metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1094-m1095

Tri­aqua-1κ3O-μ-cyanido-1:2κ2N:C-penta­cyanido-2κ5C-tetra­kis­(di­methyl­formamide-1κO)-1-holmium(III)-2-iron(III) monohydrate

aYunnan University, Department of Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Kunming 650091, People's Republic of China.
*Correspondence e-mail: qhzhao@ynu.edu.cn

(Received 10 June 2011; accepted 6 July 2011; online 16 July 2011)

In the bimetallic cyanide-bridged title complex, [Fe0.98HoRu0.02(CN)6(C3H7NO)4(H2O)3]·H2O, the HoIII ion is in a slightly distorted square-anti­prismatic arrangement formed by seven O atoms from four dimethyl­formamide (DMF) mol­ecules and three water mol­ecules, and one N atom from a bridging cyanide group connected with the FeIII atom which is octa­hedrally coordinated by six cyanide groups. In the crystal, mol­ecules are held together through O—H⋯N and O—H⋯O hydrogen-bonding inter­actions to form a three-dimensional framework. Elemental analysis of one of the precursors and the crystal shows that there is a slight contamination of Fe by Ru. The Fe site displays, therefore, small substitutional disorder with site-occupancy factors Fe/Ru = 0.98:0.02. The two methyl groups of two dimethyl­formamide ligands are positionally disordered with site-occupancy factors of 0.44 (3):0.56 (3) and 0.44 (3):0.56 (3).

Related literature

For similar complexes [LnFe(CN)6(DMF)4(H2O)3]·H2O (Ln = La, Ce, Nd, Gd, Pr and Eu), see: Kautz et al. (2000[Kautz, J. A., Mullica, D. F., Cunningham, B. P. & Farmer, J. M. (2000). J. Mol. Struct. 523, 175-182.]); Mullica et al. (2000[Mullica, D. F., Farmer, J. M., Cunningham, B. P. & Kautz, J. A. (2000). J. Coord. Chem. 49, 239-250.]); Li, Akitsu et al. (2003[Li, G. M., Akitsu, T., Sato, O. & Einaga, Y. (2003). J. Am. Chem. Soc. 125, 12396-12397.]); Li, Guo et al. (2003[Li, J. M., Guo, G. C., Wang, M. S., Zhou, G. W., Bu, X. H. & Huang, J. S. (2003). Chin. J. Struct. Chem. (Jiegou Huaxue), 22, 182-186.]). For Ln = Sm and Pr with four coordinating water mol­ecules in the complex, see: Kou et al. (1998[Kou, H. Z., Yang, G. M., Liao, D. Z., Cheng, P., Jiang, Z. H., Yan, S. P., Huang, X. Y. & Wang, G. L. (1998). J. Chem. Crystallogr. 28, 303-307.]); Dai et al. (2004[Dai, Y., Chen, X. M., Cheng, P., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2004). Transition Met. Chem. 29, 12-15.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe0.98HoRu0.02(CN)6(C3H7NO)4(H2O)3]·H2O

  • Mr = 742.25

  • Monoclinic, P 21 /c

  • a = 17.6587 (15) Å

  • b = 8.9235 (8) Å

  • c = 25.2750 (16) Å

  • β = 128.208 (4)°

  • V = 3129.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.03 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.464, Tmax = 0.583

  • 19042 measured reflections

  • 6392 independent reflections

  • 5217 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.131

  • S = 1.04

  • 6392 reflections

  • 393 parameters

  • 120 restraints

  • H-atom parameters constrained

  • Δρmax = 1.95 e Å−3

  • Δρmin = −1.04 e Å−3

Table 1
Selected bond lengths (Å)

Ho1—O5 2.412 (4)
Ho1—O6 2.433 (4)
Ho1—O8 2.457 (4)
Ho1—O7 2.461 (4)
Ho1—O4W 2.480 (4)
Ho1—O2W 2.486 (4)
Ho1—O3W 2.489 (4)
Ho1—N6 2.572 (5)
Fe1—C5 1.929 (5)
Fe1—C3 1.935 (6)
Fe1—C6 1.940 (6)
Fe1—C2 1.941 (6)
Fe1—C1 1.944 (5)
Fe1—C4 1.951 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯N2i 0.86 2.05 2.901 (7) 173
O1W—H1WB⋯N3ii 0.86 1.98 2.821 (7) 165
O2W—H2WA⋯O1Wiii 0.86 1.82 2.660 (6) 167
O2W—H2WB⋯N1iv 0.86 2.06 2.875 (7) 159
O3W—H3WA⋯N4iii 0.86 2.02 2.795 (6) 149
O3W—H3WB⋯N1iv 0.86 1.99 2.839 (6) 168
O4W—H4WB⋯N4iii 0.86 2.13 2.931 (7) 155
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In 1998 Kou et al. obtained a binuclear Sm—Fe complex, [Sm Fe(DMF)4(H2O)3].H2O (DMF = N, N-dimethylformamide), using Sm(NO3)3 with DMF acting as assistant ligand. Later, some researchers reported lighter and heavier bimetallic complex rare earth ion cyanides [LnFe(CN)6(DMF)4(H2O)3].H2O (Ln = La, Nd, Gd, Pr and Eu). It is interesting to note that the number of coordinating water molecules is found to be different in these complexes. When Ln = Sm and Pr (Kou et al., 1998, Dai et al., 2004), there are four coordinating water molecules in the complex; however when Ln = La, Ce, Nd, Gd and Eu (Kautz et al., 2000; Mullica et al., 2000, Li, Akitsu et al., 2003, and Li, Guo et al., 2003), three coordinating water molecules are found. In order to further illustrate the influence of lanthanide contraction on the composition and structure of such complexes, we synthesized a new binuclear complex [HoFe(CN)6(DMF)4(H2O)3].H2O (I), of which the crystal structure reported.

As shown in Fig. 1, the structure of (I) consists of neutral bimetallic HoFe(CN)6(DMF)4(H2O)3 complexes and solvent water molecules. The HoIII and FeIII ions are bridged by a cyanide group to form a binuclear complex. The HoIII is eight-coordinated with one N atom of the bridging cyanide ligand [Ho—N= 2.572 (0) Å], four O atoms of DMF molecules [Ho—ODMF= 2.412 (3) Å-2.460 (7) Å], with an average distance of 2.440 (5) Å, and three water molecules, for which the three Ho—Owater distances are in the range 2.479 (9) Å-2.489 (1) Å, with an average distance of 2.485 (1) Å. The coordination polyhedron can be described as a slightly distorted square-antiprism. A similar situation was found in in [Nd Fe(DMF)4(H2O)3].H2O (Li, Akitsu et al., 2003). The Ho1—N6—C6 angle is 163.4 (1)°, deviating slightly from linearity, as was the case in its analog. A three-dimensional framework is formed through O—H···N and O—H···O hydrogen bonding interactions with O···O distance of 2.660 (1)Å and average O···N separations of 2.839 (3) Å (Fig. 2).

Related literature top

For similar complexes [LnFe(CN)6(DMF)4(H2O)3].H2O (Ln = La, Ce, Nd, Gd, Pr and Eu), see: Kautz et al. (2000); Mullica et al. (2000); Li, Akitsu et al. (2003); Li, Guo et al. (2003). For Ln = Sm and Pr with four coordinating water molecules in the complex, see: Kou et al. (1998); Dai et al. (2004).

Experimental top

The title complex (1) was prepared by addition of Ho(NO3)3 (0.35 g, 1.0 mmol) solution in a solvent mix of 15 ml DMF/H2O (v: v = 1: 1) and one equivalent of anhydrous K3Fe(CN)6 (0.33 g, 1.0 mmol). The reaction mixture was filtered and yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent after a week. Yield: 81%. IR spectra were recorded on a FTS-40 infrared spectrometer KBr: 3610, 3400 (broad band center), 2939, 2132, 1648, 1497, 1382, 1114, 675 cm-1.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 Å, and refined in a riding model with Uiso(H) = 1.2 Ueq (C). The H atoms of the water molecules were located in a difference map and their bond lengths were set to 0.86Å and afterwards refined using a riding model with Uiso (H) = 1.5 Ueq (O).

Since the initial refinement gave a large positive residual density on the Fe site, we suspected a contamination of the Fe site with a heavier atom, such as Co or Ru. Indeed, an elemental analysis of the crystal gave an elemental mass ratio of Fe:Ru= 48.18:0.8230 which indicates thus trace amounts of ruthenium. The source of the problem was found to be the iron salt precursor K3Fe(CN)6, whose elemental analysis also gave trace amounts of Ru and in addition much tinier trace amounts of Co. It was decided to fix the site occupancy factors of Fe and Ru to 0.985 and 0.015, respectively, since constrained (sum fixed to 1.0) as well as free refinement of the Fe and Ru occupancies gave much too high ocuupancies - up to 25% - for Ru. This is not logical in view of the mean Fe(Ru)—C distance which is 1.940 Å in the title compound, compared to 1.929 Å in the Cambridge Structural Database for Fe—C and 2.023 Å for Ru—C in a similar cyanide environment.

Complex (I) was refined with 120 restraints, especially for modelling the disorder in the two dimethyl groups. Two alternative sites for C14 and C15 were refined to give occupancies of 0.44 (3) and 0.56 (3), respectively. A similar disorder was found for the dimethyl group C17-C18 with site occupancy factors of 0.44 (3) and 0.56 (3), respectively. Positionally disordered atoms were refined using distance restraints (DIFX, AFIX) and ADP restraints (SIMU, ISOR). The sub

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of complex (1) with atom-numbering scheme. Displacement ellipsoids are draw at the 30% probability level. Both positionally disordered dimethyl groups are shown.
[Figure 2] Fig. 2. Packing diagram for complex (1) viewed down the c axis. Hydrogen bonds are shown as dashed lines.
Triaqua-1κ3O-µ-cyanido-1:2κ2N:C-pentacyanido- 2κ5C-tetrakis(dimethylformamide-1κO)-1-holmium(III)-2- iron(III) monohydrate top
Crystal data top
[Fe0.98HoRu0.02(CN)6(C3H7NO)4(H2O)3]·H2OZ = 4
Mr = 742.25F(000) = 1485.8
Monoclinic, P21/cDx = 1.575 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 17.6587 (15) Åθ = 2.3–27.7°
b = 8.9235 (8) ŵ = 3.03 mm1
c = 25.2750 (16) ÅT = 293 K
β = 128.208 (4)°Block, yellow
V = 3129.5 (4) Å30.30 × 0.25 × 0.20 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6392 independent reflections
Radiation source: fine-focus sealed tube5217 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 26.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2221
Tmin = 0.464, Tmax = 0.583k = 911
19042 measured reflectionsl = 2531
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0763P)2 + 11.5358P]
where P = (Fo2 + 2Fc2)/3
6392 reflections(Δ/σ)max = 0.001
393 parametersΔρmax = 1.95 e Å3
120 restraintsΔρmin = 1.04 e Å3
Crystal data top
[Fe0.98HoRu0.02(CN)6(C3H7NO)4(H2O)3]·H2OV = 3129.5 (4) Å3
Mr = 742.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.6587 (15) ŵ = 3.03 mm1
b = 8.9235 (8) ÅT = 293 K
c = 25.2750 (16) Å0.30 × 0.25 × 0.20 mm
β = 128.208 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6392 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5217 reflections with I > 2σ(I)
Tmin = 0.464, Tmax = 0.583Rint = 0.030
19042 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042120 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0763P)2 + 11.5358P]
where P = (Fo2 + 2Fc2)/3
6392 reflectionsΔρmax = 1.95 e Å3
393 parametersΔρmin = 1.04 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ho10.252155 (17)0.08435 (3)0.728404 (12)0.02581 (11)
Ru10.25530 (4)0.24860 (8)0.54262 (3)0.01431 (16)0.02
Fe10.25530 (4)0.24860 (8)0.54262 (3)0.01431 (16)0.98
C10.3936 (4)0.2162 (6)0.5976 (3)0.0230 (11)
C20.2381 (4)0.0899 (6)0.4835 (3)0.0230 (11)
C30.2655 (4)0.3958 (7)0.4911 (3)0.0288 (13)
C40.2701 (4)0.4092 (6)0.6008 (3)0.0242 (11)
C50.1176 (4)0.2763 (6)0.4864 (3)0.0249 (12)
C60.2508 (4)0.1071 (6)0.5989 (3)0.0223 (11)
C70.0209 (5)0.0851 (8)0.5983 (4)0.0399 (15)
H70.02570.01530.56850.048*
C80.0929 (6)0.2763 (11)0.5226 (4)0.071 (3)
H8A0.13020.19210.49470.107*
H8B0.08270.34400.49810.107*
H8C0.12700.32710.53570.107*
C90.0751 (8)0.3376 (11)0.6257 (6)0.088 (3)
H9A0.05170.40810.64120.132*
H9B0.09050.38920.60010.132*
H9C0.13200.28940.66370.132*
C100.4879 (4)0.0850 (7)0.8340 (3)0.0338 (14)
H100.52750.02670.87250.041*
C110.4612 (6)0.3173 (10)0.7772 (4)0.060 (2)
H11A0.43010.25930.73660.090*
H11B0.50350.38930.77930.090*
H11C0.41340.36850.77710.090*
C120.6071 (5)0.2788 (9)0.8950 (4)0.052 (2)
H12A0.63770.20480.93000.079*
H12B0.59400.36670.91000.079*
H12C0.64890.30440.88420.079*
C130.3206 (5)0.1586 (9)0.8541 (4)0.0474 (18)
H130.34810.07820.88390.057*
C140.291 (2)0.429 (3)0.8260 (15)0.062 (5)0.44 (3)
H14A0.30600.52200.85000.094*0.44 (3)
H14B0.22270.41190.79840.094*0.44 (3)
H14C0.31040.43510.79800.094*0.44 (3)
C150.412 (2)0.355 (4)0.9386 (15)0.070 (6)0.44 (3)
H15A0.46260.39720.93980.104*0.44 (3)
H15B0.43780.28180.97370.104*0.44 (3)
H15C0.38070.43300.94520.104*0.44 (3)
C14'0.335 (2)0.412 (2)0.8506 (13)0.068 (5)0.56 (3)
H14D0.33570.39500.81350.103*0.56 (3)
H14E0.38480.48140.88150.103*0.56 (3)
H14F0.27340.45240.83420.103*0.56 (3)
C15'0.4194 (14)0.296 (3)0.9573 (9)0.053 (4)0.56 (3)
H15D0.48180.32550.97170.079*0.56 (3)
H15E0.42370.19800.97490.079*0.56 (3)
H15F0.39720.36630.97350.079*0.56 (3)
C160.0630 (5)0.2223 (10)0.7166 (4)0.0493 (19)
H160.02790.20260.67090.059*
C170.0593 (17)0.268 (4)0.8065 (11)0.065 (5)0.44 (3)
H17A0.12650.24510.83210.098*0.44 (3)
H17B0.05210.36090.82240.098*0.44 (3)
H17C0.02740.18950.81170.098*0.44 (3)
C180.0869 (17)0.287 (3)0.6958 (14)0.061 (5)0.44 (3)
H18A0.10610.22730.71720.092*0.44 (3)
H18B0.10760.38890.69210.092*0.44 (3)
H18C0.11570.24840.65170.092*0.44 (3)
C17'0.0698 (13)0.358 (3)0.7984 (9)0.069 (5)0.56 (3)
H17D0.13690.35770.81820.103*0.56 (3)
H17E0.04750.45900.79210.103*0.56 (3)
H17F0.06120.30630.82780.103*0.56 (3)
C18'0.0818 (13)0.347 (3)0.6845 (10)0.060 (4)0.56 (3)
H18D0.10260.32600.64000.089*0.56 (3)
H18E0.12600.30330.69010.089*0.56 (3)
H18F0.07990.45390.69050.089*0.56 (3)
N10.4743 (3)0.1966 (7)0.6286 (3)0.0383 (13)
N20.2289 (4)0.0020 (7)0.4488 (3)0.0448 (14)
N30.2758 (5)0.4849 (7)0.4632 (3)0.0523 (16)
N40.2771 (4)0.5030 (6)0.6335 (3)0.0395 (13)
N50.0349 (4)0.2905 (7)0.4522 (3)0.0430 (14)
N60.2497 (4)0.0265 (6)0.6334 (3)0.0346 (12)
N70.0003 (4)0.2238 (6)0.5829 (3)0.0361 (12)
N80.5167 (3)0.2186 (5)0.8351 (2)0.0281 (11)
N90.3484 (5)0.2909 (8)0.8801 (4)0.0558 (18)
N100.0164 (4)0.2836 (9)0.7354 (3)0.0557 (19)
O50.0981 (3)0.0361 (5)0.6498 (2)0.0430 (11)
O60.4104 (3)0.0281 (5)0.7849 (2)0.0395 (11)
O70.2615 (4)0.1286 (5)0.7941 (3)0.0431 (11)
O80.1475 (3)0.1878 (6)0.7525 (2)0.0440 (12)
O1W0.3239 (4)0.7435 (5)0.9333 (2)0.0412 (11)
H1WA0.30030.66950.94070.049*
H1WB0.31610.82090.94980.049*
O2W0.3524 (3)0.1900 (5)0.8442 (2)0.0350 (10)
H2WA0.33550.21980.86800.042*
H2WB0.40250.24190.85780.042*
O3W0.3578 (3)0.2810 (5)0.7351 (2)0.0393 (11)
H3WA0.35550.35610.71290.047*
H3WB0.41320.28620.77420.047*
O4W0.1595 (3)0.2847 (5)0.6432 (2)0.0348 (10)
H4WB0.17620.35680.62980.042*
H4WA0.09840.27420.61250.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ho10.02603 (16)0.02548 (16)0.02722 (16)0.00088 (10)0.01712 (13)0.00049 (10)
Ru10.0126 (3)0.0156 (3)0.0124 (3)0.0006 (3)0.0066 (3)0.0008 (3)
Fe10.0126 (3)0.0156 (3)0.0124 (3)0.0006 (3)0.0066 (3)0.0008 (3)
C10.024 (3)0.022 (3)0.020 (3)0.004 (2)0.013 (2)0.003 (2)
C20.018 (2)0.025 (3)0.021 (3)0.000 (2)0.009 (2)0.001 (2)
C30.032 (3)0.027 (3)0.023 (3)0.001 (2)0.015 (3)0.000 (2)
C40.015 (2)0.028 (3)0.022 (3)0.001 (2)0.008 (2)0.002 (2)
C50.021 (3)0.025 (3)0.024 (3)0.004 (2)0.011 (2)0.007 (2)
C60.016 (2)0.030 (3)0.019 (2)0.000 (2)0.010 (2)0.003 (2)
C70.035 (3)0.039 (4)0.046 (4)0.004 (3)0.025 (3)0.000 (3)
C80.054 (5)0.079 (7)0.053 (5)0.032 (5)0.020 (4)0.029 (5)
C90.082 (7)0.041 (5)0.097 (8)0.013 (5)0.033 (6)0.003 (5)
C100.031 (3)0.037 (4)0.035 (3)0.003 (3)0.021 (3)0.001 (3)
C110.065 (5)0.048 (5)0.049 (5)0.003 (4)0.027 (4)0.017 (4)
C120.043 (4)0.048 (5)0.045 (4)0.025 (3)0.016 (3)0.016 (3)
C130.044 (4)0.049 (5)0.052 (4)0.001 (3)0.031 (4)0.020 (4)
C140.061 (8)0.045 (7)0.063 (8)0.000 (6)0.029 (6)0.010 (6)
C150.065 (7)0.063 (8)0.067 (8)0.002 (7)0.035 (6)0.013 (7)
C14'0.068 (8)0.057 (7)0.066 (7)0.002 (6)0.034 (6)0.012 (6)
C15'0.057 (6)0.052 (7)0.047 (6)0.009 (5)0.031 (5)0.014 (5)
C160.048 (4)0.072 (6)0.037 (4)0.011 (4)0.031 (3)0.002 (4)
C170.061 (7)0.081 (9)0.062 (7)0.007 (6)0.042 (5)0.010 (6)
C180.042 (6)0.067 (8)0.068 (7)0.005 (6)0.031 (5)0.001 (7)
C17'0.060 (6)0.077 (8)0.064 (7)0.014 (6)0.036 (5)0.016 (6)
C18'0.043 (6)0.069 (8)0.064 (7)0.010 (6)0.032 (5)0.002 (6)
N10.018 (2)0.048 (3)0.034 (3)0.000 (2)0.009 (2)0.000 (2)
N20.059 (4)0.037 (3)0.045 (3)0.004 (3)0.035 (3)0.017 (3)
N30.078 (5)0.035 (3)0.050 (4)0.010 (3)0.043 (4)0.007 (3)
N40.041 (3)0.036 (3)0.038 (3)0.001 (2)0.023 (3)0.017 (3)
N50.020 (3)0.046 (4)0.045 (3)0.004 (2)0.011 (2)0.006 (3)
N60.042 (3)0.036 (3)0.031 (3)0.001 (2)0.025 (2)0.007 (2)
N70.030 (3)0.034 (3)0.037 (3)0.007 (2)0.017 (2)0.010 (2)
N80.024 (2)0.026 (3)0.028 (2)0.0027 (19)0.013 (2)0.000 (2)
N90.060 (4)0.055 (4)0.072 (4)0.026 (3)0.050 (4)0.042 (4)
N100.026 (3)0.095 (6)0.045 (3)0.006 (3)0.022 (3)0.024 (3)
O50.032 (2)0.038 (3)0.050 (3)0.016 (2)0.021 (2)0.014 (2)
O60.028 (2)0.042 (3)0.040 (3)0.019 (2)0.017 (2)0.011 (2)
O70.053 (3)0.032 (2)0.044 (3)0.001 (2)0.029 (2)0.015 (2)
O80.029 (2)0.073 (4)0.038 (3)0.011 (2)0.025 (2)0.001 (2)
O1W0.065 (3)0.034 (2)0.052 (3)0.002 (2)0.049 (3)0.001 (2)
O2W0.030 (2)0.051 (3)0.033 (2)0.0144 (19)0.0234 (19)0.017 (2)
O3W0.0211 (19)0.045 (3)0.027 (2)0.0093 (18)0.0023 (17)0.0182 (19)
O4W0.0138 (17)0.038 (3)0.037 (2)0.0037 (16)0.0077 (17)0.0210 (19)
Geometric parameters (Å, º) top
Ho1—O52.412 (4)C13—H130.9300
Ho1—O62.433 (4)C14—N91.65 (3)
Ho1—O82.457 (4)C14—H14A0.9600
Ho1—O72.461 (4)C14—H14B0.9600
Ho1—O4W2.480 (4)C14—H14C0.9600
Ho1—O2W2.486 (4)C15—N91.31 (3)
Ho1—O3W2.489 (4)C15—H15A0.9600
Ho1—N62.572 (5)C15—H15B0.9600
Fe1—C51.929 (5)C15—H15C0.9600
Fe1—C31.935 (6)C14'—N91.25 (2)
Fe1—C61.940 (6)C14'—H14D0.9600
Fe1—C21.941 (6)C14'—H14E0.9600
Fe1—C11.944 (5)C14'—H14F0.9600
Fe1—C41.951 (6)C15'—N91.534 (19)
C1—N11.138 (7)C15'—H15D0.9600
C2—N21.138 (8)C15'—H15E0.9600
C3—N31.150 (8)C15'—H15F0.9600
C4—N41.130 (7)C16—O81.213 (8)
C5—N51.155 (7)C16—N101.297 (9)
C6—N61.140 (7)C16—H160.9300
C7—O51.245 (8)C17—N101.46 (2)
C7—N71.281 (8)C17—H17A0.9600
C7—H70.9300C17—H17B0.9600
C8—N71.465 (9)C17—H17C0.9600
C8—H8A0.9600C18—N101.44 (2)
C8—H8B0.9600C18—H18A0.9600
C8—H8C0.9600C18—H18B0.9600
C9—N71.476 (10)C18—H18C0.9600
C9—H9A0.9600C17'—N101.416 (18)
C9—H9B0.9600C17'—H17D0.9600
C9—H9C0.9600C17'—H17E0.9600
C10—O61.253 (8)C17'—H17F0.9600
C10—N81.289 (8)C18'—N101.492 (19)
C10—H100.9300C18'—H18D0.9600
C11—N81.451 (9)C18'—H18E0.9600
C11—H11A0.9600C18'—H18F0.9600
C11—H11B0.9600O1W—H1WA0.8600
C11—H11C0.9600O1W—H1WB0.8599
C12—N81.463 (8)O2W—H2WA0.8599
C12—H12A0.9600O2W—H2WB0.8599
C12—H12B0.9600O3W—H3WA0.8599
C12—H12C0.9600O3W—H3WB0.8599
C13—O71.226 (9)O4W—H4WB0.8599
C13—N91.291 (9)O4W—H4WA0.8600
O5—Ho1—O6126.91 (18)N9—C13—H13116.8
O5—Ho1—O874.53 (17)N9—C14—H14A109.5
O6—Ho1—O8140.97 (15)N9—C14—H14B109.5
O5—Ho1—O777.44 (17)N9—C14—H14C109.5
O6—Ho1—O773.26 (16)N9—C15—H15A109.5
O8—Ho1—O782.50 (18)N9—C15—H15B109.5
O5—Ho1—O4W78.68 (16)N9—C15—H15C109.5
O6—Ho1—O4W135.11 (15)N9—C14'—H14D109.5
O8—Ho1—O4W75.57 (16)N9—C14'—H14E109.5
O7—Ho1—O4W151.08 (15)H14D—C14'—H14E109.5
O5—Ho1—O2W139.24 (15)N9—C14'—H14F109.5
O6—Ho1—O2W75.08 (15)H14D—C14'—H14F109.5
O8—Ho1—O2W70.26 (14)H14E—C14'—H14F109.5
O7—Ho1—O2W78.24 (16)N9—C15'—H15D109.5
O4W—Ho1—O2W110.85 (15)N9—C15'—H15E109.5
O5—Ho1—O3W141.85 (15)H15D—C15'—H15E109.5
O6—Ho1—O3W73.17 (16)N9—C15'—H15F109.5
O8—Ho1—O3W111.42 (17)H15D—C15'—H15F109.5
O7—Ho1—O3W139.77 (15)H15E—C15'—H15F109.5
O4W—Ho1—O3W67.38 (13)O8—C16—N10126.8 (7)
O2W—Ho1—O3W72.22 (14)O8—C16—H16116.6
O5—Ho1—N672.59 (17)N10—C16—H16116.6
O6—Ho1—N674.89 (17)N10—C17—H17A109.5
O8—Ho1—N6142.69 (16)N10—C17—H17B109.5
O7—Ho1—N6106.76 (18)N10—C17—H17C109.5
O4W—Ho1—N681.13 (17)N10—C18—H18A109.5
O2W—Ho1—N6146.47 (15)N10—C18—H18B109.5
O3W—Ho1—N685.08 (17)N10—C18—H18C109.5
C5—Ru1—C391.0 (3)N10—C17'—H17D109.5
C5—Ru1—C691.1 (2)N10—C17'—H17E109.5
C3—Ru1—C6176.7 (2)H17D—C17'—H17E109.5
C5—Ru1—C290.0 (2)N10—C17'—H17F109.5
C3—Ru1—C290.7 (2)H17D—C17'—H17F109.5
C6—Ru1—C291.8 (2)H17E—C17'—H17F109.5
C5—Ru1—C1178.4 (2)N10—C18'—H18D109.5
C3—Ru1—C189.1 (2)N10—C18'—H18E109.5
C6—Ru1—C189.0 (2)H18D—C18'—H18E109.5
C2—Ru1—C188.3 (2)N10—C18'—H18F109.5
C5—Ru1—C489.0 (2)H18D—C18'—H18F109.5
C3—Ru1—C489.0 (3)H18E—C18'—H18F109.5
C6—Ru1—C488.4 (2)C6—N6—Ho1163.4 (5)
C2—Ru1—C4178.9 (2)C7—N7—C8123.3 (7)
C1—Ru1—C492.7 (2)C7—N7—C9119.0 (7)
N1—C1—Ru1178.6 (5)C8—N7—C9117.6 (7)
N2—C2—Ru1179.0 (6)C10—N8—C11121.9 (6)
N3—C3—Ru1176.8 (6)C10—N8—C12121.7 (6)
N4—C4—Ru1178.8 (6)C11—N8—C12116.4 (6)
N5—C5—Ru1178.8 (6)C14'—N9—C13128.0 (12)
N6—C6—Ru1178.2 (5)C14'—N9—C1590.6 (17)
O5—C7—N7125.3 (7)C13—N9—C15139.8 (19)
O5—C7—H7117.3C14'—N9—C15'116.1 (12)
N7—C7—H7117.3C13—N9—C15'115.2 (11)
N7—C8—H8A109.5C15—N9—C15'25.5 (15)
N7—C8—H8B109.5C14'—N9—C1420.4 (13)
H8A—C8—H8B109.5C13—N9—C14114.8 (11)
N7—C8—H8C109.5C15—N9—C14105.5 (17)
H8A—C8—H8C109.5C15'—N9—C14129.4 (12)
H8B—C8—H8C109.5C16—N10—C17'118.5 (9)
N7—C9—H9A109.5C16—N10—C18124.9 (13)
N7—C9—H9B109.5C17'—N10—C18116.5 (14)
H9A—C9—H9B109.5C16—N10—C17116.5 (11)
N7—C9—H9C109.5C17'—N10—C1735.1 (11)
H9A—C9—H9C109.5C18—N10—C17109.1 (17)
H9B—C9—H9C109.5C16—N10—C18'120.5 (10)
O6—C10—N8124.8 (6)C17'—N10—C18'113.7 (12)
O6—C10—H10117.6C18—N10—C18'25.1 (11)
N8—C10—H10117.6C17—N10—C18'122.5 (13)
N8—C11—H11A109.5C7—O5—Ho1165.0 (5)
N8—C11—H11B109.5C10—O6—Ho1154.5 (4)
H11A—C11—H11B109.5C13—O7—Ho1130.9 (5)
N8—C11—H11C109.5C16—O8—Ho1132.6 (4)
H11A—C11—H11C109.5H1WA—O1W—H1WB105.6
H11B—C11—H11C109.5Ho1—O2W—H2WA129.6
N8—C12—H12A109.5Ho1—O2W—H2WB118.8
N8—C12—H12B109.5H2WA—O2W—H2WB105.6
H12A—C12—H12B109.5Ho1—O3W—H3WA140.8
N8—C12—H12C109.5Ho1—O3W—H3WB112.9
H12A—C12—H12C109.5H3WA—O3W—H3WB105.6
H12B—C12—H12C109.5Ho1—O4W—H4WB132.7
O7—C13—N9126.5 (9)Ho1—O4W—H4WA119.5
O7—C13—H13116.8H4WB—O4W—H4WA105.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N2i0.862.052.901 (7)173
O1W—H1WB···N3ii0.861.982.821 (7)165
O2W—H2WA···O1Wiii0.861.822.660 (6)167
O2W—H2WB···N1iv0.862.062.875 (7)159
O3W—H3WA···N4iii0.862.022.795 (6)149
O3W—H3WB···N1iv0.861.992.839 (6)168
O4W—H4WB···N4iii0.862.132.931 (7)155
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x, y1, z; (iv) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Fe0.98HoRu0.02(CN)6(C3H7NO)4(H2O)3]·H2O
Mr742.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.6587 (15), 8.9235 (8), 25.2750 (16)
β (°) 128.208 (4)
V3)3129.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.03
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.464, 0.583
No. of measured, independent and
observed [I > 2σ(I)] reflections
19042, 6392, 5217
Rint0.030
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.131, 1.04
No. of reflections6392
No. of parameters393
No. of restraints120
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0763P)2 + 11.5358P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.95, 1.04

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ho1—O52.412 (4)Ho1—N62.572 (5)
Ho1—O62.433 (4)Fe1—C51.929 (5)
Ho1—O82.457 (4)Fe1—C31.935 (6)
Ho1—O72.461 (4)Fe1—C61.940 (6)
Ho1—O4W2.480 (4)Fe1—C21.941 (6)
Ho1—O2W2.486 (4)Fe1—C11.944 (5)
Ho1—O3W2.489 (4)Fe1—C41.951 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N2i0.862.052.901 (7)173
O1W—H1WB···N3ii0.861.982.821 (7)165
O2W—H2WA···O1Wiii0.861.822.660 (6)167
O2W—H2WB···N1iv0.862.062.875 (7)159
O3W—H3WA···N4iii0.862.022.795 (6)149
O3W—H3WB···N1iv0.861.992.839 (6)168
O4W—H4WB···N4iii0.862.132.931 (7)155
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x, y1, z; (iv) x+1, y1/2, z+3/2.
 

Acknowledgements

We gratefully acknowledge financial support of this research by the postgraduate scientific research program of Yunnan University (No. ynuy200932).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, Y., Chen, X. M., Cheng, P., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2004). Transition Met. Chem. 29, 12–15.  Web of Science CSD CrossRef CAS Google Scholar
First citationKautz, J. A., Mullica, D. F., Cunningham, B. P. & Farmer, J. M. (2000). J. Mol. Struct. 523, 175–182.  Web of Science CSD CrossRef CAS Google Scholar
First citationKou, H. Z., Yang, G. M., Liao, D. Z., Cheng, P., Jiang, Z. H., Yan, S. P., Huang, X. Y. & Wang, G. L. (1998). J. Chem. Crystallogr. 28, 303–307.  Web of Science CSD CrossRef Google Scholar
First citationLi, G. M., Akitsu, T., Sato, O. & Einaga, Y. (2003). J. Am. Chem. Soc. 125, 12396–12397.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, J. M., Guo, G. C., Wang, M. S., Zhou, G. W., Bu, X. H. & Huang, J. S. (2003). Chin. J. Struct. Chem. (Jiegou Huaxue), 22, 182–186.  CAS Google Scholar
First citationMullica, D. F., Farmer, J. M., Cunningham, B. P. & Kautz, J. A. (2000). J. Coord. Chem. 49, 239–250.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1094-m1095
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds