organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Chloro­phen­yl)-N-[(E)-4-(di­methyl­amino)­benzyl­­idene]-1,3-thia­zol-2-amine

aDepartment of Physics, Government First Grade College, Bidadi, Bangalore 560 067, India, bOrganic Chemistry Division, Vivekananda Degree Collage, Bangalore 560 055, India, cDepartment of Physics, Government First Grade College, Mandya 571 401, India, dMaterials Research Center, Indian Institute of Science, Bangalore 560 012, India, and eBioinformatics Infrastructure Facility, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
*Correspondence e-mail: rsrsl@uohyd.ernet.in

(Received 25 June 2011; accepted 13 July 2011; online 23 July 2011)

The title compound, C18H16ClN3S, adopts an extended mol­ecular structure. The thia­zole ring is inclined by 9.2 (1) and 15.3 (1)° with respect to the chloro­phenyl and 4-(dimethyl­amino)­phenyl rings, respectively, while the benzene ring planes make an angle of 19.0 (1)°. A weak inter­molecular C—H⋯π contact is observed in the crystal structure.

Related literature

For related structures, see: Lynch et al. (1999[Lynch, D. E., Nicholls, L. J., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1999). Acta Cryst. B55, 758-766.]; 2002[Lynch, D. E., McClenaghan, I., Light, M. E. & Coles, S. J. (2002). Cryst. Eng. 5, 123-136.]). For medicinal applications of thia­zole derivatives, see: Misra et al. (2004[Misra, R. N., Xiao, H.-Y., Kim, K. S., Lu, S., Han, W.-C., Barbosa, S. A., Hunt, J. T., Rawlins, D. B., Shan, W., Ahmed, S. Z., Qian, L., Chen, B.-C., Zhao, R., Bednarz, M. S., Kellar, K. A., Mulheron, J. G., Batorsky, R., Roongta, U., Kamath, A., Marathe, P., Ranadive, S. A., Sack, J. S., Tokarski, J. S., Pavletich, N. P., Lee, F. Y., Webster, K. R. & Kimball, S. D. (2004). J. Med. Chem. 47, 1719-1728.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16ClN3S

  • Mr = 341.85

  • Monoclinic, P 21

  • a = 6.1169 (7) Å

  • b = 7.4708 (8) Å

  • c = 18.2536 (18) Å

  • β = 97.975 (11)°

  • V = 826.09 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 294 K

  • 0.24 × 0.18 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.919, Tmax = 0.945

  • 9063 measured reflections

  • 3242 independent reflections

  • 1355 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.062

  • S = 0.78

  • 3242 reflections

  • 210 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1483 Friedel pairs

  • Flack parameter: 0.06 (8)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18BCgi 0.96 2.73 3.515 (5) 140
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2010[Bruker (2010). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, C18H16ClN3S, (I), is a 2-amino-thiazole derivative. Few structures of such derivatives have been determined (Lynch et al., 1999; 2002) and some of them have been shown to act as inhibitor of cyclin-dependent kinase (Misra et al., 2004). The structure of (I) with adopted atom-numbering scheme is shown in Fig 1.

(I) adopts an extended structure. The thiazole ring is inclined with respect to chlorophenyl and dimethylaminophenyl rings by 9.2 (1)° and 15.3 (1)°, respectively, while both benzene ring planes make an angle of 19.0 (1)°. The dimethylamino group makes an angle of 4.0 (3)° with respect to the adjacent benzene ring. The crystal packing is governed by van der waals interactions only. Short intermolecular C—H···π contact is also observed (Table 1).

Related literature top

For related structures, see: Lynch et al. (1999; 2002). For medicinal applications of thiazole derivatives, see: Misra et al. (2004).

Experimental top

A mixture of 2-amino-4-(4-chloro) phenyl thiazole (0.01 mol; CAS No. 2103–99-3) and paradimethyl amino benzaldehyde (0.01 mol) in ethanol (30 ml), and catalytic amount of glacial acetic acid (2 ml) in a clean conical flask was refluxed for 2 h. The resulting mixture was cooled, filtered and dried to get the title compound (m.p. 506–507°C). To obtain the suitable single crystals for X-ray diffraction, (I) was mixed with DMF (30 ml) and heated until completely dissolved. The mixture was left for slow evaporation.

Refinement top

Hydrogen atoms were placed in their stereochemically expected positions and refined with the riding options. Methyl hydrogen atoms were fixed with reference to local electron density map. The distances with hydrogen atoms are as follows: C(aromatic/sp2)—H = 0.93 Å, C(methyl)—H = 0.96 Å, and Uiso = 1.2 Ueq(parent) [1.5Ueq(parent) for methyl groups].

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT-Plus (Bruker, 2010); data reduction: SAINT-Plus (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of (I) with adopted atom-numbering scheme and non-H atoms shown as probability ellipsoids at 30% levels.
4-(4-Chlorophenyl)-N-[(E)-4-(dimethylamino)benzylidene]- 1,3-thiazol-2-amine top
Crystal data top
C18H16ClN3SF(000) = 356
Mr = 341.85Dx = 1.374 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1055 reflections
a = 6.1169 (7) Åθ = 2.2–29.2°
b = 7.4708 (8) ŵ = 0.36 mm1
c = 18.2536 (18) ÅT = 294 K
β = 97.975 (11)°Needle, brown
V = 826.09 (15) Å30.24 × 0.18 × 0.16 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3242 independent reflections
Radiation source: fine-focus sealed tube1355 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
ϕ and ω scansθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 77
Tmin = 0.919, Tmax = 0.945k = 99
9063 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.010P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.78(Δ/σ)max = 0.004
3242 reflectionsΔρmax = 0.18 e Å3
210 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack (1983), 1483 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (8)
Crystal data top
C18H16ClN3SV = 826.09 (15) Å3
Mr = 341.85Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.1169 (7) ŵ = 0.36 mm1
b = 7.4708 (8) ÅT = 294 K
c = 18.2536 (18) Å0.24 × 0.18 × 0.16 mm
β = 97.975 (11)°
Data collection top
Bruker APEXII CCD
diffractometer
3242 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1355 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.945Rint = 0.084
9063 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.062Δρmax = 0.18 e Å3
S = 0.78Δρmin = 0.20 e Å3
3242 reflectionsAbsolute structure: Flack (1983), 1483 Friedel pairs
210 parametersAbsolute structure parameter: 0.06 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric.Sci.(1965),15(II—A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d

Plane 1 m1 = -0.44990(0.00160) m2 = -0.87347(0.00086) m3 = -0.18611(0.00175) D = -3.47756(0.01551) Atom d s d/s (d/s)**2 C1 * -0.0082 0.0048 - 1.706 2.911 C2 * 0.0089 0.0046 1.925 3.707 C3 * -0.0021 0.0045 - 0.472 0.223 C4 * -0.0040 0.0039 - 1.036 1.072 C5 * 0.0051 0.0039 1.304 1.700 C6 * -0.0004 0.0040 - 0.096 0.009 Cl1 - 0.0062 0.0013 - 4.835 23.378 C7 - 0.0409 0.0039 - 10.501 110.265 ============ Sum((d/s)**2) for starred atoms 9.623 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Plane 2 m1 = -0.34887(0.00131) m2 = -0.93392(0.00058) m3 = -0.07797(0.00194) D = -2.96690(0.02047) Atom d s d/s (d/s)**2 N1 * 0.0036 0.0034 1.053 1.108 S1 * 0.0002 0.0012 0.201 0.041 C7 * -0.0021 0.0039 - 0.541 0.293 C8 * -0.0007 0.0043 - 0.157 0.025 C9 * -0.0054 0.0042 - 1.283 1.647 N2 - 0.0838 0.0039 - 21.454 460.260 C4 - 0.0329 0.0039 - 8.470 71.739 ============ Sum((d/s)**2) for starred atoms 3.113 Chi-squared at 95% for 2 degrees of freedom: 5.99 The group of atoms does not deviate significantly from planarity

Plane 3 m1 = 0.47925(0.00159) m2 = 0.86590(0.00089) m3 = -0.14330(0.00169) D = -0.77606(0.02916) Atom d s d/s (d/s)**2 C11 * 0.0080 0.0041 1.980 3.920 C12 * -0.0093 0.0041 - 2.291 5.251 C13 * 0.0037 0.0043 0.856 0.733 C14 * 0.0043 0.0042 1.010 1.021 C15 * -0.0044 0.0038 - 1.160 1.346 C16 * -0.0009 0.0040 - 0.219 0.048 N3 0.0139 0.0033 4.236 17.942 C10 0.0759 0.0041 18.730 350.815 ============ Sum((d/s)**2) for starred atoms 12.318 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Plane 4 m1 = 0.46397(0.00261) m2 = 0.88241(0.00119) m3 = -0.07795(0.00540) D = 0.57261(0.10767) Atom d s d/s (d/s)**2 N3 * 0.0000 0.0033 0.000 0.000 C17 * 0.0000 0.0040 0.000 0.000 C18 * 0.0000 0.0041 0.000 0.000 C14 - 0.0851 0.0042 - 20.162 406.523 ============ Sum((d/s)**2) for starred atoms 0.000 Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 9.17 (0.13) 170.83 (0.13) 1 3 19.04 (0.14) 160.96 (0.14) 1 4 15.20 (0.31) 164.80 (0.31) 2 3 15.27 (0.13) 164.73 (0.13) 2 4 11.51 (0.27) 168.49 (0.27) 3 4 3.96 (0.31) 176.04 (0.31)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.58295 (18)0.55168 (16)0.68740 (6)0.0603 (4)
Cl10.0164 (2)0.44097 (17)0.29270 (6)0.0840 (5)
N10.2184 (5)0.4428 (5)0.64682 (18)0.0417 (9)
N20.2363 (6)0.4507 (5)0.77983 (19)0.0541 (10)
N30.3895 (6)0.3460 (4)1.0889 (2)0.0448 (10)
C10.1183 (8)0.4555 (6)0.3769 (2)0.0504 (13)
C20.3184 (7)0.5363 (6)0.3800 (2)0.0577 (13)
H20.40020.58240.33740.069*
C30.3970 (6)0.5480 (6)0.4478 (2)0.0490 (12)
H30.53110.60450.45060.059*
C40.2781 (6)0.4765 (5)0.5114 (2)0.0340 (11)
C50.0787 (6)0.3928 (5)0.5059 (2)0.0445 (13)
H50.00230.34290.54780.053*
C60.0014 (7)0.3830 (5)0.4382 (2)0.0473 (13)
H60.13560.32730.43490.057*
C70.3576 (7)0.4909 (5)0.5840 (2)0.0373 (12)
C80.5606 (6)0.5520 (6)0.5945 (2)0.0512 (12)
H80.67060.58840.55710.061*
C90.3158 (6)0.4695 (6)0.7050 (3)0.0491 (13)
C100.0454 (7)0.3803 (5)0.7958 (2)0.0442 (13)
H100.02640.33740.75770.053*
C110.0633 (7)0.3650 (5)0.8714 (3)0.0369 (11)
C120.0298 (6)0.4390 (6)0.9301 (2)0.0422 (11)
H120.16790.49280.92060.051*
C130.0767 (6)0.4348 (6)1.0015 (2)0.0422 (12)
H130.01120.48791.03910.051*
C140.2839 (7)0.3510 (6)1.0185 (2)0.0376 (12)
C150.3763 (7)0.2732 (5)0.9598 (2)0.0415 (12)
H150.51220.21580.96900.050*
C160.2669 (7)0.2815 (5)0.8887 (2)0.0466 (13)
H160.33180.22930.85080.056*
C170.2862 (6)0.4146 (6)1.1505 (2)0.0654 (15)
H17C0.15800.34431.15590.098*
H17B0.24350.53701.14110.098*
H17A0.38910.40781.19520.098*
C180.6027 (7)0.2620 (6)1.1087 (2)0.0608 (14)
H18A0.70590.31121.07900.091*
H18B0.58940.13541.10020.091*
H18C0.65430.28361.16000.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0511 (8)0.0798 (10)0.0498 (9)0.0126 (8)0.0057 (7)0.0004 (8)
Cl10.1220 (12)0.0840 (10)0.0528 (9)0.0034 (9)0.0367 (9)0.0026 (8)
N10.045 (2)0.048 (2)0.032 (2)0.010 (2)0.0036 (19)0.003 (2)
N20.047 (2)0.072 (3)0.044 (3)0.005 (2)0.009 (2)0.002 (2)
N30.050 (3)0.047 (3)0.041 (3)0.014 (2)0.018 (2)0.001 (2)
C10.072 (4)0.039 (3)0.043 (3)0.006 (3)0.016 (3)0.003 (3)
C20.074 (4)0.056 (3)0.043 (3)0.009 (3)0.006 (3)0.019 (3)
C30.052 (3)0.048 (3)0.045 (3)0.003 (3)0.001 (3)0.007 (3)
C40.040 (3)0.028 (3)0.035 (3)0.005 (2)0.006 (2)0.002 (2)
C50.050 (3)0.044 (3)0.039 (3)0.005 (2)0.005 (3)0.002 (2)
C60.053 (3)0.041 (3)0.049 (3)0.001 (3)0.015 (3)0.007 (3)
C70.043 (3)0.026 (3)0.042 (3)0.002 (2)0.000 (2)0.004 (2)
C80.051 (3)0.059 (3)0.042 (3)0.003 (3)0.002 (2)0.001 (3)
C90.048 (3)0.045 (3)0.052 (3)0.009 (2)0.001 (3)0.001 (3)
C100.057 (3)0.040 (3)0.039 (3)0.008 (3)0.015 (3)0.006 (2)
C110.039 (3)0.038 (3)0.035 (3)0.003 (2)0.008 (3)0.001 (2)
C120.037 (3)0.046 (3)0.046 (3)0.003 (2)0.013 (3)0.006 (3)
C130.041 (3)0.053 (3)0.034 (3)0.006 (3)0.011 (2)0.001 (3)
C140.046 (3)0.037 (3)0.033 (3)0.001 (2)0.016 (3)0.006 (2)
C150.042 (3)0.045 (3)0.038 (3)0.012 (2)0.006 (3)0.008 (3)
C160.049 (3)0.046 (3)0.047 (3)0.004 (2)0.015 (3)0.004 (3)
C170.066 (3)0.089 (4)0.042 (3)0.018 (3)0.013 (3)0.003 (3)
C180.055 (4)0.074 (4)0.050 (4)0.015 (3)0.005 (3)0.001 (3)
Geometric parameters (Å, º) top
S1—C81.720 (4)C7—C81.362 (4)
S1—C91.733 (4)C8—H80.9300
Cl1—C11.741 (4)C10—C111.451 (5)
N1—C91.303 (4)C10—H100.9300
N1—C71.378 (4)C11—C161.390 (5)
N2—C101.277 (4)C11—C121.394 (4)
N2—C91.393 (4)C12—C131.375 (4)
N3—C141.357 (5)C12—H120.9300
N3—C181.447 (5)C13—C141.409 (5)
N3—C171.458 (4)C13—H130.9300
C1—C61.361 (5)C14—C151.404 (5)
C1—C21.373 (5)C15—C161.377 (5)
C2—C31.392 (4)C15—H150.9300
C2—H20.9300C16—H160.9300
C3—C41.388 (5)C17—H17C0.9600
C3—H30.9300C17—H17B0.9600
C4—C51.386 (5)C17—H17A0.9600
C4—C71.477 (4)C18—H18A0.9600
C5—C61.394 (4)C18—H18B0.9600
C5—H50.9300C18—H18C0.9600
C6—H60.9300
C8—S1—C988.9 (2)N2—C10—C11122.3 (4)
C9—N1—C7109.8 (3)N2—C10—H10118.9
C10—N2—C9116.7 (4)C11—C10—H10118.9
C14—N3—C18122.9 (3)C16—C11—C12116.9 (4)
C14—N3—C17121.4 (3)C16—C11—C10121.9 (4)
C18—N3—C17115.6 (4)C12—C11—C10121.1 (4)
C6—C1—C2121.5 (4)C13—C12—C11121.9 (4)
C6—C1—Cl1118.9 (4)C13—C12—H12119.0
C2—C1—Cl1119.6 (4)C11—C12—H12119.0
C1—C2—C3118.9 (4)C12—C13—C14120.8 (4)
C1—C2—H2120.6C12—C13—H13119.6
C3—C2—H2120.6C14—C13—H13119.6
C4—C3—C2120.9 (4)N3—C14—C15121.5 (4)
C4—C3—H3119.5N3—C14—C13121.0 (4)
C2—C3—H3119.5C15—C14—C13117.5 (4)
C5—C4—C3118.6 (3)C16—C15—C14120.4 (4)
C5—C4—C7120.0 (4)C16—C15—H15119.8
C3—C4—C7121.5 (4)C14—C15—H15119.8
C4—C5—C6120.6 (4)C15—C16—C11122.5 (4)
C4—C5—H5119.7C15—C16—H16118.8
C6—C5—H5119.7C11—C16—H16118.8
C1—C6—C5119.5 (4)N3—C17—H17C109.5
C1—C6—H6120.3N3—C17—H17B109.5
C5—C6—H6120.3H17C—C17—H17B109.5
C8—C7—N1116.1 (4)N3—C17—H17A109.5
C8—C7—C4124.8 (4)H17C—C17—H17A109.5
N1—C7—C4119.1 (4)H17B—C17—H17A109.5
C7—C8—S1109.7 (3)N3—C18—H18A109.5
C7—C8—H8125.1N3—C18—H18B109.5
S1—C8—H8125.1H18A—C18—H18B109.5
N1—C9—N2130.3 (4)N3—C18—H18C109.5
N1—C9—S1115.5 (3)H18A—C18—H18C109.5
N2—C9—S1114.1 (3)H18B—C18—H18C109.5
C6—C1—C2—C31.7 (7)C10—N2—C9—N17.6 (7)
Cl1—C1—C2—C3179.6 (3)C10—N2—C9—S1175.8 (3)
C1—C2—C3—C41.2 (7)C8—S1—C9—N10.6 (4)
C2—C3—C4—C50.0 (6)C8—S1—C9—N2176.5 (3)
C2—C3—C4—C7178.9 (4)C9—N2—C10—C11175.4 (4)
C3—C4—C5—C60.8 (6)N2—C10—C11—C16177.2 (4)
C7—C4—C5—C6178.1 (4)N2—C10—C11—C124.8 (6)
C2—C1—C6—C51.0 (7)C16—C11—C12—C131.9 (6)
Cl1—C1—C6—C5179.7 (3)C10—C11—C12—C13176.2 (4)
C4—C5—C6—C10.3 (6)C11—C12—C13—C141.5 (7)
C9—N1—C7—C80.7 (5)C18—N3—C14—C150.2 (6)
C9—N1—C7—C4178.3 (4)C17—N3—C14—C15175.3 (4)
C5—C4—C7—C8172.4 (4)C18—N3—C14—C13179.8 (4)
C3—C4—C7—C88.8 (6)C17—N3—C14—C134.8 (6)
C5—C4—C7—N18.8 (5)C12—C13—C14—N3179.8 (4)
C3—C4—C7—N1170.0 (4)C12—C13—C14—C150.2 (6)
N1—C7—C8—S10.3 (5)N3—C14—C15—C16179.4 (4)
C4—C7—C8—S1178.6 (3)C13—C14—C15—C160.6 (6)
C9—S1—C8—C70.1 (3)C14—C15—C16—C110.2 (6)
C7—N1—C9—N2175.7 (4)C12—C11—C16—C151.0 (6)
C7—N1—C9—S10.8 (5)C10—C11—C16—C15177.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C18—H18B···Cgi0.962.733.515 (5)140
Symmetry code: (i) x+1, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC18H16ClN3S
Mr341.85
Crystal system, space groupMonoclinic, P21
Temperature (K)294
a, b, c (Å)6.1169 (7), 7.4708 (8), 18.2536 (18)
β (°) 97.975 (11)
V3)826.09 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.24 × 0.18 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.919, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
9063, 3242, 1355
Rint0.084
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.062, 0.78
No. of reflections3242
No. of parameters210
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20
Absolute structureFlack (1983), 1483 Friedel pairs
Absolute structure parameter0.06 (8)

Computer programs: APEX2 (Bruker, 2010), SAINT-Plus (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C18—H18B···Cgi0.962.733.515 (5)140
Symmetry code: (i) x+1, y1/2, z+2.
 

Acknowledgements

We acknowledge the CCD facility, set up under the IRHPA–DST program at the IISc., Bangalore. RSR acknowledges the CSIR, Government of India, for funding under the scientist's pool scheme.

References

First citationBruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLynch, D. E., McClenaghan, I., Light, M. E. & Coles, S. J. (2002). Cryst. Eng. 5, 123–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationLynch, D. E., Nicholls, L. J., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1999). Acta Cryst. B55, 758–766.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMisra, R. N., Xiao, H.-Y., Kim, K. S., Lu, S., Han, W.-C., Barbosa, S. A., Hunt, J. T., Rawlins, D. B., Shan, W., Ahmed, S. Z., Qian, L., Chen, B.-C., Zhao, R., Bednarz, M. S., Kellar, K. A., Mulheron, J. G., Batorsky, R., Roongta, U., Kamath, A., Marathe, P., Ranadive, S. A., Sack, J. S., Tokarski, J. S., Pavletich, N. P., Lee, F. Y., Webster, K. R. & Kimball, S. D. (2004). J. Med. Chem. 47, 1719–1728.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds