organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2113-o2114

(E)-2-[(2,4-Dihy­dr­oxy­benzyl­­idene)aza­nium­yl]-3-(1H-indol-3-yl)propano­ate monohydrate

aSchool of Chemical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia, bDepartment of Chemistry, International University of Africa, Sudan, and cChemistry Department, Faculty of Science, University of Malaya, Malaysia
*Correspondence e-mail: sgteoh@usm.my

(Received 17 June 2011; accepted 14 July 2011; online 23 July 2011)

In the zwitterionic title compound, C18H16N2O4·H2O, the dihedral angle between the planes of the benzene and indole rings is 39.20 (8)°. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, inter­molecular hy­droxy and water O—H⋯O(carboxyl­ate) and N+—H⋯O(carboxyl­ate) and indole N—H⋯O(water) hydrogen bonds give a three-dimensional structure.

Related literature

For related structures, see: Grant et al. (1999[Grant, G. D., Hunt, A. L., Milne, P. J., Roos, H. M. & Joubert, J. A. (1999). J. Chem. Crystallogr. 29, 435-447.]); Emge et al. (2000[Emge, T. J., Agrawal, A., Dalessio, J. P., Dukovic, G., Inghrim, J. A., Janjua, K., Macaluso, M., Robertson, L. L., Stiglic, T. J., Volovik, Y. & Georgiadis, M. M. (2000). Acta Cryst. C56, e469-e471.]). For the anti­cancer activity of Schiff bases, see: Dao et al. (2000[Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805-813.]), for their anti-HIV activity, see: Sriram et al. (2006[Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]) and for their anti­bacterial and anti­fungal activity, see: Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]). For analytical applications, see: Eltayeb & Ahmed (2005a[Eltayeb, N. E. & Ahmed, T. A. (2005a). J. Sci. Technol. 6, 51-59.],b[Eltayeb, N. E. & Ahmed, T. A. (2005b). Sudan J. Basic Sci. 7, 97-108.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N2O4·H2O

  • Mr = 342.34

  • Orthorhombic, P 21 21 21

  • a = 8.4214 (3) Å

  • b = 10.6787 (4) Å

  • c = 18.9554 (8) Å

  • V = 1704.65 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996)[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.] Tmin = 0.618, Tmax = 0.746

  • 15797 measured reflections

  • 3904 independent reflections

  • 3587 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.085

  • S = 1.03

  • 3904 reflections

  • 244 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2i 0.84 1.76 2.5966 (15) 178
O3—H3⋯O1ii 0.84 1.72 2.5605 (15) 176
O3—H3⋯O2ii 0.84 2.64 3.1526 (14) 121
N2—H2A⋯O3 0.87 (2) 2.082 (19) 2.6642 (15) 123.9 (16)
O5—H5B⋯O2iii 0.80 (3) 2.19 (3) 2.9438 (17) 157 (2)
N1—H1A⋯O5 0.87 (2) 2.10 (2) 2.9441 (19) 164 (2)
Symmetry codes: (i) x, y+1, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Schiff bases have received much attention because of their potential applications, with some of these compounds exhibiting various pharmacological activities, as noted by their anticancer (Dao et al., 2000), anti-HIV (Sriram et al., 2006), antibacterial and antifungal (Karthikeyan et al., 2006) properties. In addition, some of them may be used as analytical reagents for the determination of trace elements (Eltayeb & Ahmed, 2005a,b). In this paper, we report the crystal structure of the title compound C18H16N2O4.H2O (Fig. 1), obtained by the reaction of tryptophan and 2,4-dihydroxybenzaldehyde.

The asymmetric unit of the title compound (Fig. 1) consists of one zwitterionic E)-2-(2,4-dihydroxybenzylideneammonio)-3-(1H- indol-3-yl)propanoate molecule and one molecule of water. Bond lengths and angles have normal values (Allen et al., 1987). The dihedral angle between the planes of the benzene and the indole rings in the organic molecule is 39.55 (6)°. Intramolecular N—H···O hydrogen bonds generate S(6) ring motifs. The C13 in the six-membered ring and C2 in the nine-membered ring are connected together by a chain of four atoms, C12/N2/C10/C9 which has torsion angle 78.95 (17) °. The torsion angles of the chain N2/C10/C9/C2 and C10/N2/C12/C13 are -57.03 (16) ° and -174.50 (13) °, respectively. In the crystal structure, the molecules are linked by intermolecular hydroxy O—H···Ocarboxylate hydrogen bonds into chains which extend along the b axis and peripherally by N+—H··· Ocarboxylate hydrogen bonds (Table 1 and Fig. 2). The three-dimensional structure is also stabilized by the indole N—H···Owater and water O—H···Ocarboxylate associations.

The absolute configuration could not be determined definitively [Flack parameter -0.02 (8) (Flack, 1983)] but C10 (S) was assumed for the title compound.

Related literature top

For related structures, see: Grant et al. (1999); Emge et al. (2000). For the anticancer activity of Schiff bases, see: Dao et al. (2000), for their anti-HIV activity, see: Sriram et al. (2006) and for their antibacterial and antifungal activity, see: Karthikeyan et al., 2006). For analytical applications, see: Eltayeb & Ahmed (2005a,b). For standard bond lengths, see: Allen et al. (1987).

Experimental top

To a stirred solution of 2 mmol of tryptophan (0.416 g) in 20 ml of (3:1) methanol-water solvent was added 2 mmol of 2,4-dihydroxybenzaldehyde (0.282 g), giving a light pink clear solution. The mixture was refluxed with stirring for seven hours, after which it was filtered and left to cool to room temperature. After 12 h, brown-yellow crystals of the titls compound began to form and were removed by filtration after two days.

Refinement top

Hydrogen atoms attached to N and water H atoms were located from a difference map and their positional and isotropic displacenent parameters were refined. For the water molecule, there is no possible acceptor for the one of the hydrogen atom (H5A). Other H atoms were placed geometrically and were allowed to ride on the parent atom, with C—H = 0.93 Å and O—H = 0.84 Å and with Uiso(H) set to 1.2–1.5 times Ueq(C, O). The uncertainty of the Flack parameter [-0.02 (8) for 1677 Friedel pairs] did not allow the the absolute configuration to be definitively assigned (S for C10).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of title compound, viewed down a axis.
(E)-2-[(2,4-Dihydroxybenzylidene)azaniumyl]-3-(1H-indol- 3-yl)propanoate monohydrate top
Crystal data top
C18H16N2O4·H2OF(000) = 720
Mr = 342.34Dx = 1.334 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6129 reflections
a = 8.4214 (3) Åθ = 2.7–28.3°
b = 10.6787 (4) ŵ = 0.10 mm1
c = 18.9554 (8) ÅT = 100 K
V = 1704.65 (11) Å3Block, brown-yellow
Z = 40.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3904 independent reflections
Radiation source: fine-focus sealed tube3587 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.618, Tmax = 0.746k = 1313
15797 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.2857P]
where P = (Fo2 + 2Fc2)/3
3904 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C18H16N2O4·H2OV = 1704.65 (11) Å3
Mr = 342.34Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.4214 (3) ŵ = 0.10 mm1
b = 10.6787 (4) ÅT = 100 K
c = 18.9554 (8) Å0.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3904 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3587 reflections with I > 2σ(I)
Tmin = 0.618, Tmax = 0.746Rint = 0.035
15797 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.25 e Å3
3904 reflectionsΔρmin = 0.16 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.45139 (13)0.65534 (9)0.31898 (6)0.0204 (2)
H40.36670.68670.30360.031*
O20.19336 (12)0.24604 (9)0.26862 (6)0.0211 (2)
O30.17010 (12)0.27877 (9)0.26869 (6)0.0235 (2)
H30.09840.33000.25790.035*
N20.29712 (15)0.06525 (11)0.31452 (6)0.0170 (2)
C160.43988 (17)0.53039 (13)0.31846 (7)0.0172 (3)
O10.04987 (13)0.07062 (10)0.26999 (7)0.0294 (3)
C180.55615 (17)0.33389 (13)0.34947 (7)0.0169 (3)
H180.64160.28700.36890.020*
C170.56704 (18)0.46154 (13)0.34693 (7)0.0176 (3)
H170.65900.50310.36410.021*
C150.30669 (18)0.47039 (13)0.29074 (7)0.0184 (3)
H150.22360.51810.27010.022*
C130.42086 (17)0.26989 (13)0.32395 (7)0.0162 (3)
C120.41503 (17)0.13809 (13)0.33109 (7)0.0161 (3)
H120.50680.09870.35000.019*
C100.29777 (18)0.06908 (12)0.32974 (7)0.0172 (3)
H100.40450.10510.31860.021*
C110.17062 (18)0.13330 (13)0.28460 (7)0.0192 (3)
C30.53472 (19)0.05160 (14)0.46542 (7)0.0207 (3)
C140.29580 (18)0.34069 (13)0.29342 (7)0.0180 (3)
C90.25679 (18)0.09299 (14)0.40849 (7)0.0211 (3)
H9A0.14710.06420.41790.025*
H9B0.26140.18400.41810.025*
N10.47368 (18)0.12210 (13)0.52719 (7)0.0263 (3)
C10.33771 (19)0.07978 (15)0.49523 (8)0.0249 (3)
H10.23650.11850.49920.030*
C80.5967 (2)0.04331 (15)0.50975 (8)0.0231 (3)
C70.7571 (2)0.04678 (16)0.52806 (8)0.0273 (4)
H70.79820.11110.55750.033*
C40.6373 (2)0.14419 (15)0.43870 (8)0.0244 (3)
H4A0.59840.20790.40830.029*
C60.85398 (19)0.04657 (16)0.50188 (8)0.0283 (4)
H60.96330.04710.51430.034*
C50.7951 (2)0.14071 (17)0.45741 (8)0.0279 (3)
H50.86530.20310.43990.033*
C20.36843 (18)0.02646 (14)0.45657 (8)0.0213 (3)
O50.41346 (18)0.32658 (13)0.62788 (7)0.0344 (3)
H2A0.208 (2)0.0933 (17)0.2981 (9)0.023 (4)*
H5B0.410 (3)0.311 (2)0.6689 (16)0.055 (8)*
H1A0.476 (3)0.186 (2)0.5555 (12)0.041 (6)*
H5A0.387 (4)0.394 (3)0.6163 (18)0.083 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0223 (5)0.0114 (5)0.0276 (5)0.0001 (4)0.0034 (5)0.0001 (4)
O20.0241 (5)0.0119 (5)0.0274 (5)0.0006 (4)0.0056 (4)0.0014 (4)
O30.0216 (5)0.0120 (5)0.0369 (6)0.0004 (4)0.0124 (5)0.0013 (4)
N20.0185 (6)0.0117 (5)0.0208 (6)0.0010 (5)0.0045 (5)0.0001 (4)
C160.0220 (7)0.0119 (6)0.0176 (6)0.0012 (5)0.0018 (6)0.0001 (5)
O10.0251 (6)0.0147 (5)0.0484 (7)0.0010 (4)0.0173 (5)0.0028 (5)
C180.0151 (7)0.0157 (7)0.0199 (6)0.0019 (6)0.0013 (5)0.0006 (5)
C170.0184 (7)0.0149 (7)0.0196 (6)0.0024 (6)0.0010 (5)0.0024 (5)
C150.0207 (7)0.0141 (7)0.0204 (6)0.0023 (6)0.0031 (6)0.0020 (5)
C130.0188 (7)0.0122 (6)0.0177 (6)0.0001 (5)0.0000 (5)0.0017 (5)
C120.0172 (7)0.0145 (7)0.0166 (6)0.0019 (5)0.0003 (5)0.0013 (5)
C100.0189 (7)0.0101 (6)0.0226 (7)0.0007 (5)0.0029 (6)0.0005 (5)
C110.0216 (7)0.0136 (7)0.0225 (7)0.0024 (6)0.0040 (6)0.0029 (5)
C30.0255 (8)0.0201 (7)0.0165 (6)0.0034 (6)0.0016 (6)0.0037 (6)
C140.0193 (7)0.0152 (7)0.0194 (6)0.0000 (6)0.0028 (5)0.0009 (5)
C90.0217 (7)0.0181 (7)0.0235 (7)0.0021 (6)0.0009 (6)0.0018 (6)
N10.0332 (8)0.0243 (7)0.0215 (6)0.0028 (6)0.0001 (6)0.0055 (5)
C10.0275 (8)0.0253 (8)0.0218 (7)0.0003 (7)0.0020 (6)0.0003 (6)
C80.0306 (8)0.0233 (8)0.0155 (6)0.0035 (6)0.0001 (6)0.0019 (6)
C70.0330 (9)0.0309 (9)0.0180 (7)0.0082 (7)0.0047 (6)0.0011 (6)
C40.0295 (8)0.0217 (8)0.0221 (7)0.0003 (7)0.0034 (6)0.0000 (6)
C60.0234 (8)0.0387 (9)0.0227 (7)0.0054 (7)0.0050 (6)0.0013 (7)
C50.0285 (9)0.0294 (8)0.0257 (8)0.0024 (7)0.0012 (6)0.0017 (6)
C20.0243 (8)0.0213 (8)0.0184 (7)0.0048 (6)0.0002 (6)0.0031 (6)
O50.0503 (8)0.0244 (7)0.0286 (7)0.0047 (6)0.0015 (6)0.0015 (5)
Geometric parameters (Å, º) top
O4—C161.3379 (17)C10—H101.0000
O4—H40.8400C3—C41.407 (2)
O2—C111.2562 (18)C3—C81.416 (2)
O3—C141.3333 (17)C3—C21.436 (2)
O3—H30.8400C9—C21.490 (2)
N2—C121.2999 (18)C9—H9A0.9900
N2—C101.4631 (17)C9—H9B0.9900
N2—H2A0.87 (2)N1—C11.372 (2)
C16—C151.395 (2)N1—C81.375 (2)
C16—C171.407 (2)N1—H1A0.87 (2)
O1—C111.2485 (18)C1—C21.375 (2)
C18—C171.367 (2)C1—H10.9500
C18—C131.4139 (19)C8—C71.395 (2)
C18—H180.9500C7—C61.380 (3)
C17—H170.9500C7—H70.9500
C15—C141.3890 (19)C4—C51.376 (2)
C15—H150.9500C4—H4A0.9500
C13—C121.4148 (19)C6—C51.403 (2)
C13—C141.420 (2)C6—H60.9500
C12—H120.9500C5—H50.9500
C10—C111.5327 (19)O5—H5B0.80 (3)
C10—C91.553 (2)O5—H5A0.78 (3)
C16—O4—H4109.5O3—C14—C15122.29 (13)
C14—O3—H3109.5O3—C14—C13117.91 (12)
C12—N2—C10122.42 (12)C15—C14—C13119.80 (13)
C12—N2—H2A122.9 (12)C2—C9—C10111.67 (12)
C10—N2—H2A114.4 (12)C2—C9—H9A109.3
O4—C16—C15121.28 (13)C10—C9—H9A109.3
O4—C16—C17117.60 (13)C2—C9—H9B109.3
C15—C16—C17121.11 (12)C10—C9—H9B109.3
C17—C18—C13121.60 (14)H9A—C9—H9B107.9
C17—C18—H18119.2C1—N1—C8108.72 (13)
C13—C18—H18119.2C1—N1—H1A123.3 (15)
C18—C17—C16118.93 (13)C8—N1—H1A127.9 (15)
C18—C17—H17120.5N1—C1—C2110.49 (14)
C16—C17—H17120.5N1—C1—H1124.8
C14—C15—C16119.83 (13)C2—C1—H1124.8
C14—C15—H15120.1N1—C8—C7130.80 (15)
C16—C15—H15120.1N1—C8—C3107.65 (14)
C18—C13—C12118.43 (13)C7—C8—C3121.55 (15)
C18—C13—C14118.68 (12)C6—C7—C8117.62 (15)
C12—C13—C14122.89 (13)C6—C7—H7121.2
N2—C12—C13126.78 (13)C8—C7—H7121.2
N2—C12—H12116.6C5—C4—C3118.77 (15)
C13—C12—H12116.6C5—C4—H4A120.6
N2—C10—C11109.03 (11)C3—C4—H4A120.6
N2—C10—C9110.48 (11)C7—C6—C5121.64 (15)
C11—C10—C9107.92 (11)C7—C6—H6119.2
N2—C10—H10109.8C5—C6—H6119.2
C11—C10—H10109.8C4—C5—C6121.05 (16)
C9—C10—H10109.8C4—C5—H5119.5
O1—C11—O2125.77 (13)C6—C5—H5119.5
O1—C11—C10116.93 (12)C1—C2—C3105.99 (14)
O2—C11—C10117.20 (12)C1—C2—C9126.92 (14)
C4—C3—C8119.35 (15)C3—C2—C9126.72 (14)
C4—C3—C2133.49 (15)H5B—O5—H5A117 (3)
C8—C3—C2107.15 (14)
C13—C18—C17—C160.3 (2)C11—C10—C9—C2176.14 (12)
O4—C16—C17—C18177.64 (13)C8—N1—C1—C20.01 (18)
C15—C16—C17—C182.3 (2)C1—N1—C8—C7179.16 (16)
O4—C16—C15—C14177.57 (14)C1—N1—C8—C30.11 (17)
C17—C16—C15—C142.4 (2)C4—C3—C8—N1178.89 (13)
C17—C18—C13—C12177.31 (14)C2—C3—C8—N10.19 (16)
C17—C18—C13—C141.6 (2)C4—C3—C8—C70.5 (2)
C10—N2—C12—C13174.50 (13)C2—C3—C8—C7179.16 (14)
C18—C13—C12—N2175.73 (14)N1—C8—C7—C6179.74 (15)
C14—C13—C12—N23.2 (2)C3—C8—C7—C60.6 (2)
C12—N2—C10—C11162.62 (12)C8—C3—C4—C50.9 (2)
C12—N2—C10—C978.95 (17)C2—C3—C4—C5179.23 (16)
N2—C10—C11—O131.31 (18)C8—C7—C6—C51.1 (2)
C9—C10—C11—O188.72 (15)C3—C4—C5—C60.4 (2)
N2—C10—C11—O2152.17 (13)C7—C6—C5—C40.6 (3)
C9—C10—C11—O287.79 (16)N1—C1—C2—C30.13 (17)
C16—C15—C14—O3178.95 (13)N1—C1—C2—C9173.23 (14)
C16—C15—C14—C130.4 (2)C4—C3—C2—C1178.63 (16)
C18—C13—C14—O3179.05 (12)C8—C3—C2—C10.20 (16)
C12—C13—C14—O32.1 (2)C4—C3—C2—C95.2 (3)
C18—C13—C14—C151.5 (2)C8—C3—C2—C9173.18 (14)
C12—C13—C14—C15177.34 (14)C10—C9—C2—C1105.32 (17)
N2—C10—C9—C257.03 (16)C10—C9—C2—C366.71 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.841.762.5966 (15)178
O3—H3···O1ii0.841.722.5605 (15)176
O3—H3···O2ii0.842.643.1526 (14)121
N2—H2A···O30.87 (2)2.082 (19)2.6642 (15)123.9 (16)
O5—H5B···O2iii0.80 (3)2.19 (3)2.9438 (17)157 (2)
N1—H1A···O50.87 (2)2.10 (2)2.9441 (19)164 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H16N2O4·H2O
Mr342.34
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)8.4214 (3), 10.6787 (4), 18.9554 (8)
V3)1704.65 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.618, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
15797, 3904, 3587
Rint0.035
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.085, 1.03
No. of reflections3904
No. of parameters244
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.16

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.841.762.5966 (15)177.9
O3—H3···O1ii0.841.722.5605 (15)175.8
O3—H3···O2ii0.842.643.1526 (14)121.1
N2—H2A···O30.87 (2)2.082 (19)2.6642 (15)123.9 (16)
O5—H5B···O2iii0.80 (3)2.19 (3)2.9438 (17)157 (2)
N1—H1A···O50.87 (2)2.10 (2)2.9441 (19)164 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x+1/2, y, z+1/2.
 

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (1001/PKIMIA/815067). NEE thanks Universiti Sains Malaysia for a post-doctoral fellowship and the Inter­national University of Africa (Sudan) for providing study leave. SAB thanks the Ministry of Higher Education and Scientific Research (Yemen) for a scholarship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E. & Ahmed, T. A. (2005a). J. Sci. Technol. 6, 51–59.  Google Scholar
First citationEltayeb, N. E. & Ahmed, T. A. (2005b). Sudan J. Basic Sci. 7, 97–108.  Google Scholar
First citationEmge, T. J., Agrawal, A., Dalessio, J. P., Dukovic, G., Inghrim, J. A., Janjua, K., Macaluso, M., Robertson, L. L., Stiglic, T. J., Volovik, Y. & Georgiadis, M. M. (2000). Acta Cryst. C56, e469–e471.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGrant, G. D., Hunt, A. L., Milne, P. J., Roos, H. M. & Joubert, J. A. (1999). J. Chem. Crystallogr. 29, 435–447.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2113-o2114
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds