organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(Anthracen-9-yl­methyl­­idene)amino]-1,5-di­methyl-2-phenyl-1H-pyrazol-3(2H)-one

aDepartment of Chemistry, Faculty of Science, King Abduaziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, and bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 18 July 2011; accepted 19 July 2011; online 30 July 2011)

In the title compound, C26H21N3O, the phenyl ring of the 4-amino­anti­pyrine group and the heterocyclic five-membered ring along with its substituents, except for the N-bound methyl group (r.m.s. deviation = 0.0027 Å), form a dihedral angle of 54.20 (5)°. Two S(6) ring motifs are formed due to intra­molecular C—H⋯N and C—H⋯O hydrogen bonds. In the crystal, mol­ecules are linked into supra­molecular chains along the a-axis direction via C—H⋯O contacts.

Related literature

For background to pyrazol-3-ones, see: Asiri & Khan (2010[Asiri, A. M. & Khan, S. A. (2010). Molecules, 15, 6850-6858]); Crane et al. (1985[Crane, F. L., Sun, I. L., Clark, M. G., Grebing, C. & Low, H. (1985). Biochim. Biophys. Acta, 811, 233-264.]); Desai et al. (2010[Desai, D., Kaushal, N., Gandhi, U. H., Arner, R. J., D-Souza, C., Chen, G., Vunta, H., El-Bayoumy, K., Amin, S. & Prabhu, K. S. (2010). Chem. Biol. Int. 188, 446-456.]); Rai et al. (2009[Rai, N. P., Narayanaswamy, V. K., Shashikanth, S. & Arunachalam, P. N. (2009). Eur. J. Med. Chem. 44, 4522-4527.]); Takagi et al. (1987[Takagi, K., Tanaka, M., Morita, H., Ogura, K., Ishii, K., Nakata, N. & Ozeki, M. (1987). Eur. J. Med. Chem. 22, 239-242.]); Yao et al. (2007[Yao, C. S., Yu, C. X., Tu, S. J., Shi, D. Q., Wang, X. S. & Zhu, Y. Q. (2007). J. Fluorine Chem. 128, 105-109.]); Zhang et al. (2005[Zhang, H., Liu, C. S., Bu, X. H. & Yang, M. (2005). J. Inorg. Biochem. 99, 1119-1125.]); For related crystal structures, see: Li & Zhang (2006[Li, Z.-X. & Zhang, X.-L. (2006). Acta Cryst. E62, o1738-o1739.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C26H21N3O

  • Mr = 391.46

  • Monoclinic, P 21 /n

  • a = 7.6603 (3) Å

  • b = 16.4549 (6) Å

  • c = 15.8849 (6) Å

  • β = 95.243 (1)°

  • V = 1993.91 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.32 × 0.24 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.980

  • 14673 measured reflections

  • 3593 independent reflections

  • 2791 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.06

  • 3593 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5a⋯O1i 0.96 2.59 3.530 (2) 167
C5—H5c⋯O1ii 0.96 2.57 3.5305 (19) 177
C12—H12⋯O1 0.93 2.37 3.0375 (19) 128
C15—H15⋯N1 0.93 2.42 3.024 (2) 123
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Pyrazol-3-one rings are key substructures in a large variety of compounds of therapeutic importance (Zhang et al., 2005). Compounds containing this ring system are known to display diverse pharmacological activities such as analgesic (Takagi et al., 1987), antidepressant (Yao et al., 2007), antibacterial (Rai et al., 2009), plant growth regulatory (Crane et al., 1985) and anti-inflammatory (Desai et al., 2010). Pyrazol-3-one containing Schiff base derivatives dramatically increase the biological activity of the original pyrazol-3-one (Asiri & Khan, 2010). The title compound (I, Fig. 1) has been prepared as a pharmaceutical intermediate. The crystal structures of 1,5-dimethy-4-((2-nitrobenzylidene)amino)-2-phenyl- 1H-pyrazol-3(4H)-one which is related to (I) has been published (Li & Zhang, 2006).

In (I), the group A (C1/C2/C3/C4/N1/N2/N3/O1) and the benzene ring B (C6—C11) of 4-aminoantipyrine moiety are planar with a r.m.s. deviations of 0.0577 and 0.0027 Å, respectively. The group C (C12—C26) of anthracene-9-carbaldehyde moiety is also planar with an r.m.s. deviation of 0.0665 Å. The dihedral angles between A/B, A/C and B/C are 54.20 (5), 64.07 (2) and 44.43 (5) °, respectively. The methyl group attached at the N atom lies at a distance of 0.5611 (21) Å from the mean plane of A. Intramolecular H-bonding of the type C—H···N and C—H···O complete S(6) ring (Fig. 2 & Table 1) motifs (Bernstein et al., 1995). Intermolecular H-bonding of the type C—H···O sees methyl-H bridging the O atoms to connect molecules into a surpramolecular chain along the a axis (Table 1).

Related literature top

For related background to pyrazol-3-ones, see: Asiri & Khan (2010); Crane et al. (1985); Desai et al. (2010); Rai et al. (2009); Takagi et al. (1987); Yao et al. (2007); Zhang et al. (2005); For related crystal structures, see: Li & Zhang (2006). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of anthracene-9-carbaldehyde (0.50 g, 2.40 mmol) and 4-aminoantipyrine (0.49 g, 2.40 mmol) in ethanol (15 ml) was heated for 3 h. The progress of the reaction was monitored by TLC. The solid that separated from the cooled mixture was collected and recrystallized from a methanol-chloroform mixture (8:2) to give the yellow prisms of the title compound (I). Yield: 87%; M.pt. 404–405 K. IR (KBr) νmax cm-1: 3027 (Ar—H), 2874 (C—H), 1636 (CO), 1580 (HCN), 1138 (C—N). 1H NMR (600 MHz, CDCl3) (δ p.p.m.): 11.06 (s, CHolefinic), 8.98–7.36 (m,14H, Ar—H) 3.23 (s, CH3), 2.19 (s, CH3).

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for aryl H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The anisotropic displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing diagram showing connectivity between molecules (dashed lines). H atoms not involved in intermolecular interactions are omitted for clarity.
4-[(Anthracen-9-ylmethylidene)amino]-1,5-dimethyl-2-phenyl-1H- pyrazol-3(2H)-one top
Crystal data top
C26H21N3OF(000) = 824
Mr = 391.46Dx = 1.304 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2791 reflections
a = 7.6603 (3) Åθ = 2.8–25.3°
b = 16.4549 (6) ŵ = 0.08 mm1
c = 15.8849 (6) ÅT = 296 K
β = 95.243 (1)°Prism, yellow
V = 1993.91 (13) Å30.32 × 0.24 × 0.22 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3593 independent reflections
Radiation source: fine-focus sealed tube2791 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 2.8°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1919
Tmin = 0.975, Tmax = 0.980l = 1919
14673 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.4551P]
where P = (Fo2 + 2Fc2)/3
3593 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C26H21N3OV = 1993.91 (13) Å3
Mr = 391.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6603 (3) ŵ = 0.08 mm1
b = 16.4549 (6) ÅT = 296 K
c = 15.8849 (6) Å0.32 × 0.24 × 0.22 mm
β = 95.243 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3593 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2791 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.980Rint = 0.039
14673 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.06Δρmax = 0.15 e Å3
3593 reflectionsΔρmin = 0.23 e Å3
273 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30051 (14)0.39403 (7)0.06517 (7)0.0520 (4)
N10.56061 (17)0.42547 (8)0.22734 (8)0.0409 (4)
N20.74133 (15)0.37942 (7)0.03382 (7)0.0359 (4)
N30.56279 (15)0.38171 (8)0.00463 (8)0.0383 (4)
C10.46213 (19)0.39626 (9)0.07155 (9)0.0367 (5)
C20.58906 (19)0.41001 (9)0.14336 (9)0.0359 (5)
C30.75240 (19)0.40245 (8)0.11629 (9)0.0348 (5)
C40.9234 (2)0.42095 (10)0.16435 (10)0.0465 (6)
C50.8631 (2)0.40778 (10)0.02533 (10)0.0441 (5)
C60.50243 (18)0.34201 (9)0.07195 (9)0.0352 (5)
C70.5734 (2)0.26909 (10)0.09414 (10)0.0460 (5)
C80.5114 (3)0.23253 (12)0.16899 (12)0.0600 (7)
C90.3794 (3)0.26782 (13)0.22057 (12)0.0624 (7)
C100.3093 (3)0.34023 (12)0.19815 (11)0.0574 (6)
C110.3707 (2)0.37817 (10)0.12373 (10)0.0457 (5)
C120.4106 (2)0.44921 (10)0.24467 (10)0.0442 (5)
C130.36155 (19)0.46454 (9)0.33093 (9)0.0396 (5)
C140.40579 (19)0.41027 (9)0.39838 (9)0.0391 (5)
C150.5113 (2)0.33949 (10)0.39171 (11)0.0461 (6)
C160.5522 (2)0.29004 (11)0.45886 (11)0.0527 (6)
C170.4888 (2)0.30582 (12)0.53761 (11)0.0551 (7)
C180.3861 (2)0.37129 (11)0.54708 (10)0.0511 (6)
C190.3405 (2)0.42567 (10)0.47887 (10)0.0427 (5)
C200.2374 (2)0.49383 (10)0.48880 (11)0.0477 (5)
C210.1963 (2)0.54873 (10)0.42364 (11)0.0455 (5)
C220.0966 (2)0.62024 (11)0.43539 (13)0.0570 (7)
C230.0667 (3)0.67545 (12)0.37312 (15)0.0661 (7)
C240.1354 (3)0.66362 (12)0.29507 (14)0.0648 (7)
C250.2282 (2)0.59577 (11)0.28014 (12)0.0542 (6)
C260.2605 (2)0.53462 (10)0.34333 (10)0.0423 (5)
H4A1.007010.379710.153370.0698*
H4B0.908840.422240.223730.0698*
H4C0.964750.472840.147000.0698*
H5A0.835780.462970.041080.0661*
H5B0.852810.374060.074850.0661*
H5C0.980790.404950.001060.0661*
H70.662110.244770.058980.0552*
H80.559520.183520.184660.0720*
H90.337560.242530.270770.0749*
H100.219730.364060.233220.0689*
H110.323630.427630.108740.0548*
H120.325520.457540.199880.0530*
H150.552910.327000.340060.0554*
H160.623320.245000.452780.0632*
H170.517570.271220.583060.0661*
H180.344310.381080.599280.0614*
H200.194510.503000.540880.0572*
H220.051300.628970.486990.0683*
H230.000310.721510.381850.0793*
H240.117110.702850.253060.0778*
H250.271460.588960.227780.0650*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0282 (6)0.0734 (8)0.0544 (7)0.0007 (5)0.0042 (5)0.0123 (6)
N10.0352 (7)0.0483 (8)0.0397 (7)0.0023 (6)0.0060 (5)0.0023 (6)
N20.0254 (6)0.0435 (7)0.0390 (7)0.0014 (5)0.0037 (5)0.0011 (5)
N30.0274 (7)0.0475 (8)0.0399 (7)0.0002 (5)0.0020 (5)0.0062 (5)
C10.0292 (8)0.0389 (9)0.0425 (8)0.0003 (6)0.0054 (6)0.0030 (6)
C20.0323 (8)0.0381 (8)0.0376 (8)0.0003 (6)0.0050 (6)0.0008 (6)
C30.0317 (8)0.0339 (8)0.0386 (8)0.0001 (6)0.0024 (6)0.0032 (6)
C40.0322 (9)0.0613 (11)0.0454 (9)0.0030 (7)0.0004 (7)0.0024 (8)
C50.0355 (9)0.0536 (10)0.0442 (9)0.0064 (7)0.0099 (7)0.0016 (7)
C60.0308 (8)0.0383 (8)0.0368 (8)0.0049 (6)0.0042 (6)0.0000 (6)
C70.0417 (9)0.0468 (9)0.0483 (9)0.0043 (7)0.0025 (7)0.0027 (7)
C80.0597 (12)0.0573 (11)0.0612 (11)0.0043 (9)0.0037 (9)0.0193 (9)
C90.0607 (12)0.0750 (14)0.0493 (11)0.0072 (10)0.0068 (9)0.0173 (9)
C100.0524 (11)0.0669 (12)0.0500 (10)0.0003 (9)0.0115 (8)0.0050 (9)
C110.0429 (9)0.0444 (9)0.0488 (10)0.0022 (7)0.0009 (7)0.0019 (7)
C120.0365 (9)0.0544 (10)0.0413 (9)0.0018 (7)0.0014 (7)0.0063 (7)
C130.0305 (8)0.0477 (9)0.0410 (8)0.0048 (7)0.0049 (6)0.0077 (7)
C140.0310 (8)0.0445 (9)0.0420 (8)0.0087 (7)0.0043 (6)0.0078 (7)
C150.0422 (10)0.0484 (10)0.0481 (9)0.0030 (7)0.0056 (7)0.0069 (7)
C160.0457 (10)0.0494 (10)0.0623 (11)0.0039 (8)0.0010 (8)0.0002 (8)
C170.0486 (11)0.0597 (12)0.0555 (11)0.0140 (9)0.0029 (8)0.0105 (9)
C180.0471 (10)0.0657 (12)0.0410 (9)0.0189 (9)0.0064 (7)0.0024 (8)
C190.0352 (9)0.0499 (10)0.0436 (9)0.0138 (7)0.0063 (7)0.0070 (7)
C200.0398 (9)0.0580 (10)0.0477 (9)0.0128 (8)0.0173 (7)0.0150 (8)
C210.0317 (8)0.0487 (10)0.0572 (10)0.0086 (7)0.0109 (7)0.0131 (8)
C220.0396 (10)0.0558 (11)0.0774 (13)0.0030 (8)0.0159 (9)0.0201 (10)
C230.0450 (11)0.0522 (11)0.1008 (16)0.0055 (9)0.0058 (10)0.0150 (11)
C240.0511 (12)0.0590 (12)0.0829 (14)0.0060 (9)0.0016 (10)0.0047 (10)
C250.0443 (10)0.0623 (11)0.0554 (10)0.0036 (8)0.0015 (8)0.0019 (9)
C260.0295 (8)0.0487 (9)0.0489 (9)0.0042 (7)0.0041 (7)0.0081 (7)
Geometric parameters (Å, º) top
O1—C11.2335 (18)C21—C221.424 (2)
N1—C21.3946 (19)C21—C261.428 (2)
N1—C121.268 (2)C22—C231.347 (3)
N2—N31.4039 (16)C23—C241.404 (3)
N2—C31.3589 (18)C24—C251.356 (3)
N2—C51.4598 (19)C25—C261.427 (2)
N3—C11.3899 (19)C4—H4A0.9600
N3—C61.4204 (19)C4—H4B0.9600
C1—C21.447 (2)C4—H4C0.9600
C2—C31.365 (2)C5—H5A0.9600
C3—C41.486 (2)C5—H5B0.9600
C6—C71.376 (2)C5—H5C0.9600
C6—C111.377 (2)C7—H70.9300
C7—C81.378 (3)C8—H80.9300
C8—C91.371 (3)C9—H90.9300
C9—C101.367 (3)C10—H100.9300
C10—C111.381 (2)C11—H110.9300
C12—C131.475 (2)C12—H120.9300
C13—C141.412 (2)C15—H150.9300
C13—C261.413 (2)C16—H160.9300
C14—C151.427 (2)C17—H170.9300
C14—C191.437 (2)C18—H180.9300
C15—C161.355 (2)C20—H200.9300
C16—C171.407 (2)C22—H220.9300
C17—C181.351 (3)C23—H230.9300
C18—C191.424 (2)C24—H240.9300
C19—C201.389 (2)C25—H250.9300
C20—C211.388 (2)
C2—N1—C12119.21 (13)C13—C26—C21119.69 (14)
N3—N2—C3106.50 (11)C13—C26—C25122.66 (14)
N3—N2—C5116.06 (11)C21—C26—C25117.53 (15)
C3—N2—C5122.96 (12)C3—C4—H4A109.00
N2—N3—C1110.11 (11)C3—C4—H4B109.00
N2—N3—C6120.10 (11)C3—C4—H4C109.00
C1—N3—C6125.05 (12)H4A—C4—H4B109.00
O1—C1—N3123.70 (13)H4A—C4—H4C109.00
O1—C1—C2131.78 (14)H4B—C4—H4C109.00
N3—C1—C2104.48 (12)N2—C5—H5A109.00
N1—C2—C1129.04 (13)N2—C5—H5B109.00
N1—C2—C3123.07 (13)N2—C5—H5C109.00
C1—C2—C3107.85 (13)H5A—C5—H5B109.00
N2—C3—C2110.53 (13)H5A—C5—H5C109.00
N2—C3—C4121.79 (13)H5B—C5—H5C109.00
C2—C3—C4127.56 (13)C6—C7—H7120.00
N3—C6—C7121.00 (13)C8—C7—H7120.00
N3—C6—C11118.43 (13)C7—C8—H8120.00
C7—C6—C11120.57 (14)C9—C8—H8120.00
C6—C7—C8119.25 (15)C8—C9—H9120.00
C7—C8—C9120.54 (18)C10—C9—H9120.00
C8—C9—C10119.95 (18)C9—C10—H10120.00
C9—C10—C11120.38 (18)C11—C10—H10120.00
C6—C11—C10119.31 (16)C6—C11—H11120.00
N1—C12—C13124.56 (14)C10—C11—H11120.00
C12—C13—C14122.19 (13)N1—C12—H12118.00
C12—C13—C26117.28 (13)C13—C12—H12118.00
C14—C13—C26120.47 (13)C14—C15—H15119.00
C13—C14—C15123.92 (14)C16—C15—H15119.00
C13—C14—C19118.98 (13)C15—C16—H16119.00
C15—C14—C19117.09 (14)C17—C16—H16120.00
C14—C15—C16121.55 (15)C16—C17—H17120.00
C15—C16—C17121.01 (16)C18—C17—H17120.00
C16—C17—C18119.88 (16)C17—C18—H18119.00
C17—C18—C19121.43 (15)C19—C18—H18119.00
C14—C19—C18119.01 (14)C19—C20—H20119.00
C14—C19—C20119.41 (15)C21—C20—H20119.00
C18—C19—C20121.57 (15)C21—C22—H22119.00
C19—C20—C21122.23 (15)C23—C22—H22119.00
C20—C21—C22121.85 (16)C22—C23—H23120.00
C20—C21—C26119.16 (15)C24—C23—H23120.00
C22—C21—C26118.95 (16)C23—C24—H24120.00
C21—C22—C23121.21 (18)C25—C24—H24120.00
C22—C23—C24120.17 (19)C24—C25—H25119.00
C23—C24—C25120.89 (19)C26—C25—H25119.00
C24—C25—C26121.17 (17)
C12—N1—C2—C117.9 (2)N1—C12—C13—C26137.66 (17)
C12—N1—C2—C3164.62 (15)C12—C13—C14—C154.7 (2)
C2—N1—C12—C13177.51 (14)C12—C13—C14—C19174.64 (14)
C3—N2—N3—C17.39 (15)C26—C13—C14—C15178.17 (15)
C3—N2—N3—C6164.20 (12)C26—C13—C14—C192.5 (2)
C5—N2—N3—C1148.34 (13)C12—C13—C26—C21174.53 (14)
C5—N2—N3—C654.85 (17)C12—C13—C26—C259.7 (2)
N3—N2—C3—C27.04 (15)C14—C13—C26—C212.8 (2)
N3—N2—C3—C4169.32 (13)C14—C13—C26—C25173.05 (15)
C5—N2—C3—C2144.62 (13)C13—C14—C15—C16178.95 (15)
C5—N2—C3—C431.7 (2)C19—C14—C15—C161.7 (2)
N2—N3—C1—O1173.21 (14)C13—C14—C19—C18179.55 (14)
N2—N3—C1—C24.81 (16)C13—C14—C19—C200.7 (2)
C6—N3—C1—O117.8 (2)C15—C14—C19—C181.1 (2)
C6—N3—C1—C2160.23 (13)C15—C14—C19—C20179.89 (15)
N2—N3—C6—C736.9 (2)C14—C15—C16—C171.3 (2)
N2—N3—C6—C11143.11 (14)C15—C16—C17—C180.3 (3)
C1—N3—C6—C7116.22 (17)C16—C17—C18—C190.4 (3)
C1—N3—C6—C1163.7 (2)C17—C18—C19—C140.1 (2)
O1—C1—C2—N10.5 (3)C17—C18—C19—C20178.87 (16)
O1—C1—C2—C3177.30 (16)C14—C19—C20—C210.8 (2)
N3—C1—C2—N1178.28 (15)C18—C19—C20—C21177.99 (15)
N3—C1—C2—C30.50 (16)C19—C20—C21—C22177.33 (15)
N1—C2—C3—N2173.80 (13)C19—C20—C21—C260.6 (2)
N1—C2—C3—C410.1 (2)C20—C21—C22—C23175.93 (18)
C1—C2—C3—N24.15 (16)C26—C21—C22—C232.0 (3)
C1—C2—C3—C4171.95 (14)C20—C21—C26—C131.2 (2)
N3—C6—C7—C8179.94 (16)C20—C21—C26—C25174.80 (15)
C11—C6—C7—C80.1 (2)C22—C21—C26—C13179.17 (15)
N3—C6—C11—C10179.52 (15)C22—C21—C26—C253.2 (2)
C7—C6—C11—C100.4 (2)C21—C22—C23—C240.6 (3)
C6—C7—C8—C90.6 (3)C22—C23—C24—C251.9 (3)
C7—C8—C9—C100.6 (3)C23—C24—C25—C260.6 (3)
C8—C9—C10—C110.0 (3)C24—C25—C26—C13177.82 (17)
C9—C10—C11—C60.5 (3)C24—C25—C26—C211.9 (2)
N1—C12—C13—C1445.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5a···O1i0.962.593.530 (2)167
C5—H5c···O1ii0.962.573.5305 (19)177
C12—H12···O10.932.373.0375 (19)128
C15—H15···N10.932.423.024 (2)123
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC26H21N3O
Mr391.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.6603 (3), 16.4549 (6), 15.8849 (6)
β (°) 95.243 (1)
V3)1993.91 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.24 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.975, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
14673, 3593, 2791
Rint0.039
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.06
No. of reflections3593
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5a···O1i0.962.593.530 (2)167
C5—H5c···O1ii0.962.573.5305 (19)177
C12—H12···O10.932.373.0375 (19)128
C15—H15···N10.932.423.024 (2)123
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

The authors would like to thank the Chemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia, for providing research facilities.

References

First citationAsiri, A. M. & Khan, S. A. (2010). Molecules, 15, 6850–6858  Web of Science CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrane, F. L., Sun, I. L., Clark, M. G., Grebing, C. & Low, H. (1985). Biochim. Biophys. Acta, 811, 233–264.  CrossRef CAS PubMed Google Scholar
First citationDesai, D., Kaushal, N., Gandhi, U. H., Arner, R. J., D-Souza, C., Chen, G., Vunta, H., El-Bayoumy, K., Amin, S. & Prabhu, K. S. (2010). Chem. Biol. Int. 188, 446–456.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLi, Z.-X. & Zhang, X.-L. (2006). Acta Cryst. E62, o1738–o1739.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRai, N. P., Narayanaswamy, V. K., Shashikanth, S. & Arunachalam, P. N. (2009). Eur. J. Med. Chem. 44, 4522–4527.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakagi, K., Tanaka, M., Morita, H., Ogura, K., Ishii, K., Nakata, N. & Ozeki, M. (1987). Eur. J. Med. Chem. 22, 239–242.  CrossRef CAS Web of Science Google Scholar
First citationYao, C. S., Yu, C. X., Tu, S. J., Shi, D. Q., Wang, X. S. & Zhu, Y. Q. (2007). J. Fluorine Chem. 128, 105–109.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, H., Liu, C. S., Bu, X. H. & Yang, M. (2005). J. Inorg. Biochem. 99, 1119–1125.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds