191.498 (5)
F2B—C141.305 (6)C20—C211.505 (5)
F3A—C141.306 (12)C22—C231.520 (6)
F3B—C141.337 (7)C3—H3A0.9300
O1—C231.370 (6)C5—H5A0.9300
O1—H1B0.8200C6—H6A0.9300
N1—C181.497 (4)C9—H9A0.9300
N1—C211.494 (4)C10—H10A0.9300
N1—C171.498 (5)C11—H11A0.9300
N2—C191.496 (4)C12—H12A0.9300
N2—C201.488 (4)C15—H15A0.9300
N2—C221.501 (5)C16—H16A0.9700
N1—H1A0.9100C16—H16B0.9700
N2—H2A0.9100C17—H17A0.9700
C1—C131.487 (5)C17—H17B0.9700
C1—C21.503 (4)C18—H18A0.9700
C1—C151.335 (5)C18—H18B0.9700
C2—C71.390 (3)C19—H19A0.9700
C2—C31.390 (3)C19—H19B0.9700
C3—C41.390 (3)C20—H20A0.9700
C4—C141.492 (5)C20—H20B0.9700
C4—C51.390 (4)C21—H21A0.9700
C5—C61.390 (3)C21—H21B0.9700
C6—C71.390 (3)C22—H22A0.9700
C8—C131.394 (6)C22—H22B0.9700
C8—C91.401 (6)C23—H23A0.9700
C9—C101.372 (7)C23—H23B0.9700
C10—C111.355 (10)
C7—S—C899.91 (17)N2—C22—C23113.0 (3)
C23—O1—H1B109.00O1—C23—C22109.0 (4)
C17—N1—C21113.8 (2)C2—C3—H3A120.00
C18—N1—C21109.6 (2)C4—C3—H3A120.00
C17—N1—C18110.2 (3)C4—C5—H5A120.00
C19—N2—C22111.1 (3)C6—C5—H5A120.00
C20—N2—C22113.4 (3)C5—C6—H6A120.00
C19—N2—C20108.0 (3)C7—C6—H6A120.00
C17—N1—H1A108.00C8—C9—H9A121.00
C18—N1—H1A108.00C10—C9—H9A121.00
C21—N1—H1A108.00C9—C10—H10A119.00
C19—N2—H2A108.00C11—C10—H10A120.00
C20—N2—H2A108.00C10—C11—H11A120.00
C22—N2—H2A108.00C12—C11—H11A120.00
C13—C1—C15120.8 (3)C11—C12—H12A120.00
C2—C1—C13114.4 (3)C13—C12—H12A120.00
C2—C1—C15124.8 (3)C1—C15—H15A116.00
C3—C2—C7119.99 (17)C16—C15—H15A116.00
C1—C2—C3120.7 (2)C15—C16—H16A110.00
C1—C2—C7119.3 (2)C15—C16—H16B110.00
C2—C3—C4120.01 (16)C17—C16—H16A110.00
C3—C4—C5119.98 (17)C17—C16—H16B110.00
C3—C4—C14120.2 (2)H16A—C16—H16B108.00
C5—C4—C14119.9 (2)N1—C17—H17A109.00
C4—C5—C6120.01 (17)N1—C17—H17B109.00
C5—C6—C7120.0 (2)C16—C17—H17A109.00
S—C7—C2122.40 (17)C16—C17—H17B109.00
S—C7—C6117.57 (17)H17A—C17—H17B108.00
C2—C7—C6120.0 (2)N1—C18—H18A109.00
S—C8—C13121.1 (3)N1—C18—H18B109.00
C9—C8—C13121.2 (4)C19—C18—H18A109.00
S—C8—C9117.7 (3)C19—C18—H18B109.00
C8—C9—C10118.9 (5)H18A—C18—H18B108.00
C9—C10—C11120.9 (5)N2—C19—H19A110.00
C10—C11—C12120.8 (5)N2—C19—H19B110.00
C11—C12—C13120.0 (5)C18—C19—H19A110.00
C1—C13—C12121.6 (4)C18—C19—H19B110.00
C1—C13—C8120.2 (3)H19A—C19—H19B108.00
C8—C13—C12118.2 (4)N2—C20—H20A110.00
F1B—C14—F2B109.4 (5)N2—C20—H20B109.00
F1B—C14—F3B104.5 (5)C21—C20—H20A110.00
F1B—C14—C4113.4 (3)C21—C20—H20B110.00
F2B—C14—F3B106.8 (5)H20A—C20—H20B108.00
F2B—C14—C4113.3 (4)N1—C21—H21A109.00
F3B—C14—C4108.9 (4)N1—C21—H21B109.00
F3A—C14—C4118.2 (9)C20—C21—H21A109.00
F1A—C14—C4103.5 (7)C20—C21—H21B109.00
F2A—C14—C4112.0 (9)H21A—C21—H21B108.00
F2A—C14—F3A108.6 (13)N2—C22—H22A109.00
F1A—C14—F2A106.4 (9)N2—C22—H22B109.00
F1A—C14—F3A107.3 (12)C23—C22—H22A109.00
C1—C15—C16128.4 (3)C23—C22—H22B109.00
C15—C16—C17108.2 (3)H22A—C22—H22B108.00
N1—C17—C16114.1 (3)O1—C23—H23A110.00
N1—C18—C19112.4 (3)O1—C23—H23B110.00
N2—C19—C18109.8 (3)C22—C23—H23A110.00
N2—C20—C21110.7 (3)C22—C23—H23B110.00
N1—C21—C20111.8 (3)H23A—C23—H23B108.00
C8—S—C7—C231.8 (3)C3—C2—C7—C60.0 (4)
C8—S—C7—C6147.3 (2)C2—C3—C4—C50.0 (4)
C7—S—C8—C9148.7 (3)C2—C3—C4—C14179.8 (3)
C7—S—C8—C1331.5 (4)C3—C4—C5—C60.0 (4)
C18—N1—C17—C16179.7 (3)C14—C4—C5—C6179.8 (3)
C21—N1—C17—C1656.7 (4)C3—C4—C14—F1B25.0 (5)
C17—N1—C18—C19179.9 (3)C3—C4—C14—F2B150.5 (4)
C21—N1—C18—C1953.9 (4)C3—C4—C14—F3B90.8 (4)
C17—N1—C21—C20176.9 (3)C5—C4—C14—F1B155.2 (4)
C18—N1—C21—C2053.0 (4)C5—C4—C14—F2B29.8 (6)
C20—N2—C19—C1860.8 (4)C5—C4—C14—F3B89.0 (4)
C22—N2—C19—C18174.2 (3)C4—C5—C6—C70.0 (4)
C19—N2—C20—C2160.8 (4)C5—C6—C7—S179.1 (2)
C22—N2—C20—C21175.6 (3)C5—C6—C7—C20.0 (4)
C19—N2—C22—C23164.1 (3)S—C8—C9—C10180.0 (4)
C20—N2—C22—C2374.0 (4)C13—C8—C9—C100.2 (6)
C13—C1—C2—C3138.9 (3)S—C8—C13—C11.5 (5)
C13—C1—C2—C741.1 (4)S—C8—C13—C12179.7 (3)
C15—C1—C2—C342.8 (5)C9—C8—C13—C1178.4 (4)
C15—C1—C2—C7137.2 (3)C9—C8—C13—C120.5 (6)
C2—C1—C13—C841.3 (5)C8—C9—C10—C110.2 (7)
C2—C1—C13—C12139.9 (4)C9—C10—C11—C120.2 (8)
C15—C1—C13—C8137.1 (4)C10—C11—C12—C130.1 (7)
C15—C1—C13—C1241.7 (6)C11—C12—C13—C1178.4 (4)
C2—C1—C15—C164.3 (6)C11—C12—C13—C80.4 (6)
C13—C1—C15—C16173.9 (4)C1—C15—C16—C17132.6 (4)
C1—C2—C3—C4180.0 (2)C15—C16—C17—N1169.2 (3)
C7—C2—C3—C40.0 (4)N1—C18—C19—N258.8 (4)
C1—C2—C7—S0.9 (3)N2—C20—C21—N158.1 (4)
C1—C2—C7—C6180.0 (3)N2—C22—C23—O175.4 (5)
C3—C2—C7—S179.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C8–C13 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.912.102.997 (3)168
O1—H1B···Cl10.822.273.030 (4)155
N2—H2A···Cl20.912.133.035 (3)175
C17—H17A···Cl1ii0.972.643.600 (4)169
C18—H18A···Cl1iii0.972.643.561 (3)159
C20—H20B···O10.972.342.999 (6)125
C21—H21A···O1ii0.972.353.153 (6)140
C22—H22A···Cl2iv0.972.773.690 (4)160
C19—H19A···Cg2v0.972.653.618 (4)176
C23—H23B···Cg1i0.972.693.658 (5)174
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x, y+1, z+1/2; (iv) x, y1, z; (v) x+3/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC23H27F3N2OS2+·2Cl
Mr507.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)34.1750 (17), 7.1613 (3), 22.6351 (11)
β (°) 115.307 (6)
V3)5008.0 (5)
Z8
Radiation typeCu Kα
µ (mm1)3.46
Crystal size (mm)0.43 × 0.34 × 0.21
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.430, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9840, 5032, 3792
Rint0.028
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.230, 1.05
No. of reflections5032
No. of parameters289
No. of restraints48
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 0.43

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C8–C13 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.912.102.997 (3)168
O1—H1B···Cl10.822.273.030 (4)155
N2—H2A···Cl20.912.133.035 (3)175
C17—H17A···Cl1ii0.972.643.600 (4)169
C18—H18A···Cl1iii0.972.643.561 (3)159
C20—H20B···O10.972.342.999 (6)125
C21—H21A···O1ii0.972.353.153 (6)140
C22—H22A···Cl2iv0.972.773.690 (4)160
C19—H19A···Cg2v0.972.653.618 (4)176
C23—H23B···Cg1i0.972.693.658 (5)174
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x, y+1, z+1/2; (iv) x, y1, z; (v) x+3/2, y+3/2, z+1.
 

Acknowledgements

MSS thanks the University of Mysore for the research facilities. HSY thanks R. L. Fine Chemicals, Bangalore, for the gift sample. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPost, M. L., Kennard, O. & Horn, A. S. (1975a). Acta Cryst. B31, 2724–2726.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPost, M. L., Kennard, O., Sheldrick, G. M. & Horn, A. S. (1975b). Acta Cryst. B31, 2366–2368.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRobertson, M. M. & Trimble, M. R. (1981). Practitioner, 225, 761–763.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2079-o2080
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds