organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(9H-Carbazol-9-yl)-2H-chromen-2-one

aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

(Received 22 August 2011; accepted 23 August 2011; online 27 August 2011)

The title compound, C21H13NO2, was prepared as an example of a new synthesis of carbazoles from a cyclic dibenzo-iodo­lium salt via a twofold Pd-catalysed aryl­ation of a primary amine. The two essentially planar π-subsystems [maximum deviations from the mean square plane of 0.038 (2) Å in the carbazole and 0.059 (2) Å in the coumarine unit] open a dihedral angle of 63.05 (4)°. Two mol­ecules form a centrosymmetrical pair connected via ππ inter­actions between the pyrrole and pyrone rings [centroid–centroid distance = 3.882 (1) Å] and one benzene of the carbazole and the pyrone unit [centroid–centroid distance 3.824 (1) Å]. The lattice is stabilized by C—H⋯O bridging to both coumarin O atoms.

Related literature

For alkaloids based on the carbazole core, see: Kapil (1971[Kapil, R. S. (1971). The Alkaloids, Vol. 13, pp. 273-302. New York: Academic Press.]). For information on carbazoles used as electron-rich and rigid units in functional materials for photoconducting, sensing and luminescence purposes, see: Wakim et al. (2004[Wakim, S., Bouichard, J., Simard, M., Drolet, N., Tao, Y. & Leclerc, M. (2004). Chem. Mater. 16, 4386-4388.]); Schmitt et al. (2008[Schmitt, V., Glang, S., Preis, J. & Detert, H. (2008). Sens. Lett. 6, 1-7.]). For carbazoles and δ-carbolines using the iodo­lium salt route, see Letessier (2011[Letessier, J. (2011). PhD thesis. University of Mainz, Germany.]); Letessier et al. (2011[Letessier, J., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o2341.]). For the construction of carbazoles and their heteroanalogous derivatives, see: Nissen & Detert (2011[Nissen, F. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2845-2853.]); Dassonneville et al. (2011[Dassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836-2844.]); Letessier et al. (2011[Letessier, J., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o2341.]). For the synthesis of annulated heterocycles, see: Nemkovich et al. (2009[Nemkovich, N. A., Kruchenok, Yu. V., Sobchuk, A. N., Detert, H., Wrobel, N. & Chernyavskii, E. A. (2009). Opt. Spectrosc. 107, 275-281.]); Preis et al. (2011[Preis, J., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o987.]).

[Scheme 1]

Experimental

Crystal data
  • C21H13NO2

  • Mr = 311.32

  • Monoclinic, P 21 /c

  • a = 8.9451 (12) Å

  • b = 11.5412 (7) Å

  • c = 15.0477 (17) Å

  • β = 105.871 (12)°

  • V = 1494.3 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.72 mm−1

  • T = 193 K

  • 0.50 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]) Tmin = 0.716, Tmax = 0.932

  • 2826 measured reflections

  • 2826 independent reflections

  • 2171 reflections with I > 2σ(I)

  • 3 standard reflections every 60 min intensity decay: 5%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.142

  • S = 1.04

  • 2826 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O24i 0.95 2.43 3.366 (2) 169
C11—H11⋯O22ii 0.95 2.58 3.522 (2) 170
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound was prepared as a part of a project focused on the synthesis of annulated heterocycles, see: Nemkovich et al. (2009); Preis et al. (2011). The Pd-catalyzed transformation of dibenzoiodolium salts to carbazoles constitutes a new access to carbazoles, especially 9-substituted carbazoles see: Letessier (2011). This method complements our toolbox for the construction of carbazoles and its heteroanalogous derivatives, see Nissen & Detert (2011); Dassonneville et al. (2011) and Letessier et al. (2011). Carbazole and coumarine units are essentially planar with maximum deviations from the mean square plane of 0.04Å in the carbazole and 0.06 Å in the coumarine unit. The dihedral angle between the mean planes is 63.1°. Two molecules form a centrosymmetric pair, they are connected via π-π interactions between carbazole and coumarin as indicated by the short distances of the centroids of pyrrole and pyrone of 3.88Å and of one benzene of the carbazole and the pyrone of 3.82 Å. The lattice is stabilized by hydrogen bridging to both coumarin oxgen atoms, C11—H11···O22 (2.58 Å) and C15—H15···O24 (2.43 Å).

Related literature top

For alkaloids based on the carbazole core, see: Kapil (1971). For information on carbazoles used as an electron-rich and rigid unit in functional materials for photoconducting, sensing and luminescence purposes, see: Wakim et al. (2004); Schmitt et al. (2008). For carbazoles and δ-carbolines using the iodolium salt route, see Letessier (2011); Letessier et al. (2011). For the construction of carbazoles and their heteroanalogous derivatives, see: Nissen & Detert (2011); Dassonneville et al. (2011); Letessier et al. (2011). For the synthesis of annulated heterocycles, see: Nemkovich et al. (2009); Preis et al. (2011).

Experimental top

Dibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (471 mg, 1.10 mmol) (Letessier (2011)), Pd2(dba)3 (40 mg, 0.044 mmol), Xantphos (76 mg, 0.13 mmol) and Cs2CO3 (1.07 g, 3.30 mmol) were dissolved in freshly distilled toluene (12 ml) in a sealed tube under argon atmosphere and stirred for 5 min at room temperature. 3-Amino-2H-chromen-2-one (213 mg, 1.32 mmol) was added and the mixture was stirred overnight at 373 K. The mixture was cooled to room temperature, filtered trough Celite and concentrated. Purification by silica gel chromatography (petrolether:EtOAc=4:1(v:v)) afforded pure 3-(9H-carbazol-9-yl)-2H-chromen-2-one as a white crystalline solid (51 mg, 0.17 mmol, 14%).

Refinement top

Hydrogen atoms were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level.
3-(9H-Carbazol-9-yl)-2H-chromen-2-one top
Crystal data top
C21H13NO2F(000) = 648
Mr = 311.32Dx = 1.384 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.9451 (12) Åθ = 45–50°
b = 11.5412 (7) ŵ = 0.72 mm1
c = 15.0477 (17) ÅT = 193 K
β = 105.871 (12)°Block, colourless
V = 1494.3 (3) Å30.50 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2171 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.000
Graphite monochromatorθmax = 69.9°, θmin = 4.9°
ω/2θ scansh = 010
Absorption correction: ψ scan
(CORINC; Dräger & Gattow, 1971)
k = 014
Tmin = 0.716, Tmax = 0.932l = 1817
2826 measured reflections3 standard reflections every 60 min
2826 independent reflections intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0895P)2 + 0.1404P]
where P = (Fo2 + 2Fc2)/3
2826 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C21H13NO2V = 1494.3 (3) Å3
Mr = 311.32Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.9451 (12) ŵ = 0.72 mm1
b = 11.5412 (7) ÅT = 193 K
c = 15.0477 (17) Å0.50 × 0.20 × 0.10 mm
β = 105.871 (12)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2171 reflections with I > 2σ(I)
Absorption correction: ψ scan
(CORINC; Dräger & Gattow, 1971)
Rint = 0.000
Tmin = 0.716, Tmax = 0.9323 standard reflections every 60 min
2826 measured reflections intensity decay: 5%
2826 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.04Δρmax = 0.21 e Å3
2826 reflectionsΔρmin = 0.30 e Å3
217 parameters
Special details top

Experimental. 1H-NMR (400 MHz, CDCl3): δ = 8.12 (d, J=8.3Hz, 2H), 8.04 (s, 1H), 7.66 (m, 1H), 7.60 (dd, J=7.8Hz, J=1.5Hz, 1H), 7.51 (d, J=8.3Hz, 1H), 7.43 (m, 3H), 7.31 (m, 4H).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.35522 (19)0.44252 (14)0.28217 (10)0.0344 (4)
C20.2569 (2)0.34605 (16)0.26142 (12)0.0326 (4)
C30.2417 (2)0.26376 (18)0.19169 (13)0.0389 (5)
H30.30270.26770.14910.047*
C40.1339 (2)0.17589 (19)0.18704 (14)0.0434 (5)
H40.12180.11810.14070.052*
C50.0427 (2)0.17044 (19)0.24880 (14)0.0431 (5)
H50.03080.10960.24350.052*
C60.0580 (2)0.25207 (18)0.31729 (13)0.0384 (5)
H60.00480.24840.35890.046*
C70.1674 (2)0.34055 (16)0.32474 (12)0.0314 (4)
C80.2154 (2)0.43659 (17)0.38781 (12)0.0324 (4)
C90.1733 (2)0.47311 (19)0.46582 (13)0.0410 (5)
H90.09670.43210.48620.049*
C100.2444 (2)0.5697 (2)0.51302 (14)0.0454 (5)
H100.21550.59580.56590.054*
C110.3578 (3)0.62901 (19)0.48398 (14)0.0439 (5)
H110.40590.69470.51800.053*
C120.4028 (2)0.59507 (17)0.40682 (14)0.0394 (5)
H120.48000.63630.38720.047*
C130.3298 (2)0.49793 (16)0.35928 (12)0.0328 (4)
C140.4510 (2)0.48169 (16)0.22789 (12)0.0319 (4)
C150.5679 (2)0.41781 (16)0.21408 (13)0.0338 (4)
H150.59630.34770.24760.041*
C160.6506 (2)0.45360 (17)0.14968 (12)0.0335 (4)
C170.7664 (2)0.38761 (19)0.12769 (15)0.0421 (5)
H170.79840.31650.15880.051*
C180.8348 (2)0.4251 (2)0.06098 (16)0.0497 (6)
H180.91230.37930.04560.060*
C190.7902 (2)0.5300 (2)0.01643 (15)0.0477 (6)
H190.83760.55520.02950.057*
C200.6781 (2)0.5980 (2)0.03778 (14)0.0408 (5)
H200.64830.66990.00740.049*
C210.6100 (2)0.55910 (17)0.10453 (12)0.0329 (4)
O220.49743 (15)0.62816 (11)0.12387 (9)0.0355 (3)
C230.4108 (2)0.59401 (16)0.18148 (12)0.0329 (4)
O240.30993 (17)0.65883 (13)0.19049 (10)0.0444 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0407 (9)0.0321 (8)0.0342 (8)0.0038 (7)0.0168 (7)0.0014 (6)
C20.0344 (9)0.0291 (9)0.0332 (9)0.0008 (7)0.0075 (7)0.0032 (7)
C30.0452 (11)0.0376 (11)0.0344 (10)0.0005 (9)0.0116 (8)0.0011 (8)
C40.0493 (12)0.0377 (11)0.0387 (10)0.0030 (9)0.0044 (9)0.0039 (8)
C50.0384 (11)0.0419 (12)0.0434 (11)0.0079 (9)0.0015 (9)0.0026 (9)
C60.0319 (9)0.0435 (11)0.0385 (10)0.0030 (8)0.0077 (8)0.0074 (8)
C70.0300 (9)0.0327 (10)0.0300 (9)0.0036 (7)0.0056 (7)0.0043 (7)
C80.0300 (9)0.0353 (10)0.0311 (9)0.0040 (7)0.0071 (7)0.0048 (7)
C90.0391 (10)0.0509 (12)0.0352 (10)0.0038 (9)0.0136 (8)0.0017 (9)
C100.0487 (12)0.0541 (13)0.0355 (10)0.0092 (10)0.0153 (9)0.0059 (9)
C110.0516 (12)0.0377 (11)0.0390 (11)0.0013 (10)0.0067 (9)0.0070 (9)
C120.0440 (11)0.0347 (11)0.0400 (10)0.0018 (8)0.0121 (9)0.0008 (8)
C130.0350 (9)0.0319 (10)0.0312 (9)0.0035 (8)0.0089 (7)0.0010 (7)
C140.0360 (9)0.0301 (10)0.0311 (9)0.0027 (8)0.0116 (7)0.0007 (7)
C150.0348 (10)0.0307 (10)0.0351 (9)0.0001 (8)0.0081 (7)0.0023 (7)
C160.0279 (9)0.0373 (10)0.0342 (9)0.0026 (8)0.0065 (7)0.0036 (8)
C170.0332 (10)0.0436 (12)0.0483 (12)0.0012 (9)0.0088 (9)0.0051 (9)
C180.0327 (10)0.0636 (15)0.0574 (13)0.0040 (10)0.0199 (10)0.0120 (11)
C190.0363 (10)0.0658 (15)0.0451 (11)0.0154 (10)0.0183 (9)0.0081 (10)
C200.0367 (10)0.0480 (12)0.0375 (10)0.0120 (9)0.0097 (8)0.0006 (9)
C210.0284 (9)0.0375 (10)0.0324 (9)0.0051 (8)0.0074 (7)0.0032 (7)
O220.0365 (7)0.0329 (7)0.0384 (7)0.0004 (6)0.0125 (6)0.0054 (5)
C230.0341 (9)0.0320 (10)0.0333 (9)0.0012 (8)0.0106 (7)0.0002 (7)
O240.0466 (8)0.0391 (8)0.0512 (8)0.0094 (6)0.0197 (7)0.0023 (6)
Geometric parameters (Å, º) top
N1—C131.397 (2)C11—H110.9500
N1—C21.400 (2)C12—C131.392 (3)
N1—C141.410 (2)C12—H120.9500
C2—C31.394 (3)C14—C151.342 (3)
C2—C71.404 (3)C14—C231.470 (3)
C3—C41.388 (3)C15—C161.431 (3)
C3—H30.9500C15—H150.9500
C4—C51.395 (3)C16—C211.393 (3)
C4—H40.9500C16—C171.397 (3)
C5—C61.375 (3)C17—C181.380 (3)
C5—H50.9500C17—H170.9500
C6—C71.397 (3)C18—C191.388 (3)
C6—H60.9500C18—H180.9500
C7—C81.446 (3)C19—C201.379 (3)
C8—C91.393 (3)C19—H190.9500
C8—C131.405 (3)C20—C211.384 (3)
C9—C101.380 (3)C20—H200.9500
C9—H90.9500C21—O221.376 (2)
C10—C111.390 (3)O22—C231.369 (2)
C10—H100.9500C23—O241.208 (2)
C11—C121.385 (3)
C13—N1—C2108.33 (15)C11—C12—H12121.4
C13—N1—C14126.66 (16)C13—C12—H12121.4
C2—N1—C14124.73 (15)C12—C13—N1129.46 (18)
C3—C2—N1129.48 (18)C12—C13—C8121.80 (17)
C3—C2—C7121.57 (18)N1—C13—C8108.71 (16)
N1—C2—C7108.95 (16)C15—C14—N1122.45 (17)
C4—C3—C2117.34 (19)C15—C14—C23120.71 (16)
C4—C3—H3121.3N1—C14—C23116.74 (16)
C2—C3—H3121.3C14—C15—C16121.02 (17)
C3—C4—C5121.60 (19)C14—C15—H15119.5
C3—C4—H4119.2C16—C15—H15119.5
C5—C4—H4119.2C21—C16—C17118.19 (18)
C6—C5—C4120.78 (19)C21—C16—C15117.93 (17)
C6—C5—H5119.6C17—C16—C15123.86 (19)
C4—C5—H5119.6C18—C17—C16120.4 (2)
C5—C6—C7118.99 (19)C18—C17—H17119.8
C5—C6—H6120.5C16—C17—H17119.8
C7—C6—H6120.5C17—C18—C19119.9 (2)
C6—C7—C2119.70 (18)C17—C18—H18120.0
C6—C7—C8133.52 (18)C19—C18—H18120.0
C2—C7—C8106.77 (16)C20—C19—C18121.03 (19)
C9—C8—C13119.51 (18)C20—C19—H19119.5
C9—C8—C7133.24 (18)C18—C19—H19119.5
C13—C8—C7107.23 (16)C19—C20—C21118.5 (2)
C10—C9—C8119.06 (19)C19—C20—H20120.8
C10—C9—H9120.5C21—C20—H20120.8
C8—C9—H9120.5O22—C21—C20117.27 (18)
C9—C10—C11120.62 (18)O22—C21—C16120.75 (16)
C9—C10—H10119.7C20—C21—C16121.97 (18)
C11—C10—H10119.7C23—O22—C21122.72 (14)
C12—C11—C10121.9 (2)O24—C23—O22117.53 (17)
C12—C11—H11119.1O24—C23—C14125.86 (17)
C10—C11—H11119.1O22—C23—C14116.60 (16)
C11—C12—C13117.11 (19)
C13—N1—C2—C3179.12 (19)C7—C8—C13—C12178.87 (17)
C14—N1—C2—C36.6 (3)C9—C8—C13—N1177.92 (16)
C13—N1—C2—C70.6 (2)C7—C8—C13—N10.8 (2)
C14—N1—C2—C7173.62 (16)C13—N1—C14—C15123.2 (2)
N1—C2—C3—C4179.88 (18)C2—N1—C14—C1563.6 (3)
C7—C2—C3—C40.1 (3)C13—N1—C14—C2360.6 (2)
C2—C3—C4—C50.7 (3)C2—N1—C14—C23112.6 (2)
C3—C4—C5—C60.6 (3)N1—C14—C15—C16172.20 (16)
C4—C5—C6—C70.5 (3)C23—C14—C15—C163.9 (3)
C5—C6—C7—C21.3 (3)C14—C15—C16—C212.5 (3)
C5—C6—C7—C8178.49 (19)C14—C15—C16—C17175.69 (18)
C3—C2—C7—C61.2 (3)C21—C16—C17—C181.9 (3)
N1—C2—C7—C6179.02 (16)C15—C16—C17—C18176.35 (18)
C3—C2—C7—C8178.68 (17)C16—C17—C18—C191.0 (3)
N1—C2—C7—C81.1 (2)C17—C18—C19—C200.1 (3)
C6—C7—C8—C92.6 (4)C18—C19—C20—C210.4 (3)
C2—C7—C8—C9177.3 (2)C19—C20—C21—O22179.40 (16)
C6—C7—C8—C13179.0 (2)C19—C20—C21—C160.5 (3)
C2—C7—C8—C131.2 (2)C17—C16—C21—O22179.53 (16)
C13—C8—C9—C100.5 (3)C15—C16—C21—O222.1 (3)
C7—C8—C9—C10178.82 (19)C17—C16—C21—C201.6 (3)
C8—C9—C10—C110.8 (3)C15—C16—C21—C20176.71 (17)
C9—C10—C11—C120.7 (3)C20—C21—O22—C23173.28 (16)
C10—C11—C12—C130.3 (3)C16—C21—O22—C235.6 (3)
C11—C12—C13—N1177.60 (19)C21—O22—C23—O24176.57 (16)
C11—C12—C13—C80.1 (3)C21—O22—C23—C144.2 (2)
C2—N1—C13—C12178.00 (19)C15—C14—C23—O24178.58 (19)
C14—N1—C13—C127.9 (3)N1—C14—C23—O245.1 (3)
C2—N1—C13—C80.1 (2)C15—C14—C23—O220.6 (3)
C14—N1—C13—C8174.22 (16)N1—C14—C23—O22175.71 (15)
C9—C8—C13—C120.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O24i0.952.433.366 (2)169
C11—H11···O22ii0.952.583.522 (2)170
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H13NO2
Mr311.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)8.9451 (12), 11.5412 (7), 15.0477 (17)
β (°) 105.871 (12)
V3)1494.3 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.72
Crystal size (mm)0.50 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(CORINC; Dräger & Gattow, 1971)
Tmin, Tmax0.716, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
2826, 2826, 2171
Rint0.000
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.142, 1.04
No. of reflections2826
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.30

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O24i0.952.433.366 (2)169
C11—H11···O22ii0.952.583.522 (2)170
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

The authors are grateful to Heinz Kolshorn for invaluable discussions and the NMR spectra.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836–2844.  Web of Science CSD CrossRef Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationKapil, R. S. (1971). The Alkaloids, Vol. 13, pp. 273–302. New York: Academic Press.  Google Scholar
First citationLetessier, J. (2011). PhD thesis. University of Mainz, Germany.  Google Scholar
First citationLetessier, J., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o2341.  CrossRef IUCr Journals Google Scholar
First citationNemkovich, N. A., Kruchenok, Yu. V., Sobchuk, A. N., Detert, H., Wrobel, N. & Chernyavskii, E. A. (2009). Opt. Spectrosc. 107, 275–281.  Web of Science CrossRef CAS Google Scholar
First citationNissen, F. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2845–2853.  Web of Science CSD CrossRef Google Scholar
First citationPreis, J., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o987.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchmitt, V., Glang, S., Preis, J. & Detert, H. (2008). Sens. Lett. 6, 1–7.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWakim, S., Bouichard, J., Simard, M., Drolet, N., Tao, Y. & Leclerc, M. (2004). Chem. Mater. 16, 4386–4388.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds