organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-[3-(Di­methyl­amino)­prop­yl]-2-tri­fluoro­meth­yl-9H-thioxanthen-9-ol

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Chemistry, Sambhram Institute of Technology, Bangalore 560 097, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 23 June 2011; accepted 27 June 2011; online 2 July 2011)

In the title compound, C19H20F3NOS, the dihedral angle between the mean planes of the two benzene rings attached to the thioxanthene ring is 41.8 (7)°; the latter has a slightly distorted boat conformation. The F atoms are disordered over three sets of sites [occupancy ratio = 0.564 (10):0.287 (10):0.148 (5)] and the methyl groups are disordered over two sets of sites [occupancy ratio = 0.72 (4):0.28 (4)]. The crystal packing is stabilized by O—H⋯N and C—H⋯S hydrogen bonds and weak C—H⋯Cg inter­actions.

Related literature

For photo-initiators with excellent capabilities in UV-curing materials, see: Fouassier et al. (1995[Fouassier, J. P., Ruhlmann, D., Graff, D., Morlet-Savary, F. & Wieder, F. (1995). Prog. Org. Coat. 25, 235-271.]); Roffey (1997[Roffey, C. (1997). In Photogeneration of Reactive Species for UV-Curing. Sussex, England: Wiley.]). For related structures, see: Post et al. (1975a[Post, M. L., Kennard, O. & Horn, A. S. (1975a). Acta Cryst. B31, 2724-2726.],b[Post, M. L., Kennard, O., Sheldrick, G. M. & Horn, A. S. (1975b). Acta Cryst. B31, 2366-2368.]); Liu, (2009[Liu, G. (2009). Acta Cryst. E65, o613.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20F3NOS

  • Mr = 367.42

  • Monoclinic, P 21 /n

  • a = 7.6183 (3) Å

  • b = 13.9605 (4) Å

  • c = 17.4172 (7) Å

  • β = 101.053 (4)°

  • V = 1818.05 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 170 K

  • 0.35 × 0.33 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.929, Tmax = 0.939

  • 17330 measured reflections

  • 4697 independent reflections

  • 3901 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.116

  • S = 1.05

  • 4697 reflections

  • 306 parameters

  • 238 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C2–C7 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.87 (2) 1.84 (2) 2.7141 (17) 176 (2)
C15—H15A⋯S1 0.99 2.76 3.4165 (15) 124
C5—H5ACg3i 0.95 2.96 3.798 (3) 148
C17—H17ACg2ii 0.99 2.97 3.949 (3) 170
C17—H17BCg3ii 0.99 2.83 3.659 (3) 142
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is a flupenthixol impurity with systematic IUPAC name: (RS)-9-[3-(dimethylamino)propyl]-2-(trifluoromethyl)-9H-thioxanthen-9-ol. Flupenthixol is a thioxanthene derivative that may exist in two isomeric forms, α and β. Flupenthixol contains 45-55 % α-flupenthixol. The pharmacological effects of flupenthixol, α- and β-flupenthixol have been compared with those of clopenthixol, chlorprothixene, fluphenazine, perphenazine, chlorpromazine and haloperidol. In most pharmacological screening tests α-flupenthixol was equipotent with fluphenazine. β-Flupenthixol showed very low pharmacological activity. As expected the potency of flupenthixol was about one half that of α-flupenthixol. Thioxanthone derivatives are good photoinitiators with excellent capabilities in UV-curing materials (Fouassier et al., 1995; Roffey, 1997). The crystal structures of α-flupenthixol (Post et al., 1975b), β-flupenthixol (Post et al., 1975a) and 2,4-diethylthioxanthen-9-one (Liu, 2009) have been reported. In view of the importance of the title compound the crystal structure is herein reported.

In the title compound, (I), the dihedral angle between the mean planes of the two benzene rings in the thioxanthene ring is 41.8 (7) ° (Fig. 1). The thioxanthene ring is in a slightly distorted boat conformation (Cremer & Pople, 1975) with puckering parameters Q, θ, and ϕ = 0.591 (2) Å, 92.72 (19) ° and 359.8 (2) °, respectively). Crystal packing is stabilized by O1—H1A···N1, C15—H15A···S1 hydrogen bonds and weak C—H···Cg intermolecular interactions (Fig. 2, Table 1).

Related literature top

For photo-initiators with excellent capabilities in UV-curing materials, see: Fouassier et al. (1995); Roffey (1997). For related structures, see: Post et al. (1975a,b); Liu, (2009). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was obtained as a gift sample from R. L. Fine Chem. Ltd., Bangalore, India. The compound was recrystallized from dichloromethane (M.pt.: 389–391 K).

Refinement top

The fluorine atoms on C14 are disordered over three positions [occupancy ratio 0.564 (10); 0.287 (10); 0.148 (5)] and the methyl groups on N1 are disordered over two positions [occupancy ratio 0.72 (4); 0.28 (4)]. The O–H hydrogen atom was located by Fourier analysis and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with atom–H lengths of 0.95 Å (CH), 0.99 Å (CH2) or 0.98 Å (CH3). Isotropic displacement parameters for these atoms were set to 1.18-1.20 (CH) or 1.20 (CH2) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis. Dashed lines represent disordered C—F atoms.
9-[3-(Dimethylamino)propyl]-2-trifluoromethyl-9H-thioxanthen-9-ol top
Crystal data top
C19H20F3NOSF(000) = 768
Mr = 367.42Dx = 1.342 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9234 reflections
a = 7.6183 (3) Åθ = 3.3–32.3°
b = 13.9605 (4) ŵ = 0.21 mm1
c = 17.4172 (7) ÅT = 170 K
β = 101.053 (4)°Block, pale yellow
V = 1818.05 (11) Å30.35 × 0.33 × 0.30 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4697 independent reflections
Radiation source: Enhance (Mo) X-ray Source3901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.1500 pixels mm-1θmax = 28.7°, θmin = 3.5°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1815
Tmin = 0.929, Tmax = 0.939l = 2323
17330 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.6042P]
where P = (Fo2 + 2Fc2)/3
4697 reflections(Δ/σ)max = 0.037
306 parametersΔρmax = 0.28 e Å3
238 restraintsΔρmin = 0.29 e Å3
Crystal data top
C19H20F3NOSV = 1818.05 (11) Å3
Mr = 367.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6183 (3) ŵ = 0.21 mm1
b = 13.9605 (4) ÅT = 170 K
c = 17.4172 (7) Å0.35 × 0.33 × 0.30 mm
β = 101.053 (4)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4697 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
3901 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.939Rint = 0.022
17330 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043238 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.28 e Å3
4697 reflectionsΔρmin = 0.29 e Å3
306 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.74858 (6)0.83313 (3)0.17618 (2)0.04558 (12)
F10.6729 (8)0.6443 (4)0.5165 (2)0.0783 (14)0.564 (10)
F20.9343 (6)0.5995 (5)0.5119 (4)0.0815 (15)0.564 (10)
F30.7169 (10)0.5137 (4)0.4572 (4)0.0765 (16)0.564 (10)
F1A0.6033 (13)0.6017 (10)0.4888 (7)0.078 (2)0.287 (10)
F2A0.8891 (19)0.6238 (7)0.5244 (5)0.072 (3)0.287 (10)
F3A0.7863 (16)0.5067 (7)0.4533 (7)0.059 (2)0.287 (10)
F1B0.5941 (16)0.5562 (12)0.4648 (6)0.070 (3)0.148 (5)
F2B0.785 (3)0.6465 (10)0.5293 (6)0.075 (3)0.148 (5)
F3B0.864 (2)0.5254 (12)0.4705 (10)0.091 (4)0.148 (5)
O10.50685 (14)0.54112 (7)0.18448 (6)0.0369 (2)
H1A0.408 (3)0.5332 (16)0.2017 (13)0.070 (6)*
N10.19359 (19)0.52532 (10)0.23591 (10)0.0543 (4)
C10.54324 (17)0.63994 (9)0.17934 (8)0.0316 (3)
C20.65553 (17)0.67633 (9)0.25587 (8)0.0319 (3)
C30.66939 (18)0.62297 (10)0.32396 (8)0.0346 (3)
H3A0.61620.56120.32200.041*
C40.7599 (2)0.65865 (11)0.39484 (9)0.0410 (3)
C50.8404 (2)0.74815 (12)0.39867 (10)0.0501 (4)
H5A0.89890.77320.44760.060*
C60.8350 (2)0.80039 (12)0.33140 (10)0.0473 (4)
H6A0.89350.86070.33340.057*
C70.74356 (18)0.76466 (10)0.26013 (9)0.0363 (3)
C80.7353 (2)0.74071 (11)0.10656 (9)0.0406 (3)
C90.8206 (3)0.75615 (14)0.04376 (11)0.0562 (4)
H9A0.87840.81550.03880.067*
C100.8210 (3)0.68539 (17)0.01102 (12)0.0683 (6)
H10A0.87780.69620.05430.082*
C110.7391 (3)0.59858 (16)0.00345 (11)0.0641 (5)
H11A0.74120.54940.04100.077*
C120.6541 (2)0.58328 (13)0.05899 (9)0.0478 (4)
H12A0.59920.52310.06420.057*
C130.64777 (18)0.65429 (10)0.11405 (8)0.0363 (3)
C140.7655 (3)0.60126 (14)0.46712 (10)0.0534 (4)
C150.36815 (18)0.69875 (11)0.15859 (9)0.0411 (3)
H15A0.40090.76580.14940.049*
H15B0.29940.67400.10850.049*
C160.2439 (2)0.69987 (11)0.21787 (11)0.0489 (4)
H16A0.31810.69920.27120.059*
H16B0.17580.76070.21190.059*
C170.1118 (2)0.61725 (12)0.21095 (12)0.0525 (4)
H17A0.02080.63200.24290.063*
H17B0.04940.61190.15580.063*
C180.2274 (12)0.5222 (12)0.3225 (4)0.095 (2)0.72 (4)
H18A0.31440.57180.34350.142*0.72 (4)
H18B0.27490.45910.34040.142*0.72 (4)
H18C0.11530.53360.34070.142*0.72 (4)
C190.0843 (17)0.4459 (7)0.2028 (8)0.100 (3)0.72 (4)
H19A0.07120.44700.14570.150*0.72 (4)
H19B0.03390.45090.21690.150*0.72 (4)
H19C0.14120.38570.22320.150*0.72 (4)
C18A0.224 (3)0.5017 (14)0.3172 (8)0.067 (4)0.28 (4)
H18D0.22960.43200.32340.101*0.28 (4)
H18E0.12680.52720.34060.101*0.28 (4)
H18F0.33800.52980.34350.101*0.28 (4)
C19A0.061 (2)0.4530 (13)0.1931 (10)0.051 (4)0.28 (4)
H19D0.05760.45810.13670.076*0.28 (4)
H19E0.05780.46590.20410.076*0.28 (4)
H19F0.09890.38820.21080.076*0.28 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0509 (2)0.03275 (19)0.0553 (2)0.00550 (15)0.01586 (18)0.00201 (15)
F10.089 (3)0.098 (3)0.055 (2)0.031 (2)0.032 (2)0.0041 (17)
F20.0630 (17)0.098 (4)0.072 (3)0.0147 (17)0.0148 (16)0.020 (2)
F30.112 (4)0.062 (2)0.0513 (16)0.017 (3)0.005 (3)0.0106 (15)
F1A0.084 (4)0.102 (6)0.061 (5)0.024 (4)0.041 (3)0.013 (4)
F2A0.098 (7)0.070 (4)0.034 (3)0.003 (5)0.020 (4)0.012 (2)
F3A0.081 (5)0.045 (2)0.045 (3)0.007 (3)0.004 (4)0.0009 (19)
F1B0.092 (5)0.079 (7)0.040 (5)0.015 (5)0.015 (4)0.007 (4)
F2B0.090 (7)0.093 (6)0.040 (4)0.004 (6)0.009 (6)0.006 (4)
F3B0.095 (7)0.088 (7)0.083 (7)0.036 (6)0.005 (6)0.020 (5)
O10.0366 (5)0.0292 (5)0.0457 (6)0.0035 (4)0.0102 (4)0.0017 (4)
N10.0462 (8)0.0456 (7)0.0770 (10)0.0004 (6)0.0265 (7)0.0158 (7)
C10.0277 (6)0.0294 (6)0.0373 (7)0.0005 (5)0.0057 (5)0.0019 (5)
C20.0257 (6)0.0314 (6)0.0391 (7)0.0030 (5)0.0071 (5)0.0029 (5)
C30.0318 (6)0.0339 (6)0.0383 (7)0.0031 (5)0.0077 (5)0.0024 (5)
C40.0403 (7)0.0446 (8)0.0378 (7)0.0080 (6)0.0063 (6)0.0045 (6)
C50.0520 (9)0.0505 (9)0.0451 (9)0.0004 (7)0.0027 (7)0.0155 (7)
C60.0462 (8)0.0374 (7)0.0575 (10)0.0054 (6)0.0083 (7)0.0130 (7)
C70.0323 (6)0.0316 (6)0.0458 (8)0.0015 (5)0.0097 (6)0.0028 (5)
C80.0369 (7)0.0427 (8)0.0428 (8)0.0026 (6)0.0093 (6)0.0024 (6)
C90.0581 (10)0.0584 (10)0.0568 (10)0.0140 (8)0.0227 (8)0.0040 (8)
C100.0771 (13)0.0818 (14)0.0547 (11)0.0166 (11)0.0343 (10)0.0042 (10)
C110.0743 (13)0.0736 (13)0.0495 (10)0.0156 (10)0.0252 (9)0.0170 (9)
C120.0485 (9)0.0528 (9)0.0429 (8)0.0109 (7)0.0111 (7)0.0079 (7)
C130.0311 (6)0.0413 (7)0.0357 (7)0.0030 (5)0.0045 (5)0.0006 (5)
C140.0584 (10)0.0599 (10)0.0412 (8)0.0141 (8)0.0076 (7)0.0022 (7)
C150.0296 (6)0.0377 (7)0.0538 (9)0.0010 (5)0.0028 (6)0.0079 (6)
C160.0329 (7)0.0379 (8)0.0779 (12)0.0043 (6)0.0158 (7)0.0000 (7)
C170.0317 (7)0.0475 (9)0.0802 (12)0.0003 (6)0.0158 (8)0.0068 (8)
C180.072 (4)0.133 (6)0.089 (3)0.010 (4)0.037 (3)0.057 (3)
C190.111 (6)0.055 (3)0.147 (6)0.028 (4)0.055 (4)0.011 (3)
C18A0.077 (9)0.056 (6)0.063 (6)0.027 (6)0.001 (6)0.000 (5)
C19A0.039 (5)0.042 (6)0.072 (7)0.007 (4)0.014 (4)0.007 (5)
Geometric parameters (Å, º) top
S1—C71.7535 (15)C6—H6A0.9500
S1—C81.7602 (16)C8—C91.392 (2)
F1—C141.354 (3)C8—C131.397 (2)
F2—C141.370 (5)C9—C101.374 (3)
F3—C141.280 (5)C9—H9A0.9500
F1A—C141.360 (7)C10—C111.381 (3)
F1A—F3A2.102 (9)C10—H10A0.9500
F2A—C141.273 (8)C11—C121.385 (2)
F3A—C141.357 (9)C11—H11A0.9500
F1B—C141.443 (10)C12—C131.386 (2)
F2B—C141.237 (9)C12—H12A0.9500
F3B—C141.292 (10)C15—C161.529 (2)
O1—C11.4134 (15)C15—H15A0.9900
O1—H1A0.87 (2)C15—H15B0.9900
N1—C18A1.429 (14)C16—C171.520 (2)
N1—C191.439 (8)C16—H16A0.9900
N1—C171.456 (2)C16—H16B0.9900
N1—C181.481 (7)C17—H17A0.9900
N1—C19A1.517 (12)C17—H17B0.9900
C1—C131.5213 (19)C18—H18A0.9800
C1—C21.5263 (19)C18—H18B0.9800
C1—C151.5489 (19)C18—H18C0.9800
C2—C31.3873 (19)C19—H19A0.9800
C2—C71.3989 (19)C19—H19B0.9800
C3—C41.386 (2)C19—H19C0.9800
C3—H3A0.9500C18A—H18D0.9800
C4—C51.388 (2)C18A—H18E0.9800
C4—C141.486 (2)C18A—H18F0.9800
C5—C61.374 (2)C19A—H19D0.9800
C5—H5A0.9500C19A—H19E0.9800
C6—C71.394 (2)C19A—H19F0.9800
C7—S1—C899.63 (7)F3—C14—F1A77.7 (5)
C1—O1—H1A109.8 (15)F3B—C14—F1A122.8 (9)
C18A—N1—C19101.1 (8)F2B—C14—F264.3 (9)
C18A—N1—C17118.6 (10)F3A—C14—F287.4 (5)
C19—N1—C17112.2 (6)F3—C14—F2106.0 (4)
C19—N1—C18111.1 (5)F1—C14—F2101.1 (3)
C17—N1—C18108.1 (6)F3B—C14—F259.2 (9)
C18A—N1—C19A107.5 (9)F1A—C14—F2130.2 (5)
C17—N1—C19A103.5 (8)F2B—C14—F1B101.8 (7)
C18—N1—C19A116.8 (9)F3A—C14—F1B73.0 (7)
O1—C1—C13108.24 (11)F2A—C14—F1B131.2 (7)
O1—C1—C2110.70 (11)F3—C14—F1B48.9 (7)
C13—C1—C2108.84 (10)F1—C14—F1B68.4 (7)
O1—C1—C15111.19 (11)F3B—C14—F1B99.1 (8)
C13—C1—C15107.85 (11)F2—C14—F1B138.9 (6)
C2—C1—C15109.92 (11)F2B—C14—C4116.4 (6)
C3—C2—C7118.09 (13)F3A—C14—C4111.1 (6)
C3—C2—C1120.40 (12)F2A—C14—C4115.3 (6)
C7—C2—C1121.50 (12)F3—C14—C4116.1 (3)
C4—C3—C2120.78 (13)F1—C14—C4111.4 (2)
C4—C3—H3A119.6F3B—C14—C4113.8 (7)
C2—C3—H3A119.6F1A—C14—C4110.6 (3)
C3—C4—C5120.41 (15)F2—C14—C4111.3 (3)
C3—C4—C14119.30 (15)F1B—C14—C4109.4 (4)
C5—C4—C14120.27 (15)C16—C15—C1117.70 (13)
C6—C5—C4119.75 (15)C16—C15—H15A107.9
C6—C5—H5A120.1C1—C15—H15A107.9
C4—C5—H5A120.1C16—C15—H15B107.9
C5—C6—C7119.83 (15)C1—C15—H15B107.9
C5—C6—H6A120.1H15A—C15—H15B107.2
C7—C6—H6A120.1C17—C16—C15115.14 (14)
C6—C7—C2121.02 (14)C17—C16—H16A108.5
C6—C7—S1117.41 (11)C15—C16—H16A108.5
C2—C7—S1121.55 (11)C17—C16—H16B108.5
C9—C8—C13120.68 (15)C15—C16—H16B108.5
C9—C8—S1116.99 (12)H16A—C16—H16B107.5
C13—C8—S1122.30 (11)N1—C17—C16113.97 (13)
C10—C9—C8119.86 (17)N1—C17—H17A108.8
C10—C9—H9A120.1C16—C17—H17A108.8
C8—C9—H9A120.1N1—C17—H17B108.8
C9—C10—C11120.25 (17)C16—C17—H17B108.8
C9—C10—H10A119.9H17A—C17—H17B107.7
C11—C10—H10A119.9N1—C18—H18A109.5
C10—C11—C12119.87 (17)N1—C18—H18B109.5
C10—C11—H11A120.1H18A—C18—H18B109.5
C12—C11—H11A120.1N1—C18—H18C109.5
C13—C12—C11121.09 (16)H18A—C18—H18C109.5
C13—C12—H12A119.5H18B—C18—H18C109.5
C11—C12—H12A119.5N1—C19—H19A109.5
C12—C13—C8118.20 (14)N1—C19—H19B109.5
C12—C13—C1121.02 (13)H19A—C19—H19B109.5
C8—C13—C1120.74 (13)N1—C19—H19C109.5
F2B—C14—F3A130.8 (9)H19A—C19—H19C109.5
F3A—C14—F2A106.6 (6)H19B—C19—H19C109.5
F2B—C14—F3126.1 (7)N1—C18A—H18D109.5
F2A—C14—F3119.6 (6)N1—C18A—H18E109.5
F3A—C14—F1129.6 (6)H18D—C18A—H18E109.5
F2A—C14—F177.8 (5)N1—C18A—H18F109.5
F3—C14—F1109.7 (3)H18D—C18A—H18F109.5
F2B—C14—F3B113.9 (9)H18E—C18A—H18F109.5
F2A—C14—F3B80.3 (9)N1—C19A—H19D109.5
F3—C14—F3B51.2 (9)N1—C19A—H19E109.5
F1—C14—F3B134.7 (7)H19D—C19A—H19E109.5
F2B—C14—F1A73.7 (9)N1—C19A—H19F109.5
F3A—C14—F1A101.4 (6)H19D—C19A—H19F109.5
F2A—C14—F1A110.8 (6)H19E—C19A—H19F109.5
O1—C1—C2—C316.56 (16)F1A—F3A—C14—F310 (2)
C13—C1—C2—C3135.40 (12)F1A—F3A—C14—F128.2 (6)
C15—C1—C2—C3106.68 (14)F1A—F3A—C14—F3B141.1 (17)
O1—C1—C2—C7164.96 (11)F1A—F3A—C14—F2130.6 (5)
C13—C1—C2—C746.11 (16)F1A—F3A—C14—F1B12.8 (7)
C15—C1—C2—C771.81 (15)F1A—F3A—C14—C4117.6 (5)
C7—C2—C3—C43.40 (19)F3A—F1A—C14—F2B129.4 (9)
C1—C2—C3—C4175.14 (12)F3A—F1A—C14—F2A112.9 (7)
C2—C3—C4—C50.8 (2)F3A—F1A—C14—F34.3 (8)
C2—C3—C4—C14177.44 (13)F3A—F1A—C14—F1143.5 (7)
C3—C4—C5—C62.0 (2)F3A—F1A—C14—F3B21.1 (10)
C14—C4—C5—C6179.71 (15)F3A—F1A—C14—F296.4 (8)
C4—C5—C6—C72.2 (2)F3A—F1A—C14—F1B24.2 (13)
C5—C6—C7—C20.4 (2)F3A—F1A—C14—C4117.9 (6)
C5—C6—C7—S1177.87 (13)C3—C4—C14—F2B153.9 (11)
C3—C2—C7—C63.2 (2)C5—C4—C14—F2B24.4 (11)
C1—C2—C7—C6175.29 (13)C3—C4—C14—F3A39.4 (6)
C3—C2—C7—S1175.02 (10)C5—C4—C14—F3A142.3 (6)
C1—C2—C7—S16.46 (17)C3—C4—C14—F2A160.8 (7)
C8—S1—C7—C6149.19 (12)C5—C4—C14—F2A20.9 (7)
C8—S1—C7—C229.12 (12)C3—C4—C14—F313.7 (5)
C7—S1—C8—C9148.84 (14)C5—C4—C14—F3168.1 (4)
C7—S1—C8—C1329.48 (14)C3—C4—C14—F1112.9 (4)
C13—C8—C9—C100.8 (3)C5—C4—C14—F165.4 (4)
S1—C8—C9—C10177.53 (17)C3—C4—C14—F3B70.5 (11)
C8—C9—C10—C110.9 (3)C5—C4—C14—F3B111.2 (11)
C9—C10—C11—C120.9 (4)C3—C4—C14—F1A72.4 (8)
C10—C11—C12—C130.7 (3)C5—C4—C14—F1A105.9 (8)
C11—C12—C13—C82.3 (3)C3—C4—C14—F2135.1 (4)
C11—C12—C13—C1175.65 (16)C5—C4—C14—F246.7 (4)
C9—C8—C13—C122.4 (2)C3—C4—C14—F1B39.2 (8)
S1—C8—C13—C12175.88 (12)C5—C4—C14—F1B139.0 (8)
C9—C8—C13—C1175.60 (15)O1—C1—C15—C1664.51 (17)
S1—C8—C13—C16.1 (2)C13—C1—C15—C16176.96 (12)
O1—C1—C13—C1216.06 (18)C2—C1—C15—C1658.43 (16)
C2—C1—C13—C12136.43 (14)C1—C15—C16—C1786.15 (18)
C15—C1—C13—C12104.34 (16)C18A—N1—C17—C1684.4 (9)
O1—C1—C13—C8166.03 (13)C19—N1—C17—C16158.3 (5)
C2—C1—C13—C845.65 (17)C18—N1—C17—C1678.8 (4)
C15—C1—C13—C873.57 (16)C19A—N1—C17—C16156.7 (7)
F1A—F3A—C14—F2B78.2 (12)C15—C16—C17—N171.3 (2)
F1A—F3A—C14—F2A116.0 (6)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C2–C7 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.87 (2)1.84 (2)2.7141 (17)176 (2)
C15—H15A···S10.992.763.4165 (15)124
C5—H5A···Cg3i0.952.963.798 (3)148
C17—H17A···Cg2ii0.992.973.949 (3)170
C17—H17B···Cg3ii0.992.833.659 (3)142
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H20F3NOS
Mr367.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)170
a, b, c (Å)7.6183 (3), 13.9605 (4), 17.4172 (7)
β (°) 101.053 (4)
V3)1818.05 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.35 × 0.33 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.929, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
17330, 4697, 3901
Rint0.022
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.116, 1.05
No. of reflections4697
No. of parameters306
No. of restraints238
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.29

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C2–C7 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.87 (2)1.84 (2)2.7141 (17)176 (2)
C15—H15A···S10.992.763.4165 (15)123.8
C5—H5A···Cg3i0.952.963.798 (3)148
C17—H17A···Cg2ii0.992.973.949 (3)170
C17—H17B···Cg3ii0.992.833.659 (3)142
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1, y, z.
 

Acknowledgements

MSS thanks the University of Mysore and R. L. Fine Chem, Bangalore, for access to their research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFouassier, J. P., Ruhlmann, D., Graff, D., Morlet-Savary, F. & Wieder, F. (1995). Prog. Org. Coat. 25, 235–271.  CrossRef CAS Web of Science Google Scholar
First citationLiu, G. (2009). Acta Cryst. E65, o613.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPost, M. L., Kennard, O. & Horn, A. S. (1975a). Acta Cryst. B31, 2724–2726.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPost, M. L., Kennard, O., Sheldrick, G. M. & Horn, A. S. (1975b). Acta Cryst. B31, 2366–2368.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRoffey, C. (1997). In Photogeneration of Reactive Species for UV-Curing. Sussex, England: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds