organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Caffeinium bisulfate monohydrate

C. Vincent Jerin and S. Athimoolam*

Department of Physics, University College of Engineering Nagercoil, Anna University of Technology Tirunelveli, Nagercoil 629 004, India Correspondence e-mail: athi81s@yahoo.co.in

Received 2 August 2011; accepted 4 August 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; *R* factor = 0.039; *wR* factor = 0.111; data-to-parameter ratio = 11.5.

In the title compound (systematic name: 1,3,7-trimethyl-2,6dioxo-7*H*-purin-9-ium hydrogen sulfate monohydrate), $C_8H_{11}N_4O_2^+ \cdot HSO_4^- \cdot H_2O_5$, the crystal packing is stabilized through $N-H \cdots O$ and $O-H \cdots O$ hydrogen bonds.

Related literature

For background to caffeine, see: Benowitz (1990); Smith (2002); Griesser & Burger (1995); Bothe & Cammenga (1980); Edwards et al. (1997); Sutor (1958); Trask et al. (2005). For hydrogen-bond motifs, see: Etter et al. (1990).

Experimental

Crystal data

$C_8H_{11}N_4O_2^+ \cdot HSO_4^- \cdot H_2O$
$M_r = 310.29$
Monoclinic, $P2_1/c$
$a = 9.8296 (10) \text{\AA}$
b = 6.2879 (6) Å
c = 21.340 (2) Å
$\beta = 90.788 \ (2)^{\circ}$

V = 1318.8 (2) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.29 \text{ mm}^{-1}$ T = 293 K $0.21 \times 0.18 \times 0.13~\text{mm}$

Data collection

Bruker SMART APEX CCD area-	2317 independent reflections
detector diffractometer	2200 reflections with $I > 2\sigma(I)$
11981 measured reflections	$R_{\text{int}} = 0.020$
Refinement	

$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of
$wR(F^2) = 0.111$	independent and constrained
S = 1.08	refinement
2317 reflections	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$
201 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$
3 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdots O13^{i}$	0.88 (2)	1.83 (2)	2.709 (2)	174 (2)
$O14-H14\cdots O1W^{ii}$	0.88(3)	1.60 (4)	2.479 (3)	171 (3)
$O1W - H1W \cdot \cdot \cdot O13^{iii}$	0.94 (1)	1.82 (1)	2.742 (2)	168 (4)
$O1W - H2W \cdots O11$	0.94 (1)	1.98 (3)	2.711 (2)	133 (3)
Symmetry codes: (i)	-x + 1, -y +	-1, -z + 2; (i	i) $-x, -y + 2$, -z + 2; (iii)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: SHELXTL/PC; molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL/PC.

The authors thank the Vice Chancellor of Anna University of Technology, Tirunelveli, for his support and encouragement.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5603).

References

- Benowitz, N. L. (1990). Annu. Rev. Med. 41, 277-288.
- Bothe, H. & Cammenga, H. K. (1980). Thermochim. Acta, 40, 29-39.
- Bruker (2001). SAINT and SMART . Bruker AXS Inc., Madison, Wisconsin, USA.
- Edwards, H. G. M., Lawson, E., de Matas, M., Shields, L. & York, P. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 1985-1990.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262. Griesser, U. J. & Burger, A. (1995). Int. J. Pharm. 120, 83-93.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, A. (2002). Food Chem. Toxicol. 40, 9, 1243-1255.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sutor, D. J. (1958). Acta Cryst. 11, 453-458.
- Trask, A. V., Motherwell, W. D. S. & Jones, W. (2005). Cryst. Growth Des. 5, 1013-1021.

supporting information

Acta Cryst. (2011). E67, o2290 [doi:10.1107/S1600536811031540]

Caffeinium bisulfate monohydrate

C. Vincent Jerin and S. Athimoolam

S1. Comment

Caffeine is an alkaloid and structurally identified as 1,3,7-trimethylxanthine. It is one of several xanthine derivatives which occur naturally in cofee beans, tea leaves, kola nuts and cocoa beans. It is the most widely consumed stimulant drug in the world (Benowitz, 1990). Caffeine is a central nervous system stimulant and a smooth muscle relaxant, and is commonly employed as a formulation additive to analgesic remedies. Moderate consumption of caffeine increases alertness and reduces fatigues (Smith, 2002). Apart from the above, caffeine is a model pharmaceutical compound that is known to exhibit instability with respect to humidity, with the formation of a crystalline nonstoichiometric hydrate (Griesser & Burger, 1995). Its solid-state properties have been widely investigated; it is known to occur in two anhydrous crystal froms (α , β), one crystalline nonstoichiometric hydrate (Bothe & Cammenga, 1980) and a number of simple cocrystals and salts (Trask *et al.*, 2005). The crystal structure of the hydrated form was determined a long time ago (Sutor, 1958) and confirmed recently (Edwards *et al.*, 1997). In the present work, caffeine was treated with sulfuric acid and the structure of the title compound, (I), is reported here.

The asymmetric part of (I) contains a caffeinium cation, bisulfate anion and a lattice water molecule (Fig. 1). The protonation on the N site of the cation is confirmed from C—N bond distances and C—N—C bond angle. The presence of H atom in one of the O atoms of the bisulfate anion is confirmed from the asymmetric S—O bond distances. This ascertain the bisulfate nature of the anion. The crystal packing is stabilized through N–H…O and O–H…O hydrogen bonds (Table 1; Fig. 2). Anions are dimerized themselves through lattice water molecule and making two adjacent ring $R_4^4(12)$ motifs around the inversion centeres of the unit cell (Etter *et al.*, 1990). Further, cations are linked to this anionic dimers through another N–H…O hydrogen bond.

S2. Experimental

The title compound was crystallized from an aqueous mixture containing caffeine and sulfuric acid in the stoichiometric ratio of 1:1 at room temperature by slow evaporation technique.

S3. Refinement

All the H atoms, except the H atoms involved in the hydrogen bonds, were positioned geometrically and refined by the riding model approximation with d(C-H) = 0.93 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$ for aromatic H and d(C-H) = 0.96 Å and $U_{iso}(H) = 1.5 U_{eq}(C)$ for methyl H. The H atoms of the –NH group of the cation and water molecule were located from difference fourier map and refined isotropically. The O-H distances of the water molecule are restrained to 0.95 (1)Å and the H…H distance to 1.64 (10)Å.

Figure 1

The molecular structure of the title compound with atom numbering scheme and 50% probability displacement ellipsoids. H-bonds are shown as dashed lines.

Figure 2

Packing diagram of the title compound viewed down the *b*-axis. H-bonds are shown as dashed lines.

1,3,7-trimethyl-2,6-dioxo-7H-purin-9-ium hydrogen sulfate monohydrate

Crystal data

 $C_{8}H_{11}N_{4}O_{2}^{+} \cdot HSO_{4}^{-} \cdot H_{2}O$ $M_{r} = 310.29$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 9.8296 (10) Å b = 6.2879 (6) Å c = 21.340 (2) Å $\beta = 90.788 (2)^{\circ}$ $V = 1318.8 (2) \text{ Å}^{3}$ Z = 4F(000) = 648

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
11981 measured reflections
2317 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$ wR(F^2) = 0.111	H atoms treated by a mixture of independent and constrained refinement
S = 1.08	$w = 1/[\sigma^2(F_o^2) + (0.0659P)^2 + 0.5199P]$
201 parameters	where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$
3 restraints	$\Delta \rho_{\rm max} = 0.43 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	$\Delta \rho_{\min} = -0.38 \text{ e} \text{ Å}^{-3}$ Extinction correction: <i>SHELXTL/PC</i> (Sheldrick,
Secondary atom site location: difference Fourier map	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.030 (3)

 $D_{\rm x} = 1.563 {\rm Mg} {\rm m}^{-3}$

 $\theta = 2.1 - 24.4^{\circ}$

 $\mu = 0.29 \text{ mm}^{-1}$

Block, colourless

 $0.21 \times 0.18 \times 0.13$ mm

 $\theta_{\rm max} = 25.0^\circ, \, \theta_{\rm min} = 1.9^\circ$

2200 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.020$

 $h = -11 \rightarrow 11$

 $l = -25 \rightarrow 25$

 $k = -7 \rightarrow 7$

 $D_{\rm m} = 1.55$ (1) Mg m⁻³

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2986 reflections

 $D_{\rm m}$ measured by flotation technique using a

liquid-mixture of xylene and bromoform

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.36935 (19)	0.2793 (3)	0.91192 (9)	0.0440 (4)	
H1	0.3794	0.1702	0.9410	0.053*	
C2	0.28869 (17)	0.4803 (3)	0.83632 (8)	0.0400 (4)	

C3	0.21533 (19)	0.5681 (3)	0.78425 (9)	0.0462 (5)
C4	0.39035 (19)	0.8556 (3)	0.78816 (8)	0.0429 (4)
C5	0.2076 (2)	0.8651 (4)	0.71053 (11)	0.0653 (6)
H5A	0.1993	1.0144	0.7191	0.098*
H5B	0.1187	0.8054	0.7035	0.098*
H5C	0.2616	0.8448	0.6739	0.098*
C6	0.5833 (2)	0.8438 (3)	0.86283 (10)	0.0516 (5)
H6A	0.5826	0.8389	0.9078	0.077*
H6B	0.5927	0.9886	0.8493	0.077*
H6C	0.6583	0.7614	0.8478	0.077*
C7	0.40523 (17)	0.5697 (3)	0.85864 (8)	0.0373 (4)
C8	0.1474 (2)	0.1599 (4)	0.86777 (11)	0.0580 (5)
H8A	0.1670	0.0271	0.8882	0.087*
H8B	0.1234	0.1342	0.8247	0.087*
H8C	0.0729	0.2283	0.8883	0.087*
N1	0.45565 (16)	0.4425 (2)	0.90488 (7)	0.0417 (4)
N2	0.26785 (15)	0.2975 (2)	0.87113 (7)	0.0418 (4)
N3	0.27344 (16)	0.7589 (3)	0.76434 (7)	0.0444 (4)
N4	0.45593 (15)	0.7565 (2)	0.83794 (7)	0.0395 (4)
03	0.11562 (16)	0.4920 (3)	0.75848 (8)	0.0699 (5)
04	0.43242 (15)	1.0219 (2)	0.76720 (7)	0.0582 (4)
H1N	0.533 (2)	0.454 (4)	0.9257 (10)	0.051 (6)*
S1	0.25373 (4)	0.72796 (7)	1.01018 (2)	0.0398 (2)
011	0.16152 (15)	0.6931 (3)	0.95835 (7)	0.0600 (4)
012	0.36818 (15)	0.8565 (2)	0.99415 (8)	0.0623 (4)
013	0.29697 (14)	0.5271 (2)	1.03835 (7)	0.0521 (4)
014	0.17650 (16)	0.8381 (3)	1.06289 (7)	0.0580 (4)
H14	0.152 (3)	0.966 (6)	1.0503 (14)	0.092 (10)*
O1W	-0.10677 (19)	0.7918 (3)	0.96137 (17)	0.1136 (10)
H1W	-0.162 (3)	0.670 (4)	0.9608 (17)	0.130 (13)*
H2W	-0.035 (3)	0.729 (6)	0.9394 (17)	0.139 (16)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0478 (10)	0.0389 (10)	0.0454 (10)	0.0031 (8)	0.0057 (8)	0.0045 (8)
C2	0.0389 (9)	0.0416 (10)	0.0397 (9)	-0.0008(7)	0.0042 (7)	0.0005 (7)
C3	0.0414 (10)	0.0537 (11)	0.0435 (10)	-0.0022 (8)	0.0015 (8)	0.0016 (8)
C4	0.0453 (10)	0.0436 (10)	0.0401 (9)	0.0030 (8)	0.0079 (7)	0.0026 (8)
C5	0.0641 (13)	0.0766 (16)	0.0550 (12)	0.0001 (12)	-0.0103 (10)	0.0224 (12)
C6	0.0469 (10)	0.0471 (11)	0.0606 (12)	-0.0079 (9)	-0.0030 (9)	0.0005 (9)
C7	0.0384 (9)	0.0370 (9)	0.0367 (8)	0.0023 (7)	0.0052 (7)	-0.0009 (7)
C8	0.0530 (12)	0.0536 (12)	0.0675 (13)	-0.0146 (10)	0.0047 (10)	0.0054 (10)
N1	0.0404 (8)	0.0423 (8)	0.0422 (8)	0.0026 (7)	-0.0022 (6)	0.0030 (6)
N2	0.0414 (8)	0.0392 (8)	0.0450 (8)	-0.0028 (6)	0.0057 (6)	0.0021 (6)
N3	0.0427 (8)	0.0515 (10)	0.0389 (8)	0.0021 (7)	0.0011 (7)	0.0071 (7)
N4	0.0398 (8)	0.0387 (8)	0.0401 (8)	-0.0023 (6)	0.0021 (6)	0.0007 (6)
03	0.0569 (9)	0.0816 (12)	0.0706 (10)	-0.0200 (8)	-0.0213 (8)	0.0154 (9)

supporting information

04	0.0639 (9)	0.0486 (8)	0.0622 (9)	-0.0070 (7)	0.0035 (7)	0.0160 (7)
S1	0.0371 (3)	0.0369 (3)	0.0455 (3)	-0.00028 (17)	-0.00039 (19)	0.00490 (17)
011	0.0530 (8)	0.0711 (10)	0.0555 (8)	0.0094 (8)	-0.0120 (7)	-0.0037 (7)
O12	0.0524 (8)	0.0540 (9)	0.0805 (10)	-0.0106 (7)	0.0090 (7)	0.0128 (8)
013	0.0465 (7)	0.0392 (7)	0.0704 (9)	0.0000 (6)	-0.0095 (6)	0.0100 (6)
O14	0.0686 (10)	0.0524 (9)	0.0534 (8)	0.0080 (8)	0.0123 (7)	0.0020 (7)
O1W	0.0492 (10)	0.0435 (10)	0.248 (3)	-0.0019 (8)	-0.0118 (15)	0.0082 (14)

Geometric parameters (Å, °)

C1—N2	1.320 (3)	С6—Н6В	0.9600
C1—N1	1.341 (3)	С6—Н6С	0.9600
C1—H1	0.9300	C7—N4	1.352 (2)
C2—C7	1.357 (3)	C7—N1	1.359 (2)
C2—N2	1.385 (2)	C8—N2	1.468 (2)
C2—C3	1.427 (3)	C8—H8A	0.9600
C3—O3	1.215 (2)	C8—H8B	0.9600
C3—N3	1.398 (3)	C8—H8C	0.9600
C4—O4	1.212 (2)	N1—H1N	0.88 (2)
C4—N4	1.383 (2)	S1—O12	1.430(1)
C4—N3	1.390 (3)	S1—O11	1.437 (1)
C5—N3	1.471 (2)	S1—O13	1.459 (1)
С5—Н5А	0.9600	S1—O14	1.531 (2)
C5—H5B	0.9600	O14—H14	0.88 (3)
С5—Н5С	0.9600	O1W—H1W	0.94 (1)
C6—N4	1.461 (2)	O1W—H2W	0.94 (1)
С6—Н6А	0.9600		
N2—C1—N1	109.47 (16)	N2—C8—H8A	109.5
N2—C1—H1	125.3	N2—C8—H8B	109.5
N1—C1—H1	125.3	H8A—C8—H8B	109.5
C7—C2—N2	106.62 (15)	N2—C8—H8C	109.5
C7—C2—C3	121.88 (17)	H8A—C8—H8C	109.5
N2—C2—C3	131.41 (17)	H8B—C8—H8C	109.5
O3—C3—N3	122.05 (18)	C1—N1—C7	107.88 (16)
O3—C3—C2	126.57 (19)	C1—N1—H1N	123.5 (15)
N3—C3—C2	111.37 (16)	C7—N1—H1N	128.5 (15)
O4—C4—N4	120.96 (18)	C1—N2—C2	108.04 (15)
O4—C4—N3	121.79 (17)	C1—N2—C8	125.67 (17)
N4—C4—N3	117.24 (16)	C2—N2—C8	126.03 (17)
N3—C5—H5A	109.5	C4—N3—C3	127.13 (16)
N3—C5—H5B	109.5	C4—N3—C5	116.08 (17)
H5A—C5—H5B	109.5	C3—N3—C5	116.73 (17)
N3—C5—H5C	109.5	C7—N4—C4	118.19 (16)
H5A—C5—H5C	109.5	C7—N4—C6	121.72 (16)
H5B—C5—H5C	109.5	C4—N4—C6	119.85 (16)
N4—C6—H6A	109.5	O12—S1—O11	113.08 (10)
N4—C6—H6B	109.5	O12—S1—O13	111.21 (9)

H6A—C6—H6B N4—C6—H6C H6A—C6—H6C H6B—C6—H6C N4—C7—C2 N4—C7—N1 C2—C7—N1	109.5 109.5 109.5 109.5 123.95 (17) 128.05 (17) 107.97 (16)	O11—S1—O13 O12—S1—O14 O11—S1—O14 O13—S1—O14 S1—O14—H14 H1W—O1W—H2W	111.21 (9) 108.64 (10) 108.70 (9) 103.50 (9) 109 (2) 95 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	174.8 (2) -1.3 (3) -4.5 (2) 179.39 (18) -177.11 (15) 5.9 (3) 1.3 (2) -175.68 (16) 1.0 (2) 176.86 (17) -1.4 (2) -0.2 (2) -174.58 (18) -0.7 (2) 175.91 (19) 173.66 (17) -9.8 (3)	$\begin{array}{c} 04 - C4 - N3 - C3 \\ N4 - C4 - N3 - C3 \\ 04 - C4 - N3 - C5 \\ N4 - C4 - N3 - C5 \\ 03 - C3 - N3 - C4 \\ 03 - C3 - N3 - C4 \\ 03 - C3 - N3 - C5 \\ C2 - C3 - N3 - C5 \\ C2 - C7 - N4 - C4 \\ N1 - C7 - N4 - C4 \\ N1 - C7 - N4 - C6 \\ N1 - C7 - N4 - C6 \\ N1 - C7 - N4 - C7 \\ N3 - C4 - N4 - C7 \\ O4 - C4 - N4 - C6 \\ N3 - C4 - N4 - C6 \\ \end{array}$	$179.76 (17) \\ -1.5 (3) \\ 2.6 (3) \\ -178.66 (17) \\ -176.83 (19) \\ 2.5 (3) \\ 0.3 (3) \\ 179.64 (18) \\ -4.5 (3) \\ 177.41 (16) \\ -178.87 (17) \\ 3.1 (3) \\ -179.05 (17) \\ 2.2 (2) \\ -4.6 (3) \\ 176.66 (16) \\ $

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
0.88 (2)	1.83 (2)	2.709 (2)	174 (2)
0.88 (3)	1.60 (4)	2.479 (3)	171 (3)
0.94 (1)	1.82 (1)	2.742 (2)	168 (4)
0.94 (1)	1.98 (3)	2.711 (2)	133 (3)
	<i>D</i> —H 0.88 (2) 0.88 (3) 0.94 (1) 0.94 (1)	D—H H···A 0.88 (2) 1.83 (2) 0.88 (3) 1.60 (4) 0.94 (1) 1.82 (1) 0.94 (1) 1.98 (3)	D—HH···A D ···A0.88 (2)1.83 (2)2.709 (2)0.88 (3)1.60 (4)2.479 (3)0.94 (1)1.82 (1)2.742 (2)0.94 (1)1.98 (3)2.711 (2)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+2; (ii) -*x*, -*y*+2, -*z*+2; (iii) -*x*, -*y*+1, -*z*+2.