

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,N'-Bis[1-(thiophen-2-yl)ethylidene]ethane-1.2-diamine

Abdullah M. Asiri,^{a,b} Abdulrahman O. Al-Youbi,^a Hassan M. Faidallah,^a Khalid A. Alamry^a and Seik Weng Ng^{c,a}*

^aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, ^bCenter of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and CDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 17 August 2011; accepted 18 August 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.090; data-to-parameter ratio = 18.0.

Molecules of the title compound, C14H16N2S2, have a centre of inversion in the middle of the -CH₂-CH₂- bond; the (C₄H₃S)(CH₃)C=N-CH₂- moiety is almost planar (r.m.s. deviation for non-H atoms 0.027 Å).

Related literature

For a related transition metal adduct, see: Modder et al. (1995).

Experimental

Crystal data

$C_{14}H_{16}N_2S_2$	$V = 674.68 (5) \text{ Å}^3$
$M_r = 276.41$	Z = 2
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 5.5831 (3) Å	$\mu = 0.38 \text{ mm}^{-1}$
b = 9.3939 (4) Å	$T = 100 { m K}$
c = 12.9202 (5) Å	$0.25 \times 0.20 \times 0.13$
$\beta = 95.342 \ (4)^{\circ}$	

Data collection

Agilent SuperNova Dual diffractometer with Atlas detector Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010)

 $T_{\min} = 0.912, T_{\max} = 0.946$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.090$ S = 1.041495 reflections

1495 independent reflections 1244 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.028$

3036 measured reflections

 \times 0.15 mm

83 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-1}$ $\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors thank King Abdulaziz University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5618).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Modder, J. F., Leijen, R. J., Vrieze, K., Smeets, W. J. J., Spek, A. L. & van Koten, G. (1995). J. Chem. Soc. Dalton Trans. pp. 4021-4028.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, o2465 [doi:10.1107/S1600536811033691]

N,N'-Bis[1-(thiophen-2-yl)ethylidene]ethane-1,2-diamine

Abdullah M. Asiri, Abdulrahman O. Al-Youbi, Hassan M. Faidallah, Khalid A. Alamry and Seik Weng Ng

S1. Comment

A large number of transition metal adducts of Schiff bases derived by condensing ethylenediamine with a ketone have been reported; in these adducts, the ligand typically functions in a chelating mode. However, there are few studies on the title Schiff base (Scheme I), and only one crystal structure study has been reported (Modder *et al.*, 1995). The $C_{14}H_{16}N_2S_2$ molecule lies on a center-of-inversion (Fig. 1); the (C_4H_3S)(CH_3)C= N-CH₂- moiety is planar, and the chain connecting the two aromatic rings adopts an extended zigzag conformation [C=N-C-C 88.1 (2)°].

S2. Experimental

Ethylenediamine (0.6 g, 10 mmol) and 2-acetylthiophene (0.7 g, 10 mmol) in dry benzene (50 ml) were refluxed in a Dean–Stark apparatus until no more water was collected (in about 2 h). The solvent was removed and the solid that separated was collected and recystallized from ethanol.

S3. Refinement

H-atoms were placed in calculated positions [C—H 0.95–0.98 Å, $U_{iso}(H) = 1.2-1.5U_{eq}(C)$] and were included in the refinement in the riding model approximation.

Figure 1

Anisotropic displacement ellipsoid plot (Barbour, 2001) of $C_{14}H_{16}N_2S_2$ at the 70% probability level; H atoms are drawn as spheres of arbitrary radius. The molecule lies on a center-of-inversion.

N,N'-Bis[1-(thiophen-2-yl)ethylidene]ethane-1,2-diamine

Crystal data

C₁₄H₁₆N₂S₂ $M_r = 276.41$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 5.5831 (3) Å b = 9.3939 (4) Å c = 12.9202 (5) Å $\beta = 95.342$ (4)° V = 674.68 (5) Å³ Z = 2

Data collection

Agilent SuperNova Dual	$T_{\min} = 0.912, \ T_{\max} = 0.946$
diffractometer with Atlas detector	3036 measured reflections
Radiation source: SuperNova (Mo) X-ray	1495 independent reflections
Source	1244 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.028$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \theta_{\text{min}} = 2.7^{\circ}$
ω scans	$h = -5 \rightarrow 7$
Absorption correction: multi-scan	$k = -12 \rightarrow 9$
(CrysAlis PRO; Agilent, 2010)	$l = -16 \rightarrow 16$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from
$wR(F^2) = 0.090$	neighbouring sites
S = 1.04	H-atom parameters constrained
1495 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0323P)^2 + 0.5515P]$
83 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Lambda/\sigma)_{\rm max} = 0.001$

F(000) = 292

 $\theta = 2.7 - 29.1^{\circ}$

 $\mu = 0.38 \text{ mm}^{-1}$ T = 100 K

Prism, colourless

 $\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$

 $0.25 \times 0.20 \times 0.15 \text{ mm}$

 $D_x = 1.361 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1562 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.66665 (8)	0.89024 (5)	0.29153 (3)	0.01547 (15)	
N1	0.5827 (3)	0.68042 (16)	0.45253 (11)	0.0141 (3)	
C1	0.5756 (4)	0.56063 (19)	0.52477 (14)	0.0163 (4)	
H1A	0.5065	0.5926	0.5887	0.020*	
H1B	0.7412	0.5264	0.5446	0.020*	
C2	0.4204 (3)	0.77676 (19)	0.44907 (13)	0.0122 (4)	
C3	0.2062 (3)	0.7852 (2)	0.51239 (14)	0.0168 (4)	
H3A	0.0574	0.7795	0.4659	0.025*	
H3B	0.2102	0.8756	0.5503	0.025*	
H3C	0.2120	0.7060	0.5619	0.025*	
C4	0.4397 (3)	0.89283 (18)	0.37376 (13)	0.0113 (4)	
C5	0.2995 (3)	1.0123 (2)	0.35677 (14)	0.0144 (4)	
Н5	0.1648	1.0330	0.3940	0.017*	

Primary atom site location: structure-invariant

direct methods

supporting information

C6	0.3775 (3)	1.1021 (2)	0.27724 (14)	0.0163 (4)	
H6	0.3017	1.1893	0.2561	0.020*	
C7	0.5731 (4)	1.0482 (2)	0.23535 (13)	0.0171 (4)	
H7	0.6491	1.0930	0.1812	0.021*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0182 (3)	0.0134 (3)	0.0156 (2)	0.00002 (19)	0.00604 (18)	0.00080 (18)
N1	0.0170 (8)	0.0116 (7)	0.0135 (7)	-0.0028 (7)	0.0004 (6)	0.0025 (6)
C1	0.0195 (10)	0.0134 (9)	0.0154 (8)	-0.0006 (8)	-0.0007 (7)	0.0034 (8)
C2	0.0132 (9)	0.0120 (9)	0.0111 (8)	-0.0033 (7)	-0.0008 (7)	-0.0025 (7)
C3	0.0148 (9)	0.0213 (10)	0.0147 (8)	-0.0010 (8)	0.0030 (7)	0.0010 (8)
C4	0.0118 (8)	0.0118 (9)	0.0102 (8)	-0.0018 (7)	0.0006 (6)	-0.0013 (7)
C5	0.0131 (9)	0.0150 (9)	0.0151 (8)	0.0000 (8)	0.0007 (7)	-0.0015 (7)
C6	0.0185 (10)	0.0134 (9)	0.0156 (8)	0.0012 (8)	-0.0055 (7)	0.0013 (7)
C7	0.0239 (10)	0.0146 (9)	0.0123 (8)	-0.0052 (8)	-0.0006 (7)	0.0019 (7)

Geometric parameters (Å, °)

S1—C7	1.712 (2)	С3—НЗА	0.9800
S1—C4	1.7278 (17)	C3—H3B	0.9800
N1-C2	1.279 (2)	С3—Н3С	0.9800
N1-C1	1.465 (2)	C4—C5	1.375 (2)
C1-C1 ⁱ	1.523 (4)	C5—C6	1.428 (3)
C1—H1A	0.9900	С5—Н5	0.9500
C1—H1B	0.9900	C6—C7	1.361 (3)
C2—C4	1.472 (2)	С6—Н6	0.9500
C2—C3	1.513 (2)	С7—Н7	0.9500
C7—S1—C4	92.09 (9)	НЗА—СЗ—НЗС	109.5
C2—N1—C1	120.31 (15)	НЗВ—СЗ—НЗС	109.5
$N1$ — $C1$ — $C1^i$	110.72 (18)	C5—C4—C2	129.41 (16)
N1—C1—H1A	109.5	C5—C4—S1	110.65 (13)
C1 ⁱ —C1—H1A	109.5	C2—C4—S1	119.94 (13)
N1—C1—H1B	109.5	C4—C5—C6	112.95 (16)
C1 ⁱ —C1—H1B	109.5	C4—C5—H5	123.5
H1A—C1—H1B	108.1	C6—C5—H5	123.5
N1-C2-C4	116.88 (15)	C7—C6—C5	112.08 (17)
N1—C2—C3	127.72 (16)	С7—С6—Н6	124.0
C4—C2—C3	115.39 (16)	С5—С6—Н6	124.0
С2—С3—НЗА	109.5	C6—C7—S1	112.24 (14)
С2—С3—Н3В	109.5	С6—С7—Н7	123.9
НЗА—СЗ—НЗВ	109.5	S1—C7—H7	123.9
С2—С3—Н3С	109.5		
C2-N1-C1-C1 ⁱ	88.1 (2)	C7—S1—C4—C5	0.05 (14)
C1—N1—C2—C4	-179.53 (15)	C7—S1—C4—C2	-179.44 (14)
	. ,		

C1—N1—C2—C3	-0.6 (3)	C2—C4—C5—C6	179.10 (17)
N1-C2-C4-C5	-176.62 (18)	S1—C4—C5—C6	-0.3 (2)
C3—C2—C4—C5	4.3 (3)	C4—C5—C6—C7	0.5 (2)
N1-C2-C4-S1	2.8 (2)	C5—C6—C7—S1	-0.5 (2)
C3—C2—C4—S1	-176.34 (13)	C4—S1—C7—C6	0.25 (15)

Symmetry code: (i) -x+1, -y+1, -z+1.