organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The 4-(3-chloro-4-methyl­phen­yl)-1,2,3,5-di­thia­diazol-3-yl radical

aCavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, England, and bDepartment of Chemistry, University of Durham, South Road, Durham, DH1 3LE, England
*Correspondence e-mail: jmc61@cam.ac.uk

(Received 28 July 2011; accepted 24 August 2011; online 27 August 2011)

The asymmetric unit of the title compound, C8H6ClN2S2, comprises two mol­ecules forming a dimer via ππ stacking inter­actions [centroid–centroid distance = 3.634 (10) Å] and intra­dimer S⋯S contacts [3.012 (4) and 3.158 (4) Å] between the two mol­ecules in a cis-antarafacial arrangement.

Related literature

For the properties of the 4-methyl­phenyl dithia­diazolyl radical, see: Boeré et al. (1992[Boeré, R. T., Larsen, K., Fait, J. & Yip, J. (1992). Phosphorus Sulfur Silicon Relat. Elem. 65, 143-146.]). For similar phenyl dithia­diazolyl radical structures, see: Allen et al. (2009[Allen, C., Haynes, D. A., Pask, C. M. & Rawson, J. M. (2009). CrystEngComm, 11, 12048-2050.]); Clarke et al. (2010[Clarke, C. S., Haynes, D. A., Smith, J. N. B., Batsanov, A. S., Howard, J. A. K., Pascu, S. I. & Rawson, J. M. (2010). CrystEngComm, 12, 172-185.]). For notes on the configurations adopted by phenyl dithia­diazolyl radicals in their crystal structures, see: Aherne et al. (1993[Aherne, C. M., Banister, A. J., Gorrell, I. B., Hansford, M. I., Hauptman, Z. V., Luke, A. W. & Rawson, J. M. (1993). J. Chem. Soc. Dalton Trans. pp. 967-972.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6ClN2S2

  • Mr = 229.72

  • Monoclinic, P 21

  • a = 5.937 (3) Å

  • b = 13.407 (3) Å

  • c = 11.573 (3) Å

  • β = 95.87 (4)°

  • V = 916.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 150 K

  • 0.25 × 0.18 × 0.15 mm

Data collection
  • Rigaku AFC-6S diffractometer

  • 1655 measured reflections

  • 1499 independent reflections

  • 1054 reflections with I > 2σ(I)

  • Rint = 0.103

  • θmax = 24.0°

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.098

  • S = 1.09

  • 1499 reflections

  • 237 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 169 Friedel pairs

  • Flack parameter: −0.16 (19)

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991[Molecular Structure Corporation (1991). MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA.]); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molec­ular Structure Corporation, 1989[Molecular Structure Corporation (1989). TEXSAN. MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As observed in similar structures (Aherne et al. 1993; Allen et al. 2009 and Clarke et al. 2010), within the planar CS2N2 rings the C—N and S—N bonds distances exhibit intermediate values between those of standard single and double bonds indicating the delocalized nature of the radical about the N—C—N fragment. Though the S—S distance is unusually long it is comparable to similar phenyl dithiadiazolyl radical structures. Intradimer contacts include π-π stacking interactions between the aryl rings of the 3-chloro-4-methylphenyl dithiadiazolyl radicals with a centroid-to-centroid distance of 3.634 (10) Å, and two cis-antarafacial S···S contacts (S1···S3 = 3.012 (4) Å; S2···S4 = 3.158 (4) Å).

Related literature top

For the properties of the 4-methylphenyl dithiadiazolyl radical, see: Boeré et al. (1992). For similar phenyl dithiadiazolyl radical structures, see: Allen et al. (2009); Clarke et al. (2010). For notes on the configurations adopted by phenyl dithiadiazolyl radicals in their crystal structures, see: Aherne et al. (1993).

Experimental top

Lithium hexamethyldisilazane (1.67 g, 0.01 mol) was added to 3-chloro-4-methylbenzonitrile (1.51 g, 0.01 mol) in ethanol (40 ml) and stirred for 3 h. To the resulting yellow solution SCl2 (1.27 ml, 0.02 mol) and diethyl ether (25 ml) was added producing a red solution containing the 3-chloro-4-methylphenyl dithiadiazolyl cation (yield: 91°). The radical was formed upon reduction of the cation (1.43 g, 5 mmol) with a Zn(Cu) couple (0.18 g, 2.8 mmol) as the reducing agent in THF (25 ml). Crystals suitable for X-ray crystallography were grown via sublimation of the product under vacuum at 373 K.

Refinement top

H atoms were positioned geometrically and refined as riding on their parent atoms, with C—H = 0.930 Å and Uiso(H) = 1.2Ueq(C). Methyl hydrogen atoms were modeled in a similar fashion C—H = 0.960 Å and Uiso(H) = 1.5Ueq(C). The most disagreeable reflections were omitted; six reflections exhibiting a Δ(F2) value greater than 5 su were removed. The absolute structure was determined with a Flack (1983) parameter of -0.16 (19), using 169 reflections.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 50% probability level showing S···S contacts (dashed lines).
4-(3-chloro-4-methylphenyl)-1,2,3,5-dithiadiazol-3-yl top
Crystal data top
C8H6ClN2S2F(000) = 468
Mr = 229.72Dx = 1.665 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 20 reflections
a = 5.937 (3) Åθ = 3.0–11.0°
b = 13.407 (3) ŵ = 0.82 mm1
c = 11.573 (3) ÅT = 150 K
β = 95.87 (4)°Prism, colourless
V = 916.3 (6) Å30.25 × 0.18 × 0.15 mm
Z = 4
Data collection top
Rigaku AFC-6S
diffractometer
θmax = 24.0°, θmin = 3.5°
Graphite monochromatorh = 06
ω scansk = 015
1655 measured reflectionsl = 1313
1499 independent reflections3 standard reflections every 200 reflections
1054 reflections with I > 2σ(I) intensity decay: none
Rint = 0.103
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0132P)2 + 2.2783P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1499 reflectionsΔρmax = 0.44 e Å3
237 parametersΔρmin = 0.38 e Å3
1 restraintAbsolute structure: Flack (1983), 169 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.16 (19)
Crystal data top
C8H6ClN2S2V = 916.3 (6) Å3
Mr = 229.72Z = 4
Monoclinic, P21Mo Kα radiation
a = 5.937 (3) ŵ = 0.82 mm1
b = 13.407 (3) ÅT = 150 K
c = 11.573 (3) Å0.25 × 0.18 × 0.15 mm
β = 95.87 (4)°
Data collection top
Rigaku AFC-6S
diffractometer
Rint = 0.103
1655 measured reflectionsθmax = 24.0°
1499 independent reflections3 standard reflections every 200 reflections
1054 reflections with I > 2σ(I) intensity decay: none
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.098Δρmax = 0.44 e Å3
S = 1.09Δρmin = 0.38 e Å3
1499 reflectionsAbsolute structure: Flack (1983), 169 Friedel pairs
237 parametersAbsolute structure parameter: 0.16 (19)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.5244 (5)0.3269 (2)0.1014 (2)0.0271 (7)
S10.2324 (4)0.3359 (2)0.0142 (2)0.0263 (7)
N20.6580 (15)0.4154 (7)0.0244 (7)0.025 (2)
N10.3323 (14)0.4260 (6)0.0724 (7)0.024 (2)
C10.5430 (17)0.4558 (8)0.0533 (9)0.024 (2)
C20.6477 (16)0.5355 (8)0.1287 (8)0.017 (2)
C60.9463 (14)0.6549 (7)0.1743 (7)0.019 (2)
H61.08230.68260.15670.023*
C70.8533 (15)0.5770 (8)0.1066 (8)0.021 (2)
H70.92890.55240.0460.025*
C30.5398 (15)0.5719 (7)0.2224 (8)0.020 (2)
H30.40340.54470.24010.024*
C50.8434 (15)0.6933 (8)0.2681 (8)0.021 (2)
C80.9427 (16)0.7782 (8)0.3392 (8)0.026 (2)
H8A1.0610.80850.30070.039*
H8B1.0040.75420.4140.039*
H8C0.8270.82670.34880.039*
C40.6413 (15)0.6499 (7)0.2885 (7)0.018 (2)
Cl10.5049 (4)0.6884 (2)0.4074 (2)0.0278 (7)
S30.3937 (5)0.1726 (2)0.1531 (2)0.0302 (7)
S40.7080 (4)0.1669 (2)0.0853 (2)0.0293 (7)
Cl20.5678 (4)0.47502 (19)0.6289 (2)0.0259 (6)
N40.8253 (12)0.2511 (6)0.1763 (7)0.0208 (19)
C100.7757 (15)0.3556 (7)0.3403 (7)0.018 (2)
C150.9878 (16)0.4033 (8)0.3377 (8)0.025 (2)
H151.0790.38710.27970.031*
C90.6891 (16)0.2851 (8)0.2539 (8)0.021 (2)
C120.7250 (15)0.4511 (7)0.5142 (7)0.014 (2)
C110.6480 (15)0.3831 (7)0.4301 (8)0.022 (2)
H110.5060.35440.43320.027*
C141.0611 (14)0.4740 (8)0.4206 (7)0.023 (2)
H141.20040.50470.41610.027*
C130.9336 (16)0.5008 (7)0.5106 (8)0.020 (2)
C161.0139 (17)0.5799 (8)0.6005 (9)0.029 (3)
H16A0.89120.62450.61140.043*
H16B1.13690.61690.57380.043*
H16C1.06390.54820.6730.043*
N30.4777 (14)0.2515 (7)0.2537 (7)0.025 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0299 (17)0.0296 (16)0.0226 (14)0.0059 (15)0.0067 (12)0.0050 (12)
S10.0193 (14)0.0277 (15)0.0311 (15)0.0007 (13)0.0007 (12)0.0104 (14)
N20.031 (5)0.025 (5)0.022 (4)0.001 (4)0.012 (4)0.001 (4)
N10.019 (5)0.026 (5)0.026 (5)0.000 (4)0.001 (4)0.011 (4)
C10.018 (5)0.022 (6)0.031 (6)0.013 (5)0.005 (4)0.006 (5)
C20.015 (5)0.019 (6)0.018 (5)0.007 (4)0.002 (4)0.001 (4)
C60.008 (4)0.025 (7)0.023 (5)0.002 (4)0.001 (4)0.004 (4)
C70.022 (6)0.027 (6)0.014 (5)0.007 (5)0.002 (4)0.007 (5)
C30.015 (5)0.012 (5)0.032 (6)0.001 (4)0.005 (5)0.007 (5)
C50.015 (5)0.018 (6)0.030 (5)0.003 (5)0.007 (4)0.008 (5)
C80.022 (5)0.031 (6)0.024 (5)0.001 (5)0.002 (5)0.004 (5)
C40.016 (5)0.026 (7)0.012 (5)0.013 (5)0.000 (4)0.003 (5)
Cl10.0259 (13)0.0279 (17)0.0310 (14)0.0008 (13)0.0090 (10)0.0078 (13)
S30.0353 (15)0.0314 (17)0.0242 (13)0.0117 (14)0.0047 (11)0.0063 (13)
S40.0318 (15)0.0270 (17)0.0287 (14)0.0049 (14)0.0005 (12)0.0049 (13)
Cl20.0266 (13)0.0286 (16)0.0240 (13)0.0004 (14)0.0094 (10)0.0073 (13)
N40.019 (4)0.019 (5)0.025 (5)0.005 (4)0.003 (4)0.011 (4)
C100.015 (5)0.031 (7)0.008 (4)0.008 (5)0.003 (4)0.006 (4)
C150.028 (6)0.028 (6)0.022 (5)0.005 (5)0.010 (4)0.008 (5)
C90.019 (5)0.027 (6)0.017 (5)0.003 (5)0.001 (4)0.010 (5)
C120.018 (5)0.012 (5)0.012 (5)0.009 (4)0.000 (4)0.002 (4)
C110.013 (5)0.026 (6)0.026 (5)0.001 (5)0.008 (4)0.005 (5)
C140.012 (5)0.034 (6)0.022 (5)0.004 (5)0.001 (4)0.002 (5)
C130.023 (6)0.013 (5)0.024 (6)0.003 (4)0.003 (4)0.002 (4)
C160.029 (6)0.021 (6)0.037 (6)0.005 (5)0.008 (5)0.012 (5)
N30.023 (5)0.030 (5)0.024 (4)0.013 (4)0.011 (4)0.008 (4)
Geometric parameters (Å, º) top
S2—N21.639 (10)S3—N31.613 (9)
S2—S12.096 (3)S3—S42.098 (4)
S1—N11.641 (8)S4—N41.648 (8)
N2—C11.302 (13)Cl2—C121.728 (9)
N1—C11.352 (13)N4—C91.348 (12)
C1—C21.476 (13)C10—C111.398 (13)
C2—C71.388 (13)C10—C151.415 (13)
C2—C31.403 (13)C10—C91.432 (13)
C6—C71.387 (13)C15—C141.387 (13)
C6—C51.397 (12)C15—H150.93
C6—H60.93C9—N31.333 (12)
C7—H70.93C12—C111.377 (13)
C3—C41.395 (13)C12—C131.411 (13)
C3—H30.93C11—H110.93
C5—C41.375 (12)C14—C131.396 (13)
C5—C81.491 (14)C14—H140.93
C8—H8A0.96C13—C161.528 (13)
C8—H8B0.96C16—H16A0.96
C8—H8C0.96C16—H16B0.96
C4—Cl11.746 (8)C16—H16C0.96
N2—S2—S194.3 (3)N3—S3—S494.2 (3)
N1—S1—S294.1 (3)N4—S4—S394.0 (3)
C1—N2—S2114.7 (7)C9—N4—S4114.5 (7)
C1—N1—S1113.6 (7)C11—C10—C15116.6 (9)
N2—C1—N1123.3 (10)C11—C10—C9120.6 (8)
N2—C1—C2119.3 (9)C15—C10—C9122.7 (8)
N1—C1—C2117.3 (9)C14—C15—C10120.7 (8)
C7—C2—C3118.8 (9)C14—C15—H15119.6
C7—C2—C1120.4 (9)C10—C15—H15119.6
C3—C2—C1120.7 (9)N3—C9—N4120.9 (9)
C7—C6—C5122.4 (9)N3—C9—C10119.7 (8)
C7—C6—H6118.8N4—C9—C10119.4 (8)
C5—C6—H6118.8C11—C12—C13121.4 (8)
C6—C7—C2120.3 (9)C11—C12—Cl2119.9 (7)
C6—C7—H7119.9C13—C12—Cl2118.7 (7)
C2—C7—H7119.9C12—C11—C10122.3 (9)
C4—C3—C2118.6 (9)C12—C11—H11118.9
C4—C3—H3120.7C10—C11—H11118.9
C2—C3—H3120.7C15—C14—C13122.4 (9)
C4—C5—C6115.8 (9)C15—C14—H14118.8
C4—C5—C8122.1 (9)C13—C14—H14118.8
C6—C5—C8122.1 (9)C14—C13—C12116.5 (9)
C5—C8—H8A109.5C14—C13—C16122.1 (9)
C5—C8—H8B109.5C12—C13—C16121.4 (8)
H8A—C8—H8B109.5C13—C16—H16A109.5
C5—C8—H8C109.5C13—C16—H16B109.5
H8A—C8—H8C109.5H16A—C16—H16B109.5
H8B—C8—H8C109.5C13—C16—H16C109.5
C5—C4—C3124.0 (8)H16A—C16—H16C109.5
C5—C4—Cl1119.5 (7)H16B—C16—H16C109.5
C3—C4—Cl1116.4 (7)C9—N3—S3116.4 (7)

Experimental details

Crystal data
Chemical formulaC8H6ClN2S2
Mr229.72
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)5.937 (3), 13.407 (3), 11.573 (3)
β (°) 95.87 (4)
V3)916.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.25 × 0.18 × 0.15
Data collection
DiffractometerRigaku AFC-6S
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1655, 1499, 1054
Rint0.103
θmax (°)24.0
(sin θ/λ)max1)0.573
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.098, 1.09
No. of reflections1499
No. of parameters237
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.38
Absolute structureFlack (1983), 169 Friedel pairs
Absolute structure parameter0.16 (19)

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

 

Footnotes

Other affiliation: Department of Chemistry, University of New Brunswick, Fredericton, Canada NB E3B 5A3

§Other affiliation: Department of Chemistry, University of New Brunswick, Fredericton, Canada NB E3B 5A3.

Acknowledgements

JMC thanks the Royal Society for a University Research Fellowship, the University of New Brunswick for the UNB Vice-Chancellor's Research Chair (JMC) and NSERC Discovery Grant 355708 (for PGW).

References

First citationAherne, C. M., Banister, A. J., Gorrell, I. B., Hansford, M. I., Hauptman, Z. V., Luke, A. W. & Rawson, J. M. (1993). J. Chem. Soc. Dalton Trans. pp. 967–972.  CrossRef Google Scholar
First citationAllen, C., Haynes, D. A., Pask, C. M. & Rawson, J. M. (2009). CrystEngComm, 11, 12048–2050.  CrossRef Google Scholar
First citationBoeré, R. T., Larsen, K., Fait, J. & Yip, J. (1992). Phosphorus Sulfur Silicon Relat. Elem. 65, 143–146.  Google Scholar
First citationClarke, C. S., Haynes, D. A., Smith, J. N. B., Batsanov, A. S., Howard, J. A. K., Pascu, S. I. & Rawson, J. M. (2010). CrystEngComm, 12, 172–185.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMolecular Structure Corporation (1989). TEXSAN. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationMolecular Structure Corporation (1991). MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds