organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzoyl-3-[3-cyano-8-methyl-4-(1-methyl-1H-pyrrol-2-yl)-5,6,7,8-tetra­hydro­quinolin-2-yl]thio­urea

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, bCenter of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 14 August 2011; accepted 15 August 2011; online 27 August 2011)

In the N-substituted benzoyl­thio­urea, C24H23N5OS, the benzoyl­thio­urea unit is non-planar (r.m.s. deviation = 0.126 Å). The aliphatic part of the tetra­hydro­quinoline fused-ring system is disordered over two positions in a 0.592 (5):0.408 (5) ratio. The pyridine and pyrrole rings are twisted by 55.2 (1)° in order to avoid crowding of their respective substituents. Pairs of mol­ecules are linked by N—H⋯N hydrogen bonds, forming centrosymmetric dimers. Furthermore, an intra­molecular N—H⋯O hydrogen bond stabilizes the mol­ecular conformation.

Related literature

For medicinal properties of cyano­pyridines, see: Cocco et al. (2005[Cocco, M. T., Congiu, C., Lilliu, V. & Onnis, V. (2005). Eur. J. Med. Chem. 40, 1365-1372.]); El-Hawash et al. (2006[El-Hawash, S. A. M., Abdel-Wahab, A. E. & El-Demellawy, M. A. (2006). Arch. Pharm. Chem. Life Sci. 339, 437-447.]).

[Scheme 1]

Experimental

Crystal data
  • C24H23N5OS

  • Mr = 429.53

  • Triclinic, [P \overline 1]

  • a = 9.7072 (4) Å

  • b = 10.4928 (5) Å

  • c = 11.8828 (5) Å

  • α = 82.245 (4)°

  • β = 84.263 (3)°

  • γ = 63.671 (4)°

  • V = 1073.76 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.55 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.654, Tmax = 0.747

  • 7386 measured reflections

  • 4218 independent reflections

  • 3897 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.146

  • S = 1.03

  • 4218 reflections

  • 294 parameters

  • 20 restraints

  • H-atom parameters constrained

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O1 0.88 1.90 2.594 (2) 135
N5—H5⋯N3i 0.88 2.22 3.058 (2) 158
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

There are several studies on cyanopyridine derivatives as these compounds exhibit useful anticancer and antiviral activities Cocco et al., 2005; El-Hawash et al., 2006). If these compounds possess a primary amine group, then they can be reacted with phenyl isothiocyanate to yield cyanopyridine-benzoythiourea derivatives, yet another class of medicinal compounds. Because of the ease phenyl isothiocyanate reacts with primary amines, we have in this study used 2-amino-3-cyano–8-methyl-4-(N-methylpyrrolyl)-5,6,7,8-tetrahydroquinoline to synthesize the correponding N-substituted benzoylthiourea (Scheme I).

In the N-substituted benzoylthiourea, C24H23N5OS, the benzoylthiourea portion is somewhat non-planar; the mean plane is aligned at 67.9 (1)° with respect the the mean-plane of the non-planar tetrahydroquinoline fused-ring. An intramolecular N–H···O hydrogen bond appears to prevent further twisting in the benzoylthiourea portion. The aliphatic portion of the tetrahydroquinoline fused-ring is disordered over two positions in a 0.592 (5): 0.408 ratio. The pyridine ring (which has a cyanide substituent) and the pyrrole ring (which has a methyl substitutent) are twisted by 55.2 (1) ° in order to avoid crowding of their respective substituents (Fig. 1). Two molecules are linked by an N–H···O hydrogen bonds to form a centrosymmetric dimer (Table 1).

Related literature top

For medicinal properties of cyanopyridines, see: Cocco et al. (2005); El-Hawash et al. (2006).

Experimental top

2-Amino-3-cyano–8-methyl-4-(N-methylpyrrolyl)-5,6,7,8-tetrahydroquinoline (10 mmol), potassium carbonate (20 mmol) in dry acetone (25 ml) was stirred and then treated with phenyl isothiocyanate (12 mmol). The mixture was heated for 10 h; the acetone was removed under pressure and the solid mass dissolved in water. The solution was acidified with 2 N hydrochloric acid. The crude product was purified by recrystallization from ethanol.

Refinement top

Carbon- and nitrogen-bound H-atoms were placed in calculated positions [C–H 0.95 to 1.00, N–H 0.88 Å, Uiso(H) 1.2–15Ueq(C,N)] and were included in the refinement in the riding model approximation.

The three atoms of the cyclohexane ring that are not part of the fused system are disordered over two positions, as is the methyl substituent. For these four atoms, 1,2-related distances were restrained to 1.54±0.01 Å and 1,3-related ones to 2.51±0.01 Å. The displacement parameters of the primed atoms were set to those of the umprimed ones. The site occupation factor of the major component refined to 59.2 (5) %.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C24H23N5OS at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the cyclohexene ring is not shown.
1-Benzoyl-3-[3-cyano-8-methyl-4-(1-methyl-1H-pyrrol-2-yl)- 5,6,7,8-tetrahydroquinolin-2-yl]thiourea top
Crystal data top
C24H23N5OSZ = 2
Mr = 429.53F(000) = 452
Triclinic, P1Dx = 1.329 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 9.7072 (4) ÅCell parameters from 4274 reflections
b = 10.4928 (5) Åθ = 3.8–74.2°
c = 11.8828 (5) ŵ = 1.55 mm1
α = 82.245 (4)°T = 100 K
β = 84.263 (3)°Prism, brown–orange
γ = 63.671 (4)°0.30 × 0.20 × 0.20 mm
V = 1073.76 (8) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4218 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3897 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 10.4041 pixels mm-1θmax = 74.3°, θmin = 3.8°
ω scansh = 118
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1213
Tmin = 0.654, Tmax = 0.747l = 1414
7386 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0825P)2 + 0.7756P]
where P = (Fo2 + 2Fc2)/3
4218 reflections(Δ/σ)max = 0.001
294 parametersΔρmax = 1.25 e Å3
20 restraintsΔρmin = 0.46 e Å3
Crystal data top
C24H23N5OSγ = 63.671 (4)°
Mr = 429.53V = 1073.76 (8) Å3
Triclinic, P1Z = 2
a = 9.7072 (4) ÅCu Kα radiation
b = 10.4928 (5) ŵ = 1.55 mm1
c = 11.8828 (5) ÅT = 100 K
α = 82.245 (4)°0.30 × 0.20 × 0.20 mm
β = 84.263 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4218 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3897 reflections with I > 2σ(I)
Tmin = 0.654, Tmax = 0.747Rint = 0.020
7386 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05220 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.03Δρmax = 1.25 e Å3
4218 reflectionsΔρmin = 0.46 e Å3
294 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.25749 (6)0.66030 (6)0.41290 (5)0.03749 (18)
O10.63636 (17)0.62389 (15)0.14578 (12)0.0305 (3)
N10.2933 (2)1.01329 (17)0.24918 (14)0.0344 (4)
N20.16227 (18)1.03258 (17)0.67653 (13)0.0251 (3)
N30.49398 (19)0.73393 (17)0.59776 (13)0.0270 (4)
N40.43635 (19)0.77111 (16)0.29593 (13)0.0240 (3)
H40.51990.75580.25240.029*
N50.48814 (18)0.54112 (16)0.26536 (13)0.0235 (3)
H50.47730.46300.28980.028*
C10.2196 (5)1.2331 (4)0.0699 (3)0.0388 (8)0.592 (5)
H1A0.16071.30100.00780.058*0.592 (5)
H1B0.25151.13530.05160.058*0.592 (5)
H1C0.31091.24700.07960.058*0.592 (5)
C20.1198 (4)1.2577 (3)0.1793 (3)0.0238 (7)0.592 (5)
H20.03281.23490.16810.029*0.592 (5)
C30.0504 (4)1.4093 (4)0.2080 (4)0.0286 (11)0.592 (5)
H3A0.02771.46960.15200.034*0.592 (5)
H3B0.13201.44260.19980.034*0.592 (5)
C40.0245 (11)1.4323 (12)0.3259 (5)0.0466 (10)0.592 (5)
H4A0.11331.40880.33310.056*0.592 (5)
H4B0.06281.53390.33890.056*0.592 (5)
C1'0.1144 (7)1.2261 (6)0.0836 (4)0.0388 (8)0.408
H1'A0.09811.29430.01550.058*0.408 (5)
H1'B0.01501.23170.11560.058*0.408 (5)
H1'C0.17991.12910.06330.058*0.408 (5)
C2'0.1916 (6)1.2618 (5)0.1706 (4)0.0238 (7)0.408
H2'0.29521.25020.13840.029*0.408 (5)
C3'0.1035 (7)1.4112 (6)0.2064 (5)0.0286 (11)0.408
H3'10.17801.44690.22140.034*0.408 (5)
H3'20.04141.47460.14260.034*0.408 (5)
C4'0.0017 (15)1.4211 (19)0.3106 (6)0.0466 (10)0.408
H4'10.07411.38180.29780.056*0.408 (5)
H4'20.06281.52250.32440.056*0.408 (5)
C50.0917 (2)1.3376 (2)0.41467 (16)0.0295 (4)
H5A0.16191.38090.42280.035*0.592 (5)
H5B0.03541.33670.48880.035*0.592 (5)
H5C0.15991.38010.43020.035*0.408 (5)
H5D0.02331.34030.48290.035*0.408 (5)
C60.1874 (2)1.18481 (19)0.38818 (16)0.0255 (4)
C70.2144 (3)1.1494 (2)0.27625 (16)0.0357 (5)
C80.2487 (2)1.07401 (19)0.47547 (15)0.0217 (4)
C90.3370 (2)0.93424 (19)0.44573 (15)0.0223 (4)
C100.3513 (2)0.90956 (19)0.33176 (16)0.0249 (4)
C110.2239 (2)1.10237 (18)0.59522 (15)0.0220 (4)
C120.2572 (2)1.1937 (2)0.64847 (16)0.0253 (4)
H120.30071.25520.61330.030*
C130.2148 (2)1.1790 (2)0.76492 (16)0.0298 (4)
H130.22591.22760.82280.036*
C140.1548 (2)1.0819 (2)0.77873 (16)0.0291 (4)
H140.11431.05320.84840.035*
C150.0892 (2)0.9433 (2)0.65744 (19)0.0334 (5)
H15A0.11050.86700.72000.050*
H15B0.13010.90110.58560.050*
H15C0.02211.00160.65380.050*
C160.4215 (2)0.82116 (19)0.53048 (15)0.0225 (4)
C170.3993 (2)0.66125 (19)0.32327 (16)0.0244 (4)
C180.5910 (2)0.53169 (19)0.17416 (15)0.0233 (4)
C190.6415 (2)0.40659 (19)0.10662 (15)0.0244 (4)
C200.7465 (3)0.4002 (2)0.01627 (18)0.0352 (5)
H200.78700.46860.00450.042*
C210.7924 (3)0.2941 (2)0.05700 (19)0.0416 (6)
H210.86370.29050.11890.050*
C220.7342 (3)0.1942 (2)0.03949 (18)0.0371 (5)
H220.76550.12170.08930.045*
C230.6301 (3)0.1997 (2)0.05058 (18)0.0334 (5)
H230.59050.13060.06250.040*
C240.5832 (2)0.3061 (2)0.12401 (16)0.0281 (4)
H240.51160.30970.18560.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0378 (3)0.0290 (3)0.0459 (3)0.0144 (2)0.0180 (2)0.0197 (2)
O10.0407 (8)0.0228 (7)0.0261 (7)0.0125 (6)0.0078 (6)0.0084 (5)
N10.0571 (11)0.0163 (8)0.0187 (8)0.0045 (8)0.0059 (7)0.0047 (6)
N20.0255 (8)0.0218 (8)0.0216 (8)0.0050 (6)0.0024 (6)0.0033 (6)
N30.0295 (8)0.0211 (8)0.0220 (8)0.0038 (7)0.0016 (6)0.0031 (6)
N40.0301 (8)0.0163 (7)0.0192 (7)0.0036 (6)0.0019 (6)0.0063 (6)
N50.0296 (8)0.0146 (7)0.0213 (8)0.0047 (6)0.0022 (6)0.0057 (6)
C10.055 (2)0.0305 (15)0.0249 (14)0.0156 (15)0.0034 (14)0.0055 (11)
C20.028 (2)0.0185 (11)0.0216 (12)0.0078 (15)0.0025 (14)0.0007 (9)
C30.027 (3)0.0208 (11)0.0229 (11)0.0015 (16)0.0031 (17)0.0022 (8)
C40.057 (3)0.026 (2)0.0306 (18)0.0067 (18)0.0013 (17)0.0077 (17)
C1'0.055 (2)0.0305 (15)0.0249 (14)0.0156 (15)0.0034 (14)0.0055 (11)
C2'0.028 (2)0.0185 (11)0.0216 (12)0.0078 (15)0.0025 (14)0.0007 (9)
C3'0.027 (3)0.0208 (11)0.0229 (11)0.0015 (16)0.0031 (17)0.0022 (8)
C4'0.057 (3)0.026 (2)0.0306 (18)0.0067 (18)0.0013 (17)0.0077 (17)
C50.0386 (11)0.0161 (9)0.0231 (9)0.0013 (8)0.0022 (8)0.0050 (7)
C60.0326 (10)0.0163 (9)0.0215 (9)0.0041 (7)0.0028 (7)0.0050 (7)
C70.0585 (14)0.0157 (9)0.0199 (9)0.0030 (9)0.0064 (9)0.0036 (7)
C80.0233 (8)0.0188 (9)0.0193 (9)0.0050 (7)0.0004 (7)0.0049 (7)
C90.0247 (9)0.0173 (9)0.0196 (9)0.0042 (7)0.0002 (7)0.0032 (7)
C100.0317 (10)0.0166 (9)0.0212 (9)0.0047 (7)0.0009 (7)0.0056 (7)
C110.0225 (8)0.0165 (8)0.0189 (8)0.0014 (7)0.0013 (6)0.0030 (6)
C120.0300 (9)0.0189 (9)0.0208 (9)0.0045 (7)0.0022 (7)0.0068 (7)
C130.0363 (10)0.0239 (10)0.0196 (9)0.0034 (8)0.0000 (7)0.0073 (7)
C140.0314 (10)0.0279 (10)0.0172 (9)0.0038 (8)0.0042 (7)0.0036 (7)
C150.0312 (10)0.0335 (11)0.0349 (11)0.0145 (9)0.0041 (8)0.0043 (9)
C160.0246 (9)0.0182 (9)0.0193 (8)0.0043 (7)0.0048 (7)0.0070 (7)
C170.0282 (9)0.0169 (9)0.0214 (9)0.0029 (7)0.0008 (7)0.0059 (7)
C180.0274 (9)0.0168 (8)0.0191 (8)0.0030 (7)0.0018 (7)0.0043 (7)
C190.0284 (9)0.0167 (9)0.0199 (9)0.0011 (7)0.0031 (7)0.0049 (7)
C200.0436 (12)0.0252 (10)0.0298 (10)0.0087 (9)0.0092 (9)0.0109 (8)
C210.0521 (14)0.0286 (11)0.0304 (11)0.0050 (10)0.0106 (10)0.0129 (9)
C220.0472 (12)0.0226 (10)0.0279 (10)0.0007 (9)0.0066 (9)0.0125 (8)
C230.0417 (11)0.0218 (10)0.0322 (11)0.0062 (9)0.0093 (9)0.0096 (8)
C240.0344 (10)0.0222 (9)0.0230 (9)0.0064 (8)0.0041 (8)0.0065 (7)
Geometric parameters (Å, º) top
S1—C171.657 (2)C3'—H3'20.9900
O1—C181.226 (2)C4'—C51.532 (9)
N1—C101.320 (2)C4'—H4'10.9900
N1—C71.354 (2)C4'—H4'20.9900
N2—C141.366 (3)C5—C61.513 (2)
N2—C111.382 (2)C5—H5A0.9900
N2—C151.452 (3)C5—H5B0.9900
N3—C161.147 (2)C5—H5C0.9900
N4—C171.344 (3)C5—H5D0.9900
N4—C101.416 (2)C6—C71.398 (3)
N4—H40.8800C6—C81.402 (3)
N5—C181.380 (2)C8—C91.405 (2)
N5—C171.399 (2)C8—C111.468 (2)
N5—H50.8800C9—C101.395 (3)
C1—C21.521 (4)C9—C161.440 (2)
C1—H1A0.9800C11—C121.379 (3)
C1—H1B0.9800C12—C131.412 (3)
C1—H1C0.9800C12—H120.9500
C2—C31.500 (5)C13—C141.366 (3)
C2—C71.547 (3)C13—H130.9500
C2—H21.0000C14—H140.9500
C3—C41.511 (6)C15—H15A0.9800
C3—H3A0.9900C15—H15B0.9800
C3—H3B0.9900C15—H15C0.9800
C4—C51.527 (7)C18—C191.497 (2)
C4—H4A0.9900C19—C241.386 (3)
C4—H4B0.9900C19—C201.391 (3)
C1'—C2'1.510 (6)C20—C211.393 (3)
C1'—H1'A0.9800C20—H200.9500
C1'—H1'B0.9800C21—C221.380 (4)
C1'—H1'C0.9800C21—H210.9500
C2'—C3'1.513 (6)C22—C231.385 (3)
C2'—C71.563 (5)C22—H220.9500
C2'—H2'1.0000C23—C241.396 (3)
C3'—C4'1.508 (9)C23—H230.9500
C3'—H3'10.9900C24—H240.9500
C10—N1—C7118.70 (16)C6—C5—H5C109.8
C14—N2—C11108.27 (16)C4—C5—H5C111.7
C14—N2—C15123.49 (17)C4'—C5—H5C109.7
C11—N2—C15127.26 (17)C6—C5—H5D110.1
C17—N4—C10125.08 (16)C4—C5—H5D101.5
C17—N4—H4117.5C4'—C5—H5D111.1
C10—N4—H4117.5H5C—C5—H5D108.3
C18—N5—C17127.16 (16)C7—C6—C8117.99 (17)
C18—N5—H5116.4C7—C6—C5121.05 (17)
C17—N5—H5116.4C8—C6—C5120.94 (16)
C2—C1—H1A109.5N1—C7—C6122.96 (17)
C2—C1—H1B109.5N1—C7—C2114.67 (19)
H1A—C1—H1B109.5C6—C7—C2120.51 (19)
C2—C1—H1C109.5N1—C7—C2'112.4 (2)
H1A—C1—H1C109.5C6—C7—C2'123.2 (2)
H1B—C1—H1C109.5C6—C8—C9118.42 (16)
C3—C2—C1113.7 (3)C6—C8—C11121.25 (16)
C3—C2—C7112.8 (3)C9—C8—C11120.33 (16)
C1—C2—C7108.8 (3)C10—C9—C8118.92 (16)
C3—C2—H2107.1C10—C9—C16120.70 (16)
C1—C2—H2107.1C8—C9—C16120.18 (16)
C7—C2—H2107.1N1—C10—C9122.84 (17)
C2—C3—C4115.0 (5)N1—C10—N4115.13 (16)
C2—C3—H3A108.5C9—C10—N4121.96 (16)
C4—C3—H3A108.5C12—C11—N2107.94 (16)
C2—C3—H3B108.5C12—C11—C8129.53 (17)
C4—C3—H3B108.5N2—C11—C8122.51 (17)
H3A—C3—H3B107.5C11—C12—C13107.41 (18)
C3—C4—C5110.0 (5)C11—C12—H12126.3
C3—C4—H4A109.7C13—C12—H12126.3
C5—C4—H4A109.7C14—C13—C12107.14 (17)
C3—C4—H4B109.7C14—C13—H13126.4
C5—C4—H4B109.7C12—C13—H13126.4
H4A—C4—H4B108.2N2—C14—C13109.21 (17)
C2'—C1'—H1'A109.5N2—C14—H14125.4
C2'—C1'—H1'B109.5C13—C14—H14125.4
H1'A—C1'—H1'B109.5N2—C15—H15A109.5
C2'—C1'—H1'C109.5N2—C15—H15B109.5
H1'A—C1'—H1'C109.5H15A—C15—H15B109.5
H1'B—C1'—H1'C109.5N2—C15—H15C109.5
C1'—C2'—C3'114.5 (4)H15A—C15—H15C109.5
C1'—C2'—C7106.8 (4)H15B—C15—H15C109.5
C3'—C2'—C7109.8 (4)N3—C16—C9176.5 (2)
C1'—C2'—H2'108.5N4—C17—N5114.65 (16)
C3'—C2'—H2'108.5N4—C17—S1125.98 (14)
C7—C2'—H2'108.5N5—C17—S1119.31 (14)
C4'—C3'—C2'114.1 (8)O1—C18—N5122.12 (16)
C4'—C3'—H3'1108.7O1—C18—C19120.29 (17)
C2'—C3'—H3'1108.7N5—C18—C19117.55 (16)
C4'—C3'—H3'2108.7C24—C19—C20119.68 (18)
C2'—C3'—H3'2108.7C24—C19—C18124.42 (17)
H3'1—C3'—H3'2107.6C20—C19—C18115.74 (18)
C3'—C4'—C5110.5 (8)C19—C20—C21120.4 (2)
C3'—C4'—H4'1109.6C19—C20—H20119.8
C5—C4'—H4'1109.6C21—C20—H20119.8
C3'—C4'—H4'2109.6C22—C21—C20119.8 (2)
C5—C4'—H4'2109.6C22—C21—H21120.1
H4'1—C4'—H4'2108.1C20—C21—H21120.1
C6—C5—C4114.9 (4)C21—C22—C23120.07 (19)
C6—C5—C4'107.8 (6)C21—C22—H22120.0
C4—C5—C4'10.0 (5)C23—C22—H22120.0
C6—C5—H5A108.5C22—C23—C24120.4 (2)
C4—C5—H5A108.5C22—C23—H23119.8
C4'—C5—H5A105.9C24—C23—H23119.8
C6—C5—H5B108.5C19—C24—C23119.7 (2)
C4—C5—H5B108.5C19—C24—H24120.2
C4'—C5—H5B118.2C23—C24—H24120.2
H5A—C5—H5B107.5
C1—C2—C3—C4169.1 (6)C7—N1—C10—C91.1 (3)
C7—C2—C3—C444.7 (7)C7—N1—C10—N4178.1 (2)
C2—C3—C4—C556.7 (12)C8—C9—C10—N14.3 (3)
C1'—C2'—C3'—C4'92.8 (9)C16—C9—C10—N1170.5 (2)
C7—C2'—C3'—C4'27.3 (9)C8—C9—C10—N4178.92 (18)
C2'—C3'—C4'—C564.7 (16)C16—C9—C10—N46.2 (3)
C3—C4—C5—C645.1 (12)C17—N4—C10—N1117.5 (2)
C3—C4—C5—C4'0 (8)C17—N4—C10—C965.6 (3)
C3'—C4'—C5—C657.1 (15)C14—N2—C11—C121.0 (2)
C3'—C4'—C5—C4166 (10)C15—N2—C11—C12169.90 (18)
C4—C5—C6—C725.2 (6)C14—N2—C11—C8179.69 (16)
C4'—C5—C6—C717.8 (8)C15—N2—C11—C811.5 (3)
C4—C5—C6—C8153.3 (6)C6—C8—C11—C1256.1 (3)
C4'—C5—C6—C8160.7 (8)C9—C8—C11—C12123.0 (2)
C10—N1—C7—C62.0 (4)C6—C8—C11—N2125.6 (2)
C10—N1—C7—C2166.5 (2)C9—C8—C11—N255.3 (3)
C10—N1—C7—C2'164.6 (3)N2—C11—C12—C130.0 (2)
C8—C6—C7—N11.6 (4)C8—C11—C12—C13178.49 (18)
C5—C6—C7—N1176.9 (2)C11—C12—C13—C141.1 (2)
C8—C6—C7—C2165.3 (2)C11—N2—C14—C131.8 (2)
C5—C6—C7—C213.2 (4)C15—N2—C14—C13171.12 (18)
C8—C6—C7—C2'163.5 (3)C12—C13—C14—N21.7 (2)
C5—C6—C7—C2'17.9 (4)C10—C9—C16—N3100 (3)
C3—C2—C7—N1172.9 (3)C8—C9—C16—N375 (3)
C1—C2—C7—N145.7 (4)C10—N4—C17—N5171.52 (17)
C3—C2—C7—C622.2 (4)C10—N4—C17—S15.9 (3)
C1—C2—C7—C6149.3 (3)C18—N5—C17—N410.1 (3)
C3—C2—C7—C2'81.8 (5)C18—N5—C17—S1167.55 (15)
C1—C2—C7—C2'45.4 (5)C17—N5—C18—O113.3 (3)
C1'—C2'—C7—N155.5 (4)C17—N5—C18—C19164.14 (17)
C3'—C2'—C7—N1179.8 (4)O1—C18—C19—C24172.29 (18)
C1'—C2'—C7—C6138.0 (4)N5—C18—C19—C245.2 (3)
C3'—C2'—C7—C613.2 (5)O1—C18—C19—C203.2 (3)
C1'—C2'—C7—C245.2 (5)N5—C18—C19—C20179.29 (17)
C3'—C2'—C7—C279.6 (6)C24—C19—C20—C210.4 (3)
C7—C6—C8—C91.6 (3)C18—C19—C20—C21175.3 (2)
C5—C6—C8—C9179.84 (18)C19—C20—C21—C220.4 (4)
C7—C6—C8—C11179.3 (2)C20—C21—C22—C230.1 (3)
C5—C6—C8—C110.7 (3)C21—C22—C23—C240.2 (3)
C6—C8—C9—C104.4 (3)C20—C19—C24—C230.1 (3)
C11—C8—C9—C10176.45 (18)C18—C19—C24—C23175.20 (18)
C6—C8—C9—C16170.46 (18)C22—C23—C24—C190.2 (3)
C11—C8—C9—C168.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O10.881.902.594 (2)135
N5—H5···N3i0.882.223.058 (2)158
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H23N5OS
Mr429.53
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.7072 (4), 10.4928 (5), 11.8828 (5)
α, β, γ (°)82.245 (4), 84.263 (3), 63.671 (4)
V3)1073.76 (8)
Z2
Radiation typeCu Kα
µ (mm1)1.55
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.654, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
7386, 4218, 3897
Rint0.020
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.146, 1.03
No. of reflections4218
No. of parameters294
No. of restraints20
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.25, 0.46

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O10.881.902.594 (2)135
N5—H5···N3i0.882.223.058 (2)158
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationCocco, M. T., Congiu, C., Lilliu, V. & Onnis, V. (2005). Eur. J. Med. Chem. 40, 1365–1372.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Hawash, S. A. M., Abdel-Wahab, A. E. & El-Demellawy, M. A. (2006). Arch. Pharm. Chem. Life Sci. 339, 437–447.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds