metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1047-m1048

Poly[di-μ-aqua-bis­­(μ-2-amino-4-nitro­benzoato)dicaesium]

aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 30 June 2011; accepted 4 July 2011; online 9 July 2011)

In the structure of title compound, [Cs2(C7H5N2O4)2(H2O)2]n, the asymmetric unit contains two independent Cs atoms comprising different coordination polyhedra. One is nine-coordinate, the other seven-coordinate, both having irregular configurations. The CsO9 coordination polyhedron comprises O-atom donors from three bridging water mol­ecules, one of which is doubly bridging, three from carboxyl­ate groups, and three from nitro groups, of which two are bidentate chelate bridging. The CsO6N coordination polyhedron comprises the two bridging water mol­ecules, one amine N-atom donor, one carboxyl­ate O-atom donor and four O-atom donors from nitro groups (two from the chelate bridges). The extension of the dimeric unit gives a three-dimensional polymeric structure, which is stabilized by both intra- and inter­molecular amine N—H⋯O and water O—H⋯O hydrogen bonds to carboxyl­ate O-atom acceptors, as well as inter-ring ππ inter­actions [minimum ring centroid–centroid separation = 3.4172 (15) Å].

Related literature

For the structures of some Cs complexes of aromatic carboxylic acids, see: Wiesbrock & Schmidbaur (2003[Wiesbrock, F. & Schmidbaur, H. (2003). Inorg. Chem. 42, 7283-7289.]); Hu et al. (2005[Hu, M., Geng, C., Li, S., Du, Y., Jiang, Y. & Liu, Z. (2005). J. Organomet. Chem. 690, 3118-3124.]); Smith & Wermuth (2010[Smith, G. & Wermuth, U. D. (2010). J. Chem. Crystallogr. 41, 688-692.]). For Lewis base salts of 4-nitro­anthranilic acid, see: Smith et al. (2002[Smith, G., Wermuth, U. D. & White, J. M. (2002). Acta Cryst. E58, o1088-o1090.], 2004[Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o684-o686.], 2007[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Acta Cryst. E63, o7-o9.]).

[Scheme 1]

Experimental

Crystal data
  • [Cs2(C7H5N2O4)2(H2O)2]

  • Mr = 664.12

  • Monoclinic, P 21 /n

  • a = 15.3615 (3) Å

  • b = 6.9573 (2) Å

  • c = 18.3714 (4) Å

  • β = 97.903 (2)°

  • V = 1944.79 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.81 mm−1

  • T = 200 K

  • 0.40 × 0.30 × 0.10 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.411, Tmax = 0.980

  • 14204 measured reflections

  • 4555 independent reflections

  • 3818 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.049

  • S = 1.02

  • 4555 reflections

  • 303 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Selected bond lengths (Å)

Cs1—O1W 3.177 (2)
Cs1—O2W 3.311 (3)
Cs1—O42A 3.271 (2)
Cs1—O1Wi 3.414 (3)
Cs1—O42Ai 3.271 (2)
Cs1—O12Aii 3.165 (2)
Cs1—O11Biii 3.166 (2)
Cs1—O12Aiv 3.202 (2)
Cs1—O41Biv 3.326 (2)
Cs2—O1W 3.248 (3)
Cs2—O2W 3.108 (3)
Cs2—O41A 3.136 (2)
Cs2—N2B 3.352 (3)
Cs2—O42Bv 3.114 (2)
Cs2—O12Bvi 3.090 (2)
Cs2—O42Biv 3.181 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y, -z+1; (iii) -x+2, -y, -z+1; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) -x+2, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H22A⋯O11Bv 0.88 (3) 2.35 (3) 3.132 (3) 148 (3)
N2A—H21A⋯O12A 0.86 (4) 2.06 (4) 2.685 (4) 129 (3)
N2B—H21B⋯O11Avii 0.90 (3) 2.08 (3) 2.848 (3) 143 (3)
N2B—H22B⋯O12B 0.82 (3) 2.04 (3) 2.657 (4) 131 (3)
O1W—H11W⋯O11Bvi 0.90 (5) 1.88 (4) 2.768 (3) 169 (3)
O1W—H12W⋯O12Avii 0.85 (4) 1.99 (4) 2.839 (3) 180 (5)
O2W—H21W⋯O11Aii 0.85 (4) 2.01 (4) 2.851 (4) 179 (6)
O2W—H22W⋯O12Biii 0.81 (4) 1.96 (4) 2.769 (4) 172 (4)
Symmetry codes: (ii) -x+1, -y, -z+1; (iii) -x+2, -y, -z+1; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) -x+2, -y+1, -z+1; (vii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The structures of the alkali metal complexes with aromatic carboxylic acids are of interest, particularly with the heavier metals Rb and Cs, because of their expanded coordination spheres and their ability to form polymeric systems. We obtained red crystals of the title compound [Cs2(C7H5N2O4)2(H2O)2]n (I) from the reaction of caesium carbonate with 4-nitroanthranilic acid (4-NAA), and the structure is reported here. Although the structure of the Cs complex with anthranilic acid has been reported (a 1:1 metal complex–acid adduct polymer) (Wiesbrock & Schmidbaur, 2003), no metal complexes of 4-nitroanthranilic are known. We have reported the structures of the 4-NAA salts of the Lewis bases ethylenediamine (a dihydrate) (Smith et al., 2002), dicyclohexamine (anhydrous) (Smith et al., 2004) and guanidine (a monohydrate) (Smith et al., 2007).

In the structure of (I), the asymmetric unit contains two independent Cs atoms, one nine-coordinate, the other seven-coordinate, with both having irregular configurations (Fig. 1). The CsO9 coordination polyhedron about Cs1 comprises oxygen donors from three bridging water molecules, two of which bridge Cs1 and Cs2, three from carboxylate groups, and two from bidentate bridging nitro groups [Cs—O range, 3.165 (2)–3.414 (3) Å]. The CsO6N coordination polyhedron about Cs2 comprises the two bridging water atoms, one amine N donor, one carboxyl O donor and four O donors from nitro groups (two bidentate bridging) [Cs—O/(N) range, 3.090 (2)–3.352 (3) Å] (Table 1). The extension of the dimeric unit gives a three-dimensional polymeric structure (Fig. 2) which is stabilized by both intra- and intermolecular amine N—H···O and water O—H···O hydrogen bonds to only carboxyl O acceptors (Table 2). Also, there are inter-ring ππ interactions involving both ring 1 (C1A–C6A) and ring 2 (ring 1B–C6B): minimum centroid separation: rings 1–1vii, 3.4172 (15) Å; rings 2–2v, 3.6081 (16) Å (for symmetry codes, see Tables 1, 2).

These structural features, including expanded coordination spheres, multiple bridging and polymeric extensions are similar to those found in other Cs complexes with nitro-substituted aromatic carboxylates, e.g. cesium 3,5-dinitrosalicylate (Hu et al., 2005) and cesium 5-nitroisophthalate (Smith & Wermuth, 2010).

Related literature top

For the structures of some Cs complexes of aromatic carboxylatic acids, see: Wiesbrock & Schmidbaur (2003); Hu et al. (2005); Smith & Wermuth (2010). For Lewis base salts of 4-nitroanthranilic acid, see: Smith et al. (2002, 2004, 2007).

Experimental top

The title compound was synthesized by heating together under reflux for 15 minutes, 1 mmol of caesium carbonate and 2 mmol of 4-nitroanthranilic acid in 50 ml of 1:4 ethanol–water. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave flat red prisms of (I) from which a suitable specimen was cleaved for the X-ray analysis.

Refinement top

The amine and water H atoms were located in a difference-Fourier analysis and their positional and isotropic displacenemt parameters were refined. Other hydrogen atoms were included in the refinement in calculated positions with C—H = 0.93 Å and allowed to ride, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for the dimeric repeat unit of (I), with non-H atoms drawn as 50% probability ellipsoids. For symmetry codes, see Table 1.
[Figure 2] Fig. 2. The polymeric structure of (I) in the unit cell viewed down b. Non-associative H atoms are omitted and hydrogen bonds are shown as dashed lines.
Poly[di-µ-aqua-bis(µ-2-amino-4-nitrobenzoato)dicaesium] top
Crystal data top
[Cs2(C7H5N2O4)2(H2O)2]F(000) = 1264
Mr = 664.12Dx = 2.268 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8867 reflections
a = 15.3615 (3) Åθ = 3.2–28.7°
b = 6.9573 (2) ŵ = 3.81 mm1
c = 18.3714 (4) ÅT = 200 K
β = 97.903 (2)°Plate, red
V = 1944.79 (8) Å30.40 × 0.30 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
4555 independent reflections
Radiation source: Enhance (Mo) X-ray source3818 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 16.077 pixels mm-1θmax = 28.8°, θmin = 3.3°
ω scansh = 2020
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 89
Tmin = 0.411, Tmax = 0.980l = 2323
14204 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0232P)2]
where P = (Fo2 + 2Fc2)/3
4555 reflections(Δ/σ)max = 0.002
303 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
[Cs2(C7H5N2O4)2(H2O)2]V = 1944.79 (8) Å3
Mr = 664.12Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.3615 (3) ŵ = 3.81 mm1
b = 6.9573 (2) ÅT = 200 K
c = 18.3714 (4) Å0.40 × 0.30 × 0.10 mm
β = 97.903 (2)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
4555 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3818 reflections with I > 2σ(I)
Tmin = 0.411, Tmax = 0.980Rint = 0.026
14204 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.47 e Å3
4555 reflectionsΔρmin = 0.90 e Å3
303 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.84171 (1)0.10346 (2)0.72068 (1)0.0226 (1)
Cs20.90529 (1)0.22312 (3)0.53616 (1)0.0262 (1)
O1W0.83714 (17)0.3457 (3)0.68930 (14)0.0301 (8)
O2W0.8960 (2)0.2190 (4)0.55795 (16)0.0418 (9)
O11A0.26335 (13)0.4294 (3)0.47800 (11)0.0320 (7)
O11B1.01545 (12)0.4344 (3)0.26444 (11)0.0278 (7)
O12A0.29653 (13)0.3889 (3)0.36507 (11)0.0274 (6)
O12B0.97730 (13)0.4711 (3)0.37664 (11)0.0308 (7)
O41A0.71088 (13)0.0800 (3)0.53048 (14)0.0398 (8)
O41B0.54158 (14)0.4375 (4)0.20587 (13)0.0476 (9)
O42A0.66924 (15)0.1204 (3)0.63677 (13)0.0404 (8)
O42B0.58798 (14)0.4656 (4)0.10161 (12)0.0451 (8)
N2A0.45730 (19)0.2618 (4)0.34723 (15)0.0282 (8)
N2B0.8077 (2)0.4733 (4)0.39156 (14)0.0308 (9)
N4A0.65627 (16)0.1286 (3)0.56911 (16)0.0282 (8)
N4B0.60057 (15)0.4527 (3)0.16866 (14)0.0254 (7)
C1A0.40690 (16)0.3164 (4)0.46641 (14)0.0161 (8)
C1B0.86323 (17)0.4523 (4)0.27425 (15)0.0177 (8)
C2A0.47163 (18)0.2593 (3)0.42261 (15)0.0183 (8)
C2B0.79362 (17)0.4629 (4)0.31685 (15)0.0195 (8)
C3A0.55438 (17)0.2026 (4)0.45856 (16)0.0206 (8)
C3B0.70712 (18)0.4587 (4)0.28022 (15)0.0208 (8)
C4A0.56969 (17)0.1972 (4)0.53363 (16)0.0208 (8)
C4B0.69270 (17)0.4511 (4)0.20513 (15)0.0190 (8)
C5A0.50738 (18)0.2486 (3)0.57821 (16)0.0210 (8)
C5B0.75952 (18)0.4438 (4)0.16125 (15)0.0216 (8)
C6A0.42732 (17)0.3090 (4)0.54248 (15)0.0192 (8)
C6B0.84406 (17)0.4416 (4)0.19793 (15)0.0200 (8)
C11A0.31553 (17)0.3831 (4)0.43413 (15)0.0190 (8)
C11B0.95942 (18)0.4511 (4)0.30752 (16)0.0219 (8)
H3B0.659900.461200.306900.0250*
H5B0.747900.440500.110200.0260*
H21B0.764 (2)0.501 (4)0.4175 (17)0.030 (9)*
H3A0.598700.168700.431300.0250*
H22B0.857 (2)0.507 (4)0.4101 (17)0.029 (9)*
H5A0.519000.242700.629200.0250*
H6A0.384600.347000.570800.0230*
H6B0.890500.432700.170500.0240*
H11W0.888 (3)0.411 (6)0.699 (2)0.084 (16)*
H12W0.797 (3)0.425 (5)0.673 (2)0.048 (14)*
H21A0.404 (3)0.271 (5)0.326 (2)0.059 (13)*
H21W0.849 (3)0.282 (5)0.547 (2)0.037 (13)*
H22A0.487 (2)0.182 (5)0.3227 (18)0.039 (10)*
H22W0.932 (3)0.289 (6)0.581 (2)0.056 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0213 (1)0.0241 (1)0.0224 (1)0.0021 (1)0.0035 (1)0.0006 (1)
Cs20.0251 (1)0.0282 (1)0.0242 (1)0.0013 (1)0.0008 (1)0.0002 (1)
O1W0.0246 (13)0.0298 (12)0.0338 (14)0.0002 (11)0.0029 (10)0.0040 (11)
O2W0.0317 (15)0.0376 (14)0.0520 (18)0.0006 (13)0.0084 (13)0.0074 (12)
O11A0.0207 (10)0.0497 (13)0.0255 (12)0.0087 (10)0.0024 (9)0.0078 (10)
O11B0.0145 (10)0.0370 (12)0.0316 (12)0.0014 (9)0.0022 (9)0.0027 (9)
O12A0.0236 (10)0.0377 (12)0.0198 (11)0.0084 (9)0.0007 (8)0.0013 (9)
O12B0.0235 (11)0.0430 (12)0.0241 (11)0.0009 (10)0.0035 (9)0.0032 (10)
O41A0.0172 (11)0.0420 (14)0.0602 (17)0.0041 (10)0.0050 (11)0.0026 (12)
O41B0.0195 (11)0.0811 (19)0.0434 (15)0.0017 (12)0.0087 (11)0.0026 (13)
O42A0.0311 (12)0.0438 (13)0.0408 (15)0.0044 (10)0.0141 (11)0.0011 (11)
O42B0.0272 (12)0.0750 (17)0.0295 (13)0.0086 (12)0.0086 (10)0.0112 (12)
N2A0.0280 (15)0.0360 (15)0.0216 (14)0.0063 (12)0.0074 (12)0.0002 (12)
N2B0.0230 (14)0.0484 (17)0.0210 (14)0.0039 (13)0.0027 (12)0.0008 (12)
N4A0.0173 (12)0.0200 (12)0.0448 (17)0.0038 (10)0.0050 (12)0.0019 (12)
N4B0.0194 (12)0.0280 (12)0.0280 (14)0.0009 (10)0.0006 (11)0.0016 (11)
C1A0.0161 (13)0.0131 (12)0.0187 (14)0.0014 (10)0.0009 (10)0.0018 (10)
C1B0.0181 (13)0.0151 (12)0.0193 (14)0.0014 (11)0.0005 (11)0.0011 (11)
C2A0.0211 (14)0.0120 (13)0.0223 (15)0.0008 (10)0.0049 (11)0.0004 (10)
C2B0.0216 (14)0.0184 (12)0.0184 (14)0.0012 (11)0.0024 (11)0.0004 (11)
C3A0.0170 (14)0.0163 (13)0.0300 (16)0.0024 (11)0.0083 (11)0.0021 (12)
C3B0.0181 (14)0.0212 (13)0.0241 (15)0.0004 (11)0.0062 (11)0.0004 (12)
C4A0.0151 (13)0.0136 (12)0.0320 (17)0.0027 (11)0.0031 (12)0.0004 (12)
C4B0.0140 (13)0.0173 (12)0.0247 (15)0.0007 (11)0.0011 (11)0.0009 (11)
C5A0.0238 (15)0.0182 (14)0.0197 (15)0.0023 (11)0.0017 (12)0.0002 (11)
C5B0.0222 (14)0.0246 (14)0.0176 (14)0.0023 (12)0.0009 (11)0.0003 (12)
C6A0.0181 (13)0.0193 (13)0.0211 (15)0.0008 (11)0.0056 (11)0.0017 (11)
C6B0.0209 (14)0.0193 (13)0.0208 (14)0.0004 (11)0.0061 (11)0.0025 (11)
C11A0.0190 (14)0.0162 (13)0.0217 (15)0.0002 (11)0.0025 (11)0.0016 (11)
C11B0.0216 (14)0.0189 (13)0.0248 (16)0.0016 (11)0.0021 (12)0.0001 (12)
Geometric parameters (Å, º) top
Cs1—O1W3.177 (2)N2A—C2A1.372 (4)
Cs1—O2W3.311 (3)N2B—C2B1.362 (4)
Cs1—O42A3.271 (2)N4A—C4A1.478 (4)
Cs1—O1Wi3.414 (3)N4B—C4B1.480 (4)
Cs1—O42Ai3.271 (2)N2A—H21A0.86 (4)
Cs1—O12Aii3.165 (2)N2A—H22A0.88 (3)
Cs1—O11Biii3.166 (2)N2B—H21B0.90 (3)
Cs1—O12Aiv3.202 (2)N2B—H22B0.82 (3)
Cs1—O41Biv3.326 (2)C1A—C2A1.419 (4)
Cs2—O1W3.248 (3)C1A—C6A1.391 (4)
Cs2—O2W3.108 (3)C1A—C11A1.519 (4)
Cs2—O41A3.136 (2)C1B—C2B1.411 (4)
Cs2—N2B3.352 (3)C1B—C6B1.395 (4)
Cs2—O42Bv3.114 (2)C1B—C11B1.519 (4)
Cs2—O12Bvi3.090 (2)C2A—C3A1.406 (4)
Cs2—O42Biv3.181 (2)C2B—C3B1.405 (4)
O11A—C11A1.254 (3)C3A—C4A1.367 (4)
O11B—C11B1.252 (3)C3B—C4B1.368 (4)
O12A—C11A1.263 (3)C4A—C5A1.389 (4)
O12B—C11B1.269 (4)C4B—C5B1.391 (4)
O41A—N4A1.219 (3)C5A—C6A1.378 (4)
O41B—N4B1.212 (3)C5B—C6B1.379 (4)
O42A—N4A1.233 (4)C3A—H3A0.9300
O42B—N4B1.224 (3)C3B—H3B0.9300
O1W—H11W0.90 (5)C5A—H5A0.9300
O1W—H12W0.85 (4)C5B—H5B0.9300
O2W—H21W0.85 (4)C6A—H6A0.9300
O2W—H22W0.81 (4)C6B—H6B0.9300
O1W—Cs1—O2W94.42 (7)Cs2viii—O42B—N4B111.06 (17)
O1W—Cs1—O42A56.62 (6)Cs2ix—O42B—Cs2viii93.23 (6)
O1W—Cs1—O1Wi100.99 (6)Cs1—O1W—H12W134 (3)
O1W—Cs1—O42Ai136.12 (6)Cs2—O1W—H11W86 (2)
O1W—Cs1—O12Aii122.03 (6)Cs2—O1W—H12W100 (3)
O1W—Cs1—O11Biii136.78 (6)H11W—O1W—H12W108 (4)
O1W—Cs1—O12Aiv71.93 (6)Cs1vii—O1W—H11W126 (3)
O1W—Cs1—O41Biv68.98 (7)Cs1vii—O1W—H12W61 (3)
O2W—Cs1—O42A88.76 (7)Cs1—O1W—H11W118 (3)
O1Wi—Cs1—O2W137.01 (7)Cs2—O2W—H21W122 (3)
O2W—Cs1—O42Ai128.85 (6)Cs2—O2W—H22W128 (3)
O2W—Cs1—O12Aii68.49 (6)H21W—O2W—H22W108 (4)
O2W—Cs1—O11Biii69.14 (6)Cs1—O2W—H21W92 (3)
O2W—Cs1—O12Aiv166.24 (6)Cs1—O2W—H22W85 (3)
O2W—Cs1—O41Biv70.16 (7)Cs2—N2B—C2B139.7 (2)
O1Wi—Cs1—O42A67.92 (6)O42A—N4A—C4A118.1 (2)
O42A—Cs1—O42Ai121.97 (6)O41A—N4A—C4A118.9 (3)
O12Aii—Cs1—O42A67.64 (5)O41A—N4A—O42A123.1 (3)
O11Biii—Cs1—O42A153.35 (5)O41B—N4B—C4B119.1 (2)
O12Aiv—Cs1—O42A85.11 (5)O41B—N4B—O42B123.2 (2)
O41Biv—Cs1—O42A119.55 (6)O42B—N4B—C4B117.7 (2)
O1Wi—Cs1—O42Ai54.41 (6)C2A—N2A—H21A118 (3)
O1Wi—Cs1—O12Aii69.30 (5)H21A—N2A—H22A110 (3)
O1Wi—Cs1—O11Biii118.49 (5)C2A—N2A—H22A119 (2)
O1Wi—Cs1—O12Aiv50.69 (5)Cs2—N2B—H21B88.6 (19)
O1Wi—Cs1—O41Biv152.73 (6)C2B—N2B—H21B121 (2)
O12Aii—Cs1—O42Ai85.71 (5)C2B—N2B—H22B116 (2)
O11Biii—Cs1—O42Ai67.36 (5)H21B—N2B—H22B116 (3)
O12Aiv—Cs1—O42Ai64.51 (5)Cs2—N2B—H22B62 (2)
O41Biv—Cs1—O42Ai114.78 (6)C6A—C1A—C11A118.2 (2)
O11Biii—Cs1—O12Aii89.79 (5)C2A—C1A—C6A118.7 (2)
O12Aii—Cs1—O12Aiv119.86 (5)C2A—C1A—C11A123.1 (2)
O12Aii—Cs1—O41Biv137.81 (6)C2B—C1B—C11B123.1 (2)
O11Biii—Cs1—O12Aiv119.61 (5)C6B—C1B—C11B117.6 (2)
O11Biii—Cs1—O41Biv67.85 (6)C2B—C1B—C6B119.3 (2)
O12Aiv—Cs1—O41Biv102.33 (6)N2A—C2A—C1A122.8 (3)
O1W—Cs2—O2W97.03 (7)N2A—C2A—C3A119.1 (3)
O1W—Cs2—O41A72.14 (6)C1A—C2A—C3A118.1 (2)
O1W—Cs2—N2B112.82 (6)N2B—C2B—C1B122.3 (3)
O1W—Cs2—O42Bv154.92 (6)C1B—C2B—C3B118.2 (2)
O1W—Cs2—O12Bvi66.73 (6)N2B—C2B—C3B119.5 (3)
O1W—Cs2—O42Biv98.84 (6)C2A—C3A—C4A120.0 (3)
O2W—Cs2—O41A68.26 (7)C2B—C3B—C4B119.7 (3)
O2W—Cs2—N2B126.34 (7)C3A—C4A—C5A123.4 (3)
O2W—Cs2—O42Bv62.78 (7)N4A—C4A—C3A118.3 (2)
O2W—Cs2—O12Bvi130.43 (7)N4A—C4A—C5A118.3 (3)
O2W—Cs2—O42Biv66.20 (7)C3B—C4B—C5B123.8 (3)
O41A—Cs2—N2B79.54 (7)N4B—C4B—C5B118.3 (2)
O41A—Cs2—O42Bv85.88 (6)N4B—C4B—C3B117.9 (2)
O12Bvi—Cs2—O41A136.14 (6)C4A—C5A—C6A116.1 (3)
O41A—Cs2—O42Biv131.93 (6)C4B—C5B—C6B116.0 (2)
O42Bv—Cs2—N2B73.49 (7)C1A—C6A—C5A123.6 (3)
O12Bvi—Cs2—N2B102.64 (6)C1B—C6B—C5B123.1 (2)
O42Biv—Cs2—N2B142.10 (7)O11A—C11A—O12A123.9 (3)
O12Bvi—Cs2—O42Bv137.32 (6)O11A—C11A—C1A117.7 (2)
O42Bv—Cs2—O42Biv86.77 (6)O12A—C11A—C1A118.4 (2)
O12Bvi—Cs2—O42Biv70.52 (6)O11B—C11B—C1B117.5 (2)
Cs1—O1W—Cs284.10 (5)O12B—C11B—C1B117.8 (2)
Cs1—O1W—Cs1vii90.76 (6)O11B—C11B—O12B124.7 (3)
Cs1vii—O1W—Cs2145.43 (8)C2A—C3A—H3A120.00
Cs1—O2W—Cs284.13 (7)C4A—C3A—H3A120.00
Cs1iii—O11B—C11B122.77 (17)C2B—C3B—H3B120.00
Cs1ii—O12A—C11A121.78 (17)C4B—C3B—H3B120.00
Cs1viii—O12A—C11A143.20 (18)C4A—C5A—H5A122.00
Cs1ii—O12A—Cs1viii95.00 (5)C6A—C5A—H5A122.00
Cs2vi—O12B—C11B128.65 (17)C4B—C5B—H5B122.00
Cs2—O41A—N4A128.40 (18)C6B—C5B—H5B122.00
Cs1viii—O41B—N4B141.79 (19)C1A—C6A—H6A118.00
Cs1—O42A—N4A120.36 (17)C5A—C6A—H6A118.00
Cs1—O42A—Cs1vii91.71 (6)C1B—C6B—H6B118.00
Cs1vii—O42A—N4A139.56 (16)C5B—C6B—H6B118.00
Cs2ix—O42B—N4B147.4 (2)
O2W—Cs1—O1W—Cs24.20 (7)O1W—Cs2—N2B—C2B161.7 (3)
O2W—Cs1—O1W—Cs1vii141.55 (7)O2W—Cs2—N2B—C2B43.4 (3)
O42A—Cs1—O1W—Cs289.79 (7)O41A—Cs2—N2B—C2B96.3 (3)
O42A—Cs1—O1W—Cs1vii55.96 (6)O42Bv—Cs2—N2B—C2B7.5 (3)
O1Wi—Cs1—O1W—Cs2143.87 (6)O12Bvi—Cs2—N2B—C2B128.5 (3)
O1Wi—Cs1—O1W—Cs1vii1.88 (7)O42Biv—Cs2—N2B—C2B54.0 (4)
O42Ai—Cs1—O1W—Cs2166.94 (6)O1W—Cs2—O42Bv—N4Bv116.9 (3)
O42Ai—Cs1—O1W—Cs1vii47.32 (10)O1W—Cs2—O42Bv—Cs2iii104.03 (13)
O12Aii—Cs1—O1W—Cs271.52 (7)O2W—Cs2—O42Bv—N4Bv156.1 (3)
O12Aii—Cs1—O1W—Cs1vii74.23 (7)O2W—Cs2—O42Bv—Cs2iii64.82 (8)
O11Biii—Cs1—O1W—Cs259.73 (9)O41A—Cs2—O42Bv—N4Bv88.5 (3)
O11Biii—Cs1—O1W—Cs1vii154.52 (6)O41A—Cs2—O42Bv—Cs2iii132.46 (7)
O12Aiv—Cs1—O1W—Cs2174.05 (7)N2B—Cs2—O42Bv—N4Bv8.2 (3)
O12Aiv—Cs1—O1W—Cs1vii40.21 (5)N2B—Cs2—O42Bv—Cs2iii147.25 (8)
O41Biv—Cs1—O1W—Cs262.57 (6)O1W—Cs2—O12Bvi—C11Bvi33.6 (2)
O41Biv—Cs1—O1W—Cs1vii151.68 (7)O2W—Cs2—O12Bvi—C11Bvi45.3 (2)
O1W—Cs1—O2W—Cs24.39 (7)O41A—Cs2—O12Bvi—C11Bvi55.3 (2)
O42A—Cs1—O2W—Cs260.77 (6)N2B—Cs2—O12Bvi—C11Bvi143.3 (2)
O1Wi—Cs1—O2W—Cs2115.69 (8)O1W—Cs2—O42Biv—Cs2iii155.41 (6)
O42Ai—Cs1—O2W—Cs2167.73 (5)O1W—Cs2—O42Biv—N4Biv2.3 (2)
O12Aii—Cs1—O2W—Cs2127.16 (8)O2W—Cs2—O42Biv—Cs2iii61.58 (7)
O11Biii—Cs1—O2W—Cs2134.45 (8)O2W—Cs2—O42Biv—N4Biv96.2 (2)
O41Biv—Cs1—O2W—Cs261.39 (7)O41A—Cs2—O42Biv—Cs2iii81.52 (9)
O1W—Cs1—O42A—N4A94.23 (19)O41A—Cs2—O42Biv—N4Biv76.2 (2)
O1W—Cs1—O42A—Cs1vii59.92 (6)N2B—Cs2—O42Biv—Cs2iii57.61 (13)
O2W—Cs1—O42A—N4A1.89 (19)N2B—Cs2—O42Biv—N4Biv144.65 (17)
O2W—Cs1—O42A—Cs1vii156.03 (6)Cs1iii—O11B—C11B—O12B57.9 (3)
O1Wi—Cs1—O42A—N4A144.9 (2)Cs1iii—O11B—C11B—C1B123.6 (2)
O1Wi—Cs1—O42A—Cs1vii60.99 (5)Cs1ii—O12A—C11A—O11A68.7 (3)
O42Ai—Cs1—O42A—N4A138.46 (18)Cs1ii—O12A—C11A—C1A111.4 (2)
O42Ai—Cs1—O42A—Cs1vii67.40 (7)Cs1viii—O12A—C11A—O11A113.3 (3)
O12Aii—Cs1—O42A—N4A69.08 (18)Cs1viii—O12A—C11A—C1A66.7 (4)
O12Aii—Cs1—O42A—Cs1vii136.78 (7)Cs2vi—O12B—C11B—O11B55.1 (4)
O11Biii—Cs1—O42A—N4A35.0 (3)Cs2vi—O12B—C11B—C1B123.3 (2)
O11Biii—Cs1—O42A—Cs1vii170.83 (9)Cs2—O41A—N4A—O42A54.8 (3)
O12Aiv—Cs1—O42A—N4A165.78 (19)Cs2—O41A—N4A—C4A126.4 (2)
O12Aiv—Cs1—O42A—Cs1vii11.64 (5)Cs1viii—O41B—N4B—O42B40.7 (4)
O41Biv—Cs1—O42A—N4A64.4 (2)Cs1viii—O41B—N4B—C4B140.9 (2)
O41Biv—Cs1—O42A—Cs1vii89.77 (7)Cs1—O42A—N4A—O41A10.5 (3)
O1W—Cs1—O1Wi—Cs1i161.87 (6)Cs1—O42A—N4A—C4A168.30 (16)
O1W—Cs1—O1Wi—Cs2i117.46 (12)Cs1vii—O42A—N4A—O41A127.3 (2)
O2W—Cs1—O1Wi—Cs1i53.01 (11)Cs1vii—O42A—N4A—C4A53.9 (4)
O2W—Cs1—O1Wi—Cs2i133.68 (12)Cs2ix—O42B—N4B—O41B110.6 (3)
O42A—Cs1—O1Wi—Cs1i115.00 (7)Cs2ix—O42B—N4B—C4B70.9 (4)
O42A—Cs1—O1Wi—Cs2i164.33 (14)Cs2viii—O42B—N4B—O41B24.9 (3)
O1W—Cs1—O42Ai—Cs1i121.80 (8)Cs2viii—O42B—N4B—C4B153.57 (17)
O1W—Cs1—O42Ai—N4Ai22.7 (3)Cs2—N2B—C2B—C1B58.5 (4)
O2W—Cs1—O42Ai—Cs1i69.58 (9)Cs2—N2B—C2B—C3B120.3 (3)
O2W—Cs1—O42Ai—N4Ai145.9 (3)O41A—N4A—C4A—C3A0.2 (4)
O42A—Cs1—O42Ai—Cs1i48.46 (7)O41A—N4A—C4A—C5A178.8 (2)
O42A—Cs1—O42Ai—N4Ai96.1 (3)O42A—N4A—C4A—C3A178.6 (2)
O1W—Cs1—O12Aii—Cs1i131.61 (6)O42A—N4A—C4A—C5A0.1 (4)
O1W—Cs1—O12Aii—C11Aii47.2 (2)O41B—N4B—C4B—C3B8.7 (4)
O2W—Cs1—O12Aii—Cs1i146.96 (8)O41B—N4B—C4B—C5B171.9 (3)
O2W—Cs1—O12Aii—C11Aii34.2 (2)O42B—N4B—C4B—C3B172.7 (3)
O42A—Cs1—O12Aii—Cs1i115.17 (7)O42B—N4B—C4B—C5B6.7 (4)
O42A—Cs1—O12Aii—C11Aii63.7 (2)C6A—C1A—C2A—N2A180.0 (3)
O1W—Cs1—O11Biii—C11Biii43.5 (2)C6A—C1A—C2A—C3A1.6 (4)
O2W—Cs1—O11Biii—C11Biii30.0 (2)C11A—C1A—C2A—N2A0.8 (4)
O42A—Cs1—O11Biii—C11Biii65.8 (2)C11A—C1A—C2A—C3A179.2 (2)
O1W—Cs1—O12Aiv—Cs1vii44.36 (6)C2A—C1A—C6A—C5A0.1 (4)
O1W—Cs1—O12Aiv—C11Aiv134.0 (3)C11A—C1A—C6A—C5A179.1 (2)
O42A—Cs1—O12Aiv—Cs1vii12.08 (5)C2A—C1A—C11A—O11A179.7 (2)
O42A—Cs1—O12Aiv—C11Aiv169.6 (3)C2A—C1A—C11A—O12A0.4 (4)
O1W—Cs1—O41Biv—N4Biv117.3 (3)C6A—C1A—C11A—O11A0.5 (4)
O2W—Cs1—O41Biv—N4Biv14.2 (3)C6A—C1A—C11A—O12A179.6 (3)
O42A—Cs1—O41Biv—N4Biv90.9 (3)C6B—C1B—C2B—N2B179.9 (3)
O2W—Cs2—O1W—Cs14.49 (7)C6B—C1B—C2B—C3B1.1 (4)
O2W—Cs2—O1W—Cs1vii78.23 (13)C11B—C1B—C2B—N2B0.1 (4)
O41A—Cs2—O1W—Cs168.91 (6)C11B—C1B—C2B—C3B178.6 (3)
O41A—Cs2—O1W—Cs1vii13.81 (11)C2B—C1B—C6B—C5B1.0 (4)
N2B—Cs2—O1W—Cs1138.88 (6)C11B—C1B—C6B—C5B179.2 (3)
N2B—Cs2—O1W—Cs1vii56.16 (14)C2B—C1B—C11B—O11B177.5 (3)
O42Bv—Cs2—O1W—Cs138.99 (17)C2B—C1B—C11B—O12B3.9 (4)
O42Bv—Cs2—O1W—Cs1vii43.7 (2)C6B—C1B—C11B—O11B2.2 (4)
O12Bvi—Cs2—O1W—Cs1126.67 (7)C6B—C1B—C11B—O12B176.3 (3)
O12Bvi—Cs2—O1W—Cs1vii150.61 (14)N2A—C2A—C3A—C4A179.3 (3)
O42Biv—Cs2—O1W—Cs162.41 (7)C1A—C2A—C3A—C4A2.2 (4)
O42Biv—Cs2—O1W—Cs1vii145.14 (12)N2B—C2B—C3B—C4B179.1 (3)
O1W—Cs2—O2W—Cs14.31 (7)C1B—C2B—C3B—C4B2.2 (4)
O41A—Cs2—O2W—Cs171.86 (7)C2A—C3A—C4A—N4A177.3 (2)
N2B—Cs2—O2W—Cs1129.46 (7)C2A—C3A—C4A—C5A1.1 (4)
O42Bv—Cs2—O2W—Cs1168.65 (9)C2B—C3B—C4B—N4B178.2 (2)
O12Bvi—Cs2—O2W—Cs160.98 (10)C2B—C3B—C4B—C5B1.2 (4)
O42Biv—Cs2—O2W—Cs192.29 (7)N4A—C4A—C5A—C6A179.1 (2)
O1W—Cs2—O41A—N4A16.2 (2)C3A—C4A—C5A—C6A0.7 (4)
O2W—Cs2—O41A—N4A121.7 (2)N4B—C4B—C5B—C6B179.7 (2)
N2B—Cs2—O41A—N4A102.1 (2)C3B—C4B—C5B—C6B1.0 (4)
O42Bv—Cs2—O41A—N4A176.1 (2)C4A—C5A—C6A—C1A1.3 (4)
O12Bvi—Cs2—O41A—N4A4.7 (3)C4B—C5B—C6B—C1B2.1 (4)
O42Biv—Cs2—O41A—N4A102.0 (2)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y, z+1; (iii) x+2, y, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x+3/2, y1/2, z+1/2; (vi) x+2, y+1, z+1; (vii) x+3/2, y+1/2, z+3/2; (viii) x1/2, y+1/2, z1/2; (ix) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H22A···O11Bv0.88 (3)2.35 (3)3.132 (3)148 (3)
N2A—H21A···O12A0.86 (4)2.06 (4)2.685 (4)129 (3)
N2B—H21B···O11Ax0.90 (3)2.08 (3)2.848 (3)143 (3)
N2B—H22B···O12B0.82 (3)2.04 (3)2.657 (4)131 (3)
O1W—H11W···O11Bvi0.90 (5)1.88 (4)2.768 (3)169 (3)
O1W—H12W···O12Ax0.85 (4)1.99 (4)2.839 (3)180 (5)
O2W—H21W···O11Aii0.85 (4)2.01 (4)2.851 (4)179 (6)
O2W—H22W···O12Biii0.81 (4)1.96 (4)2.769 (4)172 (4)
C6A—H6A···O11A0.932.412.762 (3)102
C6B—H6B···O11B0.932.402.746 (3)102
Symmetry codes: (ii) x+1, y, z+1; (iii) x+2, y, z+1; (v) x+3/2, y1/2, z+1/2; (vi) x+2, y+1, z+1; (x) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cs2(C7H5N2O4)2(H2O)2]
Mr664.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)15.3615 (3), 6.9573 (2), 18.3714 (4)
β (°) 97.903 (2)
V3)1944.79 (8)
Z4
Radiation typeMo Kα
µ (mm1)3.81
Crystal size (mm)0.40 × 0.30 × 0.10
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.411, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
14204, 4555, 3818
Rint0.026
(sin θ/λ)max1)0.678
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.049, 1.02
No. of reflections4555
No. of parameters303
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.90

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cs1—O1W3.177 (2)Cs1—O41Biv3.326 (2)
Cs1—O2W3.311 (3)Cs2—O1W3.248 (3)
Cs1—O42A3.271 (2)Cs2—O2W3.108 (3)
Cs1—O1Wi3.414 (3)Cs2—O41A3.136 (2)
Cs1—O42Ai3.271 (2)Cs2—N2B3.352 (3)
Cs1—O12Aii3.165 (2)Cs2—O42Bv3.114 (2)
Cs1—O11Biii3.166 (2)Cs2—O12Bvi3.090 (2)
Cs1—O12Aiv3.202 (2)Cs2—O42Biv3.181 (2)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y, z+1; (iii) x+2, y, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x+3/2, y1/2, z+1/2; (vi) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H22A···O11Bv0.88 (3)2.35 (3)3.132 (3)148 (3)
N2A—H21A···O12A0.86 (4)2.06 (4)2.685 (4)129 (3)
N2B—H21B···O11Avii0.90 (3)2.08 (3)2.848 (3)143 (3)
N2B—H22B···O12B0.82 (3)2.04 (3)2.657 (4)131 (3)
O1W—H11W···O11Bvi0.90 (5)1.88 (4)2.768 (3)169 (3)
O1W—H12W···O12Avii0.85 (4)1.99 (4)2.839 (3)180 (5)
O2W—H21W···O11Aii0.85 (4)2.01 (4)2.851 (4)179 (6)
O2W—H22W···O12Biii0.81 (4)1.96 (4)2.769 (4)172 (4)
Symmetry codes: (ii) x+1, y, z+1; (iii) x+2, y, z+1; (v) x+3/2, y1/2, z+1/2; (vi) x+2, y+1, z+1; (vii) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Committee, the Faculty of Science and Technology and the University Library, Queensland University of Technology.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHu, M., Geng, C., Li, S., Du, Y., Jiang, Y. & Liu, Z. (2005). J. Organomet. Chem. 690, 3118–3124.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010). J. Chem. Crystallogr. 41, 688–692.  Web of Science CSD CrossRef Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o684–o686.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Acta Cryst. E63, o7–o9.  CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2002). Acta Cryst. E58, o1088–o1090.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiesbrock, F. & Schmidbaur, H. (2003). Inorg. Chem. 42, 7283–7289.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1047-m1048
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds