organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­anilinium 6-carb­­oxy­picolinate monohydrate

aCollege of Food Science and Engineering, Northwest A & F University, Yang Ling 712100, People's Republic of China, and bCollege of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: wyt991023@gmail.com

(Received 25 June 2011; accepted 25 June 2011; online 2 July 2011)

In the title compound, C6H9N2+·C7H4NO4·H2O, one amino group of diamino­benzene is protonated while one carb­oxy group of pyridine-2,6-dicarb­oxy­lic acid is deprotonated. In the anion, the CO2 and CO2H groups make dihedral angles of 4.0 (5) and 8.7 (4)° with the pyridine ring. In the crystal, extensive N—H⋯O, N—H⋯N and O—H⋯O hydrogen bonds occur between anions, cations and water mol­ecules.

Related literature

For related compounds, see: Andre et al. (2011[Andre, V., Fernandes, A., Santos, P. P. & Duarte, M. T. (2011). Cryst. Growth Des. 11, 2325-2334.]); Blagden et al. (2008[Blagden, N., Berry, D. J., Parkin, A., Javed, H., Ibrahim, A., Gavan, P. T., De Matos, L. L. & Seaton, C. C. (2008). New J. Chem. 32, 1659-1672.]); Smith et al. (2000[Smith, G., Bott, R. C. & Lynch, D. E. (2000). Acta Cryst. C56, 1155-1156.]); Kapildev et al. (2011[Kapildev, K. A., Nitin, G. T. & Raj, S. (2011). Mol. Pharm. 8, 982-989.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C7H4NO4·H2O

  • Mr = 293.28

  • Monoclinic, C c

  • a = 12.408 (3) Å

  • b = 13.932 (3) Å

  • c = 8.0951 (16) Å

  • β = 102.41 (3)°

  • V = 1366.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.30 × 0.25 × 0.15 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 7343 measured reflections

  • 1555 independent reflections

  • 1393 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.117

  • S = 1.12

  • 1555 reflections

  • 191 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1Wi 0.89 2.13 3.004 (4) 166
N1—H1B⋯O3ii 0.89 1.98 2.862 (3) 170
N1—H1C⋯N3 0.89 2.12 3.003 (4) 171
N2—H2A⋯O1Wiii 0.90 2.41 3.303 (4) 172
N2—H2B⋯O1 0.90 2.14 3.029 (4) 168
O1W—H1WA⋯O2iv 0.82 2.27 3.034 (3) 155
O1W—H1WB⋯O2 0.82 2.04 2.831 (3) 161
O4—H4⋯O1i 0.82 1.71 2.532 (3) 179
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x, y, z-1; (iv) [x, -y, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cocrystals are most commonly thought of as structural homogeneous crystalline materials that contain two or more organic building blocks that are present in definite stoichiometric amounts. Within the development of pharmaceutical industry, molecular cocrystals are becoming increasingly important as a new drug with higher biomedical activity than the initial components. (Kapildev et al. 2011). Physicochemical properties such as the melting point, stability and solubility of an active pharmaceutical ingredient can be tuned through cocrystal formulation (Andre, et al. 2011; Blagden, et al. 2008; Smith, et al. 2000). These cocrystal forms often relie on the acid-amide H-bonds interactions. Herein, we report the crystal structure of the title compound, 2-aminoanilinium 6-carboxypicolinate monohydrate.

The asymmetric unit is composed of one 6-carboxypicolinate anion one 2-aminoanilinium cation and one water molecule (Fig.1). The amine N1 atom was protonated. And one of the carboxyl groups was deprotonated. The interplanar angle between the benzene and the pyridine rings equals to 88.89 (10)°. The geometric parameters of the title compound are in the normal range.

The molecular packing is stabilized by strong intermolecular N—H···O, N—H···N and O—H···O hydrogen bonds. The H-bonds link the molecules into a three-dimensional network (Fig. 2 and Tab. 1).

Related literature top

For related compounds, see: Andre et al. (2011); Blagden et al. (2008); Smith et al. (2000); Kapildev et al. (2011).

Experimental top

A mixture of pyridine-2,6-dicarboxylic acid (2.0 mmol), benzene-1,2-diamine (2.0 mmol) and 40 ml water were added into a 100 ml flask and refluxed for 5 h, then cooled and filtrated. The solution was evaporated slowly in the air. Colorless block crystals suitable for X-ray analysis were obtained after one week.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C-H = 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(C). The H atoms bonded to N1, N2, O1W and O4 were located in a difference Fourier map, in the last stage of the refinement they were restrained with the H—N2 = 0.90, H—N1 = 0.89 and H—O = 0.82 Å. Uiso(H)=1.5Ueq(N1,O1W,O4) and Uiso(H) = 1.2Ueq(N2). As no significant anomalous scatterings, Friedel pairs were merged.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis showing the three-dimensionnal hydrogen bondings network (dashed line). Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
2-Aminoanilinium 6-carboxypicolinate monohydrate top
Crystal data top
C6H9N2+·C7H4NO4·H2OF(000) = 616
Mr = 293.28Dx = 1.425 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1555 reflections
a = 12.408 (3) Åθ = 2.2–27.4°
b = 13.932 (3) ŵ = 0.11 mm1
c = 8.0951 (16) ÅT = 298 K
β = 102.41 (3)°Block, colorless
V = 1366.6 (5) Å30.30 × 0.25 × 0.15 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
1555 independent reflections
Radiation source: fine-focus sealed tube1393 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 13.6612 pixels mm-1θmax = 27.4°, θmin = 2.2°
CCD profile fitting scansh = 1615
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1818
Tmin = 0.910, Tmax = 1.000l = 1010
7343 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0734P)2]
where P = (Fo2 + 2Fc2)/3
1555 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.19 e Å3
2 restraintsΔρmin = 0.22 e Å3
Crystal data top
C6H9N2+·C7H4NO4·H2OV = 1366.6 (5) Å3
Mr = 293.28Z = 4
Monoclinic, CcMo Kα radiation
a = 12.408 (3) ŵ = 0.11 mm1
b = 13.932 (3) ÅT = 298 K
c = 8.0951 (16) Å0.30 × 0.25 × 0.15 mm
β = 102.41 (3)°
Data collection top
Rigaku Mercury2
diffractometer
1555 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1393 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.041
7343 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0402 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.12Δρmax = 0.19 e Å3
1555 reflectionsΔρmin = 0.22 e Å3
191 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.9144 (2)0.11509 (17)0.8457 (3)0.0468 (6)
H1WA0.90520.07370.91330.070*
H1WB0.89720.09050.75160.070*
O10.75215 (19)0.17288 (15)0.4341 (3)0.0456 (6)
O20.80493 (18)0.02830 (16)0.5392 (3)0.0412 (5)
N30.56474 (19)0.10218 (18)0.2422 (3)0.0286 (5)
O30.30560 (19)0.10298 (17)0.0480 (3)0.0436 (6)
O40.41055 (17)0.22264 (15)0.0827 (3)0.0397 (5)
H40.35990.25690.03370.060*
N10.61623 (19)0.31257 (19)0.2363 (3)0.0296 (5)
H1A0.55820.34340.25870.044*
H1B0.67720.33180.30800.044*
H1C0.60760.24970.24760.044*
C80.6256 (2)0.33386 (19)0.0621 (3)0.0290 (6)
N20.7964 (2)0.2434 (2)0.1010 (4)0.0452 (7)
H2A0.83420.20690.04130.054*
H2B0.79330.21780.20200.054*
C10.7403 (2)0.0831 (2)0.4445 (4)0.0304 (6)
C60.4728 (2)0.0640 (2)0.1448 (4)0.0293 (6)
C70.3880 (2)0.1321 (2)0.0494 (3)0.0296 (6)
C30.6225 (3)0.0586 (2)0.3262 (4)0.0371 (7)
H3A0.67480.09900.39090.044*
C90.7137 (2)0.2968 (2)0.0015 (4)0.0336 (6)
C50.4515 (3)0.0335 (2)0.1314 (4)0.0392 (7)
H5A0.38700.05660.06230.047*
C130.5445 (3)0.3890 (2)0.0392 (4)0.0378 (7)
H13A0.48640.41310.00410.045*
C40.5287 (3)0.0961 (2)0.2238 (5)0.0427 (8)
H4A0.51730.16210.21670.051*
C100.7174 (3)0.3179 (3)0.1655 (5)0.0471 (8)
H10A0.77560.29460.20970.057*
C20.6380 (2)0.0403 (2)0.3314 (4)0.0289 (6)
C120.5500 (3)0.4080 (3)0.2044 (5)0.0503 (9)
H12A0.49530.44440.27310.060*
C110.6366 (4)0.3728 (3)0.2669 (5)0.0549 (10)
H11A0.64090.38590.37790.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.0461 (14)0.0470 (14)0.0444 (13)0.0005 (11)0.0035 (10)0.0032 (10)
O10.0368 (12)0.0319 (12)0.0563 (14)0.0070 (10)0.0164 (10)0.0073 (11)
O20.0311 (11)0.0399 (12)0.0452 (12)0.0016 (9)0.0085 (9)0.0071 (10)
N30.0222 (10)0.0302 (13)0.0312 (11)0.0011 (9)0.0014 (9)0.0013 (10)
O30.0307 (12)0.0408 (13)0.0504 (14)0.0011 (9)0.0108 (10)0.0029 (10)
O40.0296 (11)0.0318 (10)0.0500 (13)0.0023 (8)0.0086 (9)0.0000 (10)
N10.0244 (11)0.0326 (12)0.0292 (12)0.0008 (9)0.0003 (9)0.0013 (10)
C80.0278 (14)0.0293 (13)0.0286 (14)0.0010 (11)0.0035 (10)0.0011 (11)
N20.0343 (14)0.0463 (16)0.0553 (18)0.0115 (12)0.0103 (13)0.0012 (14)
C10.0246 (13)0.0325 (14)0.0321 (14)0.0003 (11)0.0015 (10)0.0035 (12)
C60.0217 (12)0.0314 (14)0.0331 (14)0.0010 (11)0.0020 (10)0.0005 (12)
C70.0228 (13)0.0366 (14)0.0272 (13)0.0010 (11)0.0008 (10)0.0015 (12)
C30.0298 (16)0.0312 (15)0.0480 (18)0.0007 (12)0.0033 (13)0.0080 (13)
C90.0298 (14)0.0314 (15)0.0395 (16)0.0014 (12)0.0072 (12)0.0035 (12)
C50.0291 (16)0.0372 (15)0.0461 (18)0.0059 (13)0.0032 (13)0.0018 (14)
C130.0357 (15)0.0397 (16)0.0369 (17)0.0079 (13)0.0054 (12)0.0033 (13)
C40.0363 (16)0.0275 (15)0.060 (2)0.0048 (13)0.0016 (15)0.0003 (14)
C100.049 (2)0.053 (2)0.045 (2)0.0026 (16)0.0206 (16)0.0055 (16)
C20.0228 (13)0.0303 (14)0.0320 (13)0.0012 (11)0.0026 (11)0.0021 (12)
C120.057 (2)0.053 (2)0.0387 (18)0.0148 (18)0.0064 (15)0.0112 (16)
C110.072 (3)0.061 (2)0.0357 (19)0.008 (2)0.0202 (17)0.0082 (17)
Geometric parameters (Å, º) top
O1W—H1WA0.8201C1—C21.518 (4)
O1W—H1WB0.8201C6—C51.384 (4)
O1—C11.264 (4)C6—C71.502 (4)
O2—C11.245 (4)C3—C41.378 (5)
N3—C21.345 (4)C3—C21.391 (4)
N3—C61.349 (4)C3—H3A0.9300
O3—C71.219 (3)C9—C101.394 (5)
O4—C71.307 (4)C5—C41.390 (5)
O4—H40.8201C5—H5A0.9300
N1—C81.470 (4)C13—C121.379 (5)
N1—H1A0.8900C13—H13A0.9300
N1—H1B0.8900C4—H4A0.9300
N1—H1C0.8900C10—C111.382 (6)
C8—C131.386 (4)C10—H10A0.9300
C8—C91.390 (4)C12—C111.373 (6)
N2—C91.378 (4)C12—H12A0.9300
N2—H2A0.9002C11—H11A0.9300
N2—H2B0.8998
H1WA—O1W—H1WB106.3C2—C3—H3A120.4
C2—N3—C6116.7 (2)N2—C9—C8122.5 (3)
C7—O4—H4110.7N2—C9—C10120.3 (3)
C8—N1—H1A109.5C8—C9—C10117.1 (3)
C8—N1—H1B109.5C6—C5—C4118.4 (3)
H1A—N1—H1B109.5C6—C5—H5A120.8
C8—N1—H1C109.5C4—C5—H5A120.8
H1A—N1—H1C109.5C12—C13—C8119.9 (3)
H1B—N1—H1C109.5C12—C13—H13A120.0
C13—C8—C9121.6 (3)C8—C13—H13A120.0
C13—C8—N1118.8 (3)C3—C4—C5118.8 (3)
C9—C8—N1119.6 (2)C3—C4—H4A120.6
C9—N2—H2A113.6C5—C4—H4A120.6
C9—N2—H2B125.0C11—C10—C9121.4 (3)
H2A—N2—H2B113.1C11—C10—H10A119.3
O2—C1—O1125.4 (3)C9—C10—H10A119.3
O2—C1—C2118.4 (3)N3—C2—C3123.1 (3)
O1—C1—C2116.3 (2)N3—C2—C1116.9 (2)
N3—C6—C5123.8 (3)C3—C2—C1120.0 (3)
N3—C6—C7117.6 (2)C11—C12—C13119.6 (3)
C5—C6—C7118.6 (3)C11—C12—H12A120.2
O3—C7—O4124.6 (3)C13—C12—H12A120.2
O3—C7—C6121.3 (3)C12—C11—C10120.3 (3)
O4—C7—C6114.1 (2)C12—C11—H11A119.8
C4—C3—C2119.1 (3)C10—C11—H11A119.8
C4—C3—H3A120.4
C2—N3—C6—C50.6 (4)C6—C5—C4—C30.7 (5)
C2—N3—C6—C7177.7 (3)N2—C9—C10—C11178.8 (4)
N3—C6—C7—O3176.1 (3)C8—C9—C10—C110.5 (5)
C5—C6—C7—O35.4 (4)C6—N3—C2—C30.1 (4)
N3—C6—C7—O44.8 (4)C6—N3—C2—C1178.6 (3)
C5—C6—C7—O4173.7 (3)C4—C3—C2—N30.8 (5)
C13—C8—C9—N2178.7 (3)C4—C3—C2—C1179.4 (3)
N1—C8—C9—N22.8 (4)O2—C1—C2—N3174.0 (3)
C13—C8—C9—C100.4 (4)O1—C1—C2—N35.8 (4)
N1—C8—C9—C10178.9 (3)O2—C1—C2—C34.7 (4)
N3—C6—C5—C40.2 (5)O1—C1—C2—C3175.5 (3)
C7—C6—C5—C4178.1 (3)C8—C13—C12—C110.6 (6)
C9—C8—C13—C120.2 (5)C13—C12—C11—C100.6 (6)
N1—C8—C13—C12178.4 (3)C9—C10—C11—C120.0 (7)
C2—C3—C4—C51.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1Wi0.892.133.004 (4)166
N1—H1B···O3ii0.891.982.862 (3)170
N1—H1C···N30.892.123.003 (4)171
N2—H2A···O1Wiii0.902.413.303 (4)172
N2—H2B···O10.902.143.029 (4)168
O1W—H1WA···O2iv0.822.273.034 (3)155
O1W—H1WB···O20.822.042.831 (3)161
O4—H4···O1i0.821.712.532 (3)179
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z1; (iv) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C7H4NO4·H2O
Mr293.28
Crystal system, space groupMonoclinic, Cc
Temperature (K)298
a, b, c (Å)12.408 (3), 13.932 (3), 8.0951 (16)
β (°) 102.41 (3)
V3)1366.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.25 × 0.15
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7343, 1555, 1393
Rint0.041
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.117, 1.12
No. of reflections1555
No. of parameters191
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.22

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1Wi0.892.133.004 (4)166
N1—H1B···O3ii0.891.982.862 (3)170
N1—H1C···N30.892.123.003 (4)171
N2—H2A···O1Wiii0.902.413.303 (4)172
N2—H2B···O10.902.143.029 (4)168
O1W—H1WA···O2iv0.822.273.034 (3)155
O1W—H1WB···O20.822.042.831 (3)161
O4—H4···O1i0.821.712.532 (3)179
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z1; (iv) x, y, z+1/2.
 

Acknowledgements

This work was supported by the start-up fund of Northwest A & F University, China.

References

First citationAndre, V., Fernandes, A., Santos, P. P. & Duarte, M. T. (2011). Cryst. Growth Des. 11, 2325–2334.  CAS Google Scholar
First citationBlagden, N., Berry, D. J., Parkin, A., Javed, H., Ibrahim, A., Gavan, P. T., De Matos, L. L. & Seaton, C. C. (2008). New J. Chem. 32, 1659–1672.  Web of Science CSD CrossRef CAS Google Scholar
First citationKapildev, K. A., Nitin, G. T. & Raj, S. (2011). Mol. Pharm. 8, 982–989.  Web of Science PubMed Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Bott, R. C. & Lynch, D. E. (2000). Acta Cryst. C56, 1155–1156.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds