metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(2-fur­yl)-1-(2-furylmeth­yl)-1H-benzimidazole-κN3]di­iodidocadmium

aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China
*Correspondence e-mail: wangxiawx83@yahoo.com.cn

(Received 22 June 2011; accepted 20 July 2011; online 30 July 2011)

In the title complex, [CdI2(C16H12N2O2)2], the CdII atom is located on a twofold rotation axis and is four-coordinated by two N atoms from symmetry-related 2-(2-fur­yl)-1-(2-furyl­meth­yl)-1H-benzimidazole ligands and two I atoms in a distorted tetra­hedral configuration. The benzimidazole rings in adjacent mol­ecules are parallel, with an average inter­planar distance of 3.486 Å. The I atom is disordered over two sites in a 0.85 (5):0.15 (5) ratio.

Related literature

For background to benzimidazole and its derivatives, see: Shi et al. (2010[Shi, X.-J., Wang, X., Li, L.-K., Hou, H.-W. & Fan, Y.-T. (2010). Cryst. Growth Des. 10, 2490-2500.]); Yang et al. (2008[Yang, H.-X., Meng, X.-R., Liu, Y., Hou, H.-W., Fan, Y.-T. & Shen, X.-Q. (2008). J. Solid State Chem. 181, 2178-2184.]). For related structures containing cadmium, see: Wang et al. (2010[Wang, X., Li, Y.-X., Liu, Y.-J., Yang, H.-X. & Zhang, C.-C. (2010). Acta Cryst. E66, m1207.]); Zhai et al. (2006[Zhai, Q.-G., Wu, X.-Y., Chen, S.-M., Lu, C.-Z. & Yang, W.-B. (2006). Cryst. Growth Des. 6, 2126-2135.]).

[Scheme 1]

Experimental

Crystal data
  • [CdI2(C16H12N2O2)2]

  • Mr = 894.75

  • Monoclinic, C 2/c

  • a = 18.140 (4) Å

  • b = 10.582 (2) Å

  • c = 18.507 (4) Å

  • β = 115.02 (3)°

  • V = 3219.2 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.64 mm−1

  • T = 293 K

  • 0.18 × 0.16 × 0.15 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.]) Tmin = 0.648, Tmax = 0.693

  • 10971 measured reflections

  • 2993 independent reflections

  • 2595 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.085

  • S = 1.10

  • 2993 reflections

  • 205 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzimidazole and its derivatives have been used in the construction of complexes since they can act as polydentate ligands and function as bridging ligands (Yang et al., 2008; Shi et al., 2010). The CdII ion is a good model atom to construct complexes owing to its property to form bonds with different donors simultaneously (Zhai et al., 2006; Wang et al., 2010). In this work, synthesis and structure of the complex [Cd(C16H12N2O2)2I2] are described.

The CdII atom (site symmetry 2) is four-coordinated by two N atoms from two 2-(2-furyl)-1-(2-furylmethyl)-1H-benzimidazole ligands and two disordered I atoms in a distorted tetrahedral configuration (Fig. 1). The benzimidazole rings in adjacent molecules are parallel, with an average interplanar distance of 3.486 Å.

Related literature top

For background to benzimidazole and its derivatives, see: Shi et al. (2010); Yang et al. (2008). For related structures containing cadmium, see: Wang et al. (2010); Zhai et al. (2006).

Experimental top

The ligand 2-(2-furyl)-1-(2-furylmethyl)-1H-benzimidazole (0.04 mmol) in methanol (6 ml) was added dropwise to a methanol solution (6 ml) of CdI2 (0.04 mmol) in methanol. The resulting solution was allowed to stand at room temperature. After two weeks light-yellow crystals with good quality were obtained and dried in air.

Refinement top

The disordered I atom was modelled by splitting the atom into two components (I1 and I1'), the site occupation factors of which refined in a ratio of 0.85 (5):0.15 (5). H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.97 (CH2) Å, and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title complex, showing the labeling of the 30% probability ellipsolids. For the disordered I atom, only one orientation is shown; H atoms have been omitted for clarity. [Symmetry code: A) x + 1, y, -z + 1/2]
[Figure 2] Fig. 2. A view of the crystal packing along the b axis. H atoms are omitted for clarity.
Bis[2-(2-furyl)-1-(2-furylmethyl)-1H-benzimidazole- κN3]diiodidocadmium top
Crystal data top
[CdI2(C16H12N2O2)2]F(000) = 1720
Mr = 894.75Dx = 1.846 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4174 reflections
a = 18.140 (4) Åθ = 2.3–27.9°
b = 10.582 (2) ŵ = 2.64 mm1
c = 18.507 (4) ÅT = 293 K
β = 115.02 (3)°Prism, light yellow
V = 3219.2 (14) Å30.18 × 0.16 × 0.15 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
2993 independent reflections
Radiation source: fine-focus sealed tube2595 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 28.5714 pixels mm-1θmax = 25.5°, θmin = 2.3°
ω scansh = 1821
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
k = 912
Tmin = 0.648, Tmax = 0.693l = 2222
10971 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0357P)2 + 4.2457P]
where P = (Fo2 + 2Fc2)/3
2993 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[CdI2(C16H12N2O2)2]V = 3219.2 (14) Å3
Mr = 894.75Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.140 (4) ŵ = 2.64 mm1
b = 10.582 (2) ÅT = 293 K
c = 18.507 (4) Å0.18 × 0.16 × 0.15 mm
β = 115.02 (3)°
Data collection top
Rigaku Saturn
diffractometer
2993 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
2595 reflections with I > 2σ(I)
Tmin = 0.648, Tmax = 0.693Rint = 0.028
10971 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.10Δρmax = 0.64 e Å3
2993 reflectionsΔρmin = 0.45 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.50000.58735 (4)0.25000.04815 (16)
I10.6326 (2)0.7359 (4)0.26829 (19)0.0695 (6)0.85 (5)
I1'0.615 (5)0.752 (5)0.261 (2)0.089 (7)0.15 (5)
N10.4753 (2)0.4731 (3)0.1385 (2)0.0429 (8)
N20.4699 (2)0.3215 (3)0.0528 (2)0.0483 (9)
C10.4236 (2)0.5121 (4)0.0618 (2)0.0426 (10)
C20.3808 (3)0.6239 (4)0.0347 (3)0.0491 (11)
H2A0.38300.68790.07000.059*
C30.3349 (3)0.6371 (5)0.0462 (3)0.0555 (12)
H3A0.30600.71150.06580.067*
C40.3310 (3)0.5417 (5)0.0990 (3)0.0601 (13)
H4A0.29920.55340.15320.072*
C50.3730 (3)0.4300 (5)0.0734 (3)0.0552 (12)
H5A0.37060.36600.10880.066*
C60.4192 (2)0.4180 (4)0.0081 (3)0.0439 (10)
C70.5015 (2)0.3599 (4)0.1300 (3)0.0459 (10)
C80.5590 (3)0.2866 (5)0.1956 (3)0.0529 (11)
C90.5687 (3)0.1627 (4)0.2070 (3)0.0599 (13)
H9A0.53850.10010.17160.072*
C100.6321 (4)0.1441 (7)0.2812 (4)0.092 (2)
H10A0.65310.06630.30380.111*
C110.6575 (4)0.2548 (8)0.3144 (4)0.098 (2)
H11A0.69890.26840.36490.118*
C120.4852 (3)0.2042 (4)0.0182 (3)0.0571 (12)
H12A0.53420.16430.05670.068*
H12B0.49400.22500.02860.068*
C130.4164 (3)0.1140 (4)0.0046 (3)0.0574 (12)
C140.3614 (4)0.0757 (5)0.0735 (4)0.0829 (18)
H14A0.35710.09860.12360.099*
C150.3092 (4)0.0087 (6)0.0563 (5)0.102 (2)
H15A0.26300.04860.09320.123*
C160.3386 (5)0.0187 (7)0.0207 (5)0.109 (3)
H16A0.31710.06910.04820.131*
O10.6113 (3)0.3501 (4)0.2604 (3)0.0905 (12)
O20.4063 (3)0.0562 (4)0.0554 (3)0.0995 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0569 (3)0.0407 (3)0.0372 (2)0.0000.0104 (2)0.000
I10.0791 (13)0.0742 (10)0.0499 (11)0.0321 (6)0.0220 (8)0.0089 (5)
I1'0.125 (16)0.069 (7)0.079 (7)0.051 (10)0.049 (8)0.021 (5)
N10.048 (2)0.040 (2)0.0411 (19)0.0022 (16)0.0185 (16)0.0024 (15)
N20.049 (2)0.040 (2)0.059 (2)0.0091 (17)0.0264 (19)0.0103 (18)
C10.040 (2)0.044 (2)0.042 (2)0.0093 (19)0.0159 (19)0.0011 (19)
C20.055 (3)0.043 (2)0.050 (3)0.004 (2)0.023 (2)0.002 (2)
C30.051 (3)0.057 (3)0.048 (3)0.004 (2)0.011 (2)0.008 (2)
C40.059 (3)0.074 (3)0.041 (3)0.014 (3)0.015 (2)0.004 (2)
C50.054 (3)0.065 (3)0.046 (3)0.019 (2)0.020 (2)0.014 (2)
C60.041 (2)0.043 (2)0.050 (2)0.0093 (19)0.021 (2)0.002 (2)
C70.043 (2)0.042 (2)0.056 (3)0.0026 (19)0.024 (2)0.002 (2)
C80.049 (3)0.057 (3)0.053 (3)0.001 (2)0.021 (2)0.000 (2)
C90.070 (3)0.033 (3)0.067 (3)0.003 (2)0.020 (3)0.002 (2)
C100.089 (5)0.081 (5)0.102 (5)0.038 (4)0.036 (4)0.037 (4)
C110.067 (4)0.143 (7)0.064 (4)0.003 (4)0.006 (3)0.015 (4)
C120.062 (3)0.046 (3)0.075 (3)0.011 (2)0.041 (3)0.015 (2)
C130.067 (3)0.040 (3)0.076 (3)0.010 (2)0.040 (3)0.011 (2)
C140.092 (4)0.053 (3)0.080 (4)0.014 (3)0.013 (3)0.006 (3)
C150.074 (4)0.058 (4)0.136 (7)0.025 (3)0.006 (4)0.012 (4)
C160.108 (6)0.095 (5)0.139 (7)0.054 (5)0.066 (6)0.031 (5)
O10.101 (3)0.087 (3)0.081 (3)0.009 (2)0.036 (3)0.006 (2)
O20.121 (4)0.099 (3)0.091 (3)0.055 (3)0.058 (3)0.031 (3)
Geometric parameters (Å, º) top
Cd1—N12.267 (3)C7—C81.446 (6)
Cd1—N1i2.267 (3)C8—C91.328 (6)
Cd1—I1'i2.67 (3)C8—O11.351 (6)
Cd1—I1'2.67 (3)C9—C101.383 (8)
Cd1—I1i2.772 (4)C9—H9A0.9300
Cd1—I12.772 (4)C10—C111.312 (9)
N1—C71.323 (5)C10—H10A0.9300
N1—C11.393 (5)C11—O11.419 (8)
N2—C71.356 (5)C11—H11A0.9300
N2—C61.390 (5)C12—C131.482 (6)
N2—C121.476 (5)C12—H12A0.9700
C1—C61.386 (6)C12—H12B0.9700
C1—C21.387 (6)C13—C141.307 (7)
C2—C31.379 (6)C13—O21.348 (6)
C2—H2A0.9300C14—C151.432 (8)
C3—C41.386 (7)C14—H14A0.9300
C3—H3A0.9300C15—C161.297 (10)
C4—C51.378 (7)C15—H15A0.9300
C4—H4A0.9300C16—O21.371 (7)
C5—C61.387 (6)C16—H16A0.9300
C5—H5A0.9300
N1—Cd1—N1i115.51 (17)C1—C6—N2106.2 (4)
N1—Cd1—I1'i115.7 (13)C5—C6—N2131.2 (4)
N1i—Cd1—I1'i105.3 (6)N1—C7—N2112.6 (4)
N1—Cd1—I1'105.3 (6)N1—C7—C8123.5 (4)
N1i—Cd1—I1'115.7 (13)N2—C7—C8123.8 (4)
I1'i—Cd1—I1'98 (4)C9—C8—O1110.7 (5)
N1—Cd1—I1i111.36 (12)C9—C8—C7131.5 (5)
N1i—Cd1—I1i103.96 (12)O1—C8—C7117.7 (4)
I1'i—Cd1—I1i6.6 (19)C8—C9—C10107.3 (5)
I1'—Cd1—I1i104.6 (18)C8—C9—H9A126.4
N1—Cd1—I1103.96 (12)C10—C9—H9A126.4
N1i—Cd1—I1111.36 (12)C11—C10—C9108.6 (5)
I1'i—Cd1—I1104.6 (18)C11—C10—H10A125.7
I1'—Cd1—I16.6 (18)C9—C10—H10A125.7
I1i—Cd1—I1110.9 (2)C10—C11—O1108.6 (6)
C7—N1—C1105.5 (3)C10—C11—H11A125.7
C7—N1—Cd1130.5 (3)O1—C11—H11A125.7
C1—N1—Cd1123.9 (3)N2—C12—C13112.1 (4)
C7—N2—C6106.6 (3)N2—C12—H12A109.2
C7—N2—C12129.5 (4)C13—C12—H12A109.2
C6—N2—C12123.9 (4)N2—C12—H12B109.2
C6—C1—C2120.0 (4)C13—C12—H12B109.2
C6—C1—N1109.1 (4)H12A—C12—H12B107.9
C2—C1—N1130.9 (4)C14—C13—O2110.4 (5)
C3—C2—C1117.9 (4)C14—C13—C12132.9 (5)
C3—C2—H2A121.1O2—C13—C12116.7 (5)
C1—C2—H2A121.1C13—C14—C15106.3 (6)
C2—C3—C4121.3 (5)C13—C14—H14A126.8
C2—C3—H3A119.3C15—C14—H14A126.8
C4—C3—H3A119.3C16—C15—C14107.0 (6)
C5—C4—C3121.7 (4)C16—C15—H15A126.5
C5—C4—H4A119.1C14—C15—H15A126.5
C3—C4—H4A119.1C15—C16—O2109.7 (6)
C4—C5—C6116.4 (4)C15—C16—H16A125.1
C4—C5—H5A121.8O2—C16—H16A125.1
C6—C5—H5A121.8C8—O1—C11104.8 (5)
C1—C6—C5122.6 (4)C13—O2—C16106.5 (5)
N1i—Cd1—N1—C729.6 (3)Cd1—N1—C7—N2177.3 (3)
I1'i—Cd1—N1—C7153.3 (16)C1—N1—C7—C8178.2 (4)
I1'—Cd1—N1—C799.3 (19)Cd1—N1—C7—C84.0 (6)
I1i—Cd1—N1—C7147.9 (3)C6—N2—C7—N10.0 (5)
I1—Cd1—N1—C792.7 (4)C12—N2—C7—N1178.3 (4)
N1i—Cd1—N1—C1147.9 (3)C6—N2—C7—C8178.7 (4)
I1'i—Cd1—N1—C124.3 (16)C12—N2—C7—C80.4 (7)
I1'—Cd1—N1—C183.1 (19)N1—C7—C8—C9149.8 (5)
I1i—Cd1—N1—C129.6 (3)N2—C7—C8—C931.7 (8)
I1—Cd1—N1—C189.8 (3)N1—C7—C8—O126.6 (6)
C7—N1—C1—C60.9 (4)N2—C7—C8—O1152.0 (4)
Cd1—N1—C1—C6177.2 (3)O1—C8—C9—C102.2 (6)
C7—N1—C1—C2178.1 (4)C7—C8—C9—C10178.7 (5)
Cd1—N1—C1—C23.9 (6)C8—C9—C10—C112.2 (7)
C6—C1—C2—C30.2 (6)C9—C10—C11—O11.3 (8)
N1—C1—C2—C3178.7 (4)C7—N2—C12—C13104.9 (5)
C1—C2—C3—C40.4 (7)C6—N2—C12—C1377.1 (5)
C2—C3—C4—C50.4 (7)N2—C12—C13—C14109.2 (7)
C3—C4—C5—C60.2 (7)N2—C12—C13—O271.6 (6)
C2—C1—C6—C50.0 (6)O2—C13—C14—C153.2 (7)
N1—C1—C6—C5179.1 (4)C12—C13—C14—C15177.6 (5)
C2—C1—C6—N2178.2 (4)C13—C14—C15—C162.7 (8)
N1—C1—C6—N20.9 (4)C14—C15—C16—O21.2 (9)
C4—C5—C6—C10.0 (6)C9—C8—O1—C111.4 (6)
C4—C5—C6—N2177.7 (4)C7—C8—O1—C11178.5 (5)
C7—N2—C6—C10.6 (4)C10—C11—O1—C80.0 (7)
C12—N2—C6—C1177.8 (4)C14—C13—O2—C162.5 (7)
C7—N2—C6—C5178.6 (4)C12—C13—O2—C16178.2 (5)
C12—N2—C6—C50.2 (7)C15—C16—O2—C130.6 (8)
C1—N1—C7—N20.5 (4)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[CdI2(C16H12N2O2)2]
Mr894.75
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)18.140 (4), 10.582 (2), 18.507 (4)
β (°) 115.02 (3)
V3)3219.2 (14)
Z4
Radiation typeMo Kα
µ (mm1)2.64
Crystal size (mm)0.18 × 0.16 × 0.15
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2006)
Tmin, Tmax0.648, 0.693
No. of measured, independent and
observed [I > 2σ(I)] reflections
10971, 2993, 2595
Rint0.028
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.085, 1.10
No. of reflections2993
No. of parameters205
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.45

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Department of Science and Technology of Henan Province for financial support (No. 082102330003), and Professor Hong-Wei Hou and Xiang-Ru Meng of Zhengzhou University for their help.

References

First citationRigaku/MSC (2006). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, X.-J., Wang, X., Li, L.-K., Hou, H.-W. & Fan, Y.-T. (2010). Cryst. Growth Des. 10, 2490–2500.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, X., Li, Y.-X., Liu, Y.-J., Yang, H.-X. & Zhang, C.-C. (2010). Acta Cryst. E66, m1207.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, H.-X., Meng, X.-R., Liu, Y., Hou, H.-W., Fan, Y.-T. & Shen, X.-Q. (2008). J. Solid State Chem. 181, 2178–2184.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhai, Q.-G., Wu, X.-Y., Chen, S.-M., Lu, C.-Z. & Yang, W.-B. (2006). Cryst. Growth Des. 6, 2126–2135.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds